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ABSTRACT

The objective of this paper is to present an analysis of a bonus-malus sys-
tem (BMS) within the framework of the theory of ergodic Markov set-chains.
It is shown that this type of Markov chains enables the evaluation of BMS,
even in steady-state, under the assumption that transition probabilities change
in a definite range. We introduce a model that allows the determination of the
consequences of changes in the claim frequency of a policyholder. In a numer-
ical example we examine the BMS employed by one of the Polish insurance
companies.
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1. INTRODUCTION

In most analyses of bonus-malus systems (BMS), it is assumed that the claim
frequency of an individual policyholder remains constant. This assumption
implies constant transition probabilities and makes it possible to model a BMS
as a homogeneous Markov chain (see e.g. Lemaire, 1995). However, it is known
that the claim frequency l may be time-dependant for various reasons. More-
over, actuarial tools used to evaluate BMS such as the stationary probabilities
and mean first passage times are not necessarily monotonic functions of l;
describing their properties analytically is a laborious task. Therefore, it is often
difficult to determine these measures’ reaction to changes in claim frequency.
In order to relax the assumption of a constant claim frequency, we use the
concept of ergodic Markov set-chains, as defined by Hartfiel (1998).

A Markov set-chain constitutes a specific generalisation of the idea of clas-
sical Markov chains. Its fundamental assumption consists in allowing for vary-
ing transition probabilities at each step, although these changes are restricted
by some lower and upper bounds. It is assumed that exact values of transition
probabilities are not known: they belong to a given compact set, usually defined
as an interval.
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Markov set-chains can be represented as nonhomogeneous Markov chains;
however they constitute a much more efficient tool than nonhomogeneous
Markov chains to study BMS. Indeed, the analysis of long-term behaviour is
much easier, as the determination of all step transition matrices is not required.

This paper is organised as follows. Section 2 provides a concise theoretical
description of an ergodic Markov set-chain. It is consistent with the concept
developed by Hartfiel (1998), which is relatively new and has not been applied
in actuarial science so far. In section 3 a model of a BMS is cast within the
framework of Markov set-chain theory. In section 4 a numerical example is pre-
sented, which shows how the fluctuation of claim frequencies may affect asymp-
totic measures of BMS evaluation. Section 5 concludes.

2. MARKOV SET-CHAINS

The description of Markov set-chains presented in this section is based on
Hartfiel’s (1998) monograph.

Definition 1.
Let N1 be a compact set of r ≈ r stochastic matrices. Consider Markov chains
with the state space S = {1,2, ...,r}, having all their transition matrices in N1.
A Markov set-chain is the sequence

N1, N2, N3, ...,

where Nk = {P : P = P1P2gPk, where Pi ∈ N1 for all i = 1,2,…,k} for each k.
The set Nk contains all possible k-step transition matrices, provided that

one-step transition matrices belong to the set N1. Note that k-step transition
matrices are not uniquely determined. Since the set N1 is compact, it is closed
and bounded. In a particular case it can be an interval. We define the matrix
interval as an interval

[K,Q] = {P : K ≤ P ≤ Q},

where P = [ pij ] denotes an r ≈ r stochastic matrix and K = [kij ] and Q = [qij ]
are nonnegative r ≈ r matrices such that K ≤ Q. As the interval [K,Q] can be
constructed by rows, it is useful to introduce also a vector interval. We define
the vector interval as an interval

[k,q] = {x : k ≤ x ≤ q},

where x = [xj ] is a 1 ≈ r stochastic vector and k = [kj ] and q = [qj ] are non-
negative 1 ≈ r vectors such that k ≤ q. Throughout, we assume that none of
the intervals is empty.
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The important feature of the intervals described above is their tightness.
A matrix interval [K,Q] is tight if kij = min

,P K Q! 5 ?

pij and qij = max
,P K Q! 5 ?

pij for all i

and j. A vector interval [k,q] is tight if kj = min
,x k q! 5 ?

xj and qj = max
,x k q! 5 ?

xj for all j.

It is easy to show that for a tight vector interval the following conditions hold:

j q 1
!

t
t j

$+k ! and j 1
!

t
t j

#+q k! for all j. (1)

If N1 is a tight interval [K,Q], then K and Q are column tight component bounds
on N1.

Henceforth, we restrict our analysis to Markov set-chains determined by a
matrix interval [K,Q].

Markov set-chains are classified as ergodic, regular and absorbing, in the
same way as classical Markov chains. Taking into account properties of most
BMS, in this paper we focus on ergodic Markov set-chains only. In order to
define this type of chains, we first need to introduce the concept of an ergodic
class.

The decomposition of the state space S = {1,2,...,r} of a Markov set-chain
is based on the structure of the upper bound Q of a matrix interval [K, Q].
Through simultaneous permutations of rows and columns, Q can be put into
the following canonical form:
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⎡ ⎤⎢ Q11 0 g 0 0 g 0 0 ⎥
⎢ 0 Q22 g 0 0 g 0 0 ⎥
⎢ g g g g g g g g ⎥

Q = ⎢ 0 0 g Qnn 0 g 0 0 ⎥ ,
⎢ Qn + 1,1 Qn + 1,2 g Qn + 1,n Qn + 1, n + 1 g 0 0 ⎥
⎢ g g g g g g g g ⎥
⎢ Qs1 Qs2 g Qsn Qs, n + 1 g Qs, s – 1 Qss ⎥⎣ ⎦

where n ≥ 1, Qkk, is a k ≈ k irreducible matrix for all k = 1,2, ...,n, and if t > n
then Qtk ! 0 for some k = 1,2,..., t – 1. It is also assumed that all matrices from
the interval [K,Q] have undergone the same simultaneous row and column
permutations. The definition of an ergodic class and an ergodic state follows.

Definition 2.
Let a Markov set-chain be determined by a matrix interval [K,Q]. Let Si be
the class of states corresponding to Qii and, consequently, to the interval of
submatrices [Kii,Qii]. Then class Si, where i ≤ n, and each of its states, are
called ergodic if the limit lim

k " 3
[Kii,Qii]

k exists and each matrix in this limit is
of rank 1.
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When determining if a class is ergodic, it is convenient to refer to the fol-
lowing theorem.

Theorem 1. Under the assumptions of Definition 2, the class Si, where i ≤ n,
is ergodic if Kii is primitive.

Now we are in a position to present the following definition.

Definition 3.
A Markov set-chain is ergodic if it has only one class and that class is ergodic.

One of the most important properties of an ergodic Markov set-chain is its
convergence.

Definition 4.
The limit set of a Markov set-chain is defined as

N∞ = {B : B is a rank one matrix}.

Theorem 2. If a Markov set-chain with a compact set of transition matrices N1

is ergodic, then lim
k " 3

Nk = N∞.

If the set Nk converges to the set N∞, and if Lk and Hk are lower and upper
bounds on Nk, then the sequences {Lk}, {Hk}, converge. Let their limits be
denoted by L∞ and H∞ respectively: lim

k " 3
Lk = L∞, lim

k " 3
Hk = H∞. We call L∞ and

H∞ the lower and upper limit bounds on N∞. Note that their rows constitute
bounds on the set of stationary probability distributions.

In order to compute bounds on sets of transition matrices at each step,
Hartfiel (1991, 1998) proposed the application of the Hi-Lo method. It is an
iterative algorithm that consists in finding column tight component bounds on
Nk, given the column tight component bounds on Nk – 1, where k = 2,3,... That is,
column tight component bounds on N1 produce column tight component bounds
on N2, which in turn give column tight component bounds on N3, and so forth.

For an ergodic Markov set-chain we can also calculate bounds on mean
first passage times, defined as

m“ ij = [P1 + 2P1 P” j
2 + … + nP1 P” j

2 g P” j
n + …]ij , (2)

where Pn ∈ N1, and P” j
n is the matrix obtained from Pn by replacing its j-th row

by the row of 0’s. The matrices of lower and upper bounds on mean first pas-
sage times are denoted as M” l and M” h respectively. Hartfiel and Seneta (1994)
proved that the sum in (2) converges and that its lower and upper bounds may
be obtained via an algorithm based on the Hi-Lo method.

3. MODEL OF BONUS-MALUS SYSTEM

Following Lemaire (1995), we call a system employed in automobile insurance
a bonus-malus system if:
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– all policyholders of a given tariff group are divided into a finite number of
classes, denoted as  Ci ( i = 1,2,..., r), and their premium depends only on the
class they belong to, and

– for each policyholder the class for a given period (usually a year) is deter-
mined uniquely by the class in the preceding period and the number of
claims reported during that time.

A BMS is defined by the initial class, the premium scale, and the transition
rules, which may be represented by means of r ≈ r matrices

,tTk ij
k

= ] g
9 C

where 
!

t
i j

i j

if

if

1

0
ij

k k

k

=
=T

T
] ^

^

g h

h
* and Tk(i ) = j denotes the transfer of a policy-

holder reporting k claims from class Ci to class Cj in the next period. The prob-
ability of moving from class Ci to class Cj for a policyholder with claim fre-
quency l is given by

,tl lij k ij
k

k 0

=
3

=

p p!^ ^
]

h h
g

where  pk(l) is the probability that a driver with claim frequency l has k claims
in one period. Under the assumption that the claim frequency of an insured
is stationary in time, a BMS can be modelled as a finite homogeneous Markov
chain with the state space S = {1,2, ...,r} and the transition matrix 

.p TP l l lij k
k

k
0

= =
3

=

p!^ ^ ^h h h7 A

It is worth mentioning that finite homogeneous Markov chains are irreducible
and ergodic for majority of BMS in use.

The assumption of a constant claim frequency is rather unrealistic, but
required for the study of BMS within the framework of homogeneous Markov
chain theory. In practice, claim frequencies may change over time in response
to insurance companies’ actions, changes in the driving habits and behaviour
of a policyholder. External factors such as weather conditions or state of roads
may also play a role. Regardless of the reason for the occurrence of these
changes, the need for the evaluation of their consequences is apparent. For such
an analysis we should treat measures used to evaluate a BMS as functions of
l and check their properties, particularly their monotonicity. However, for
real-life BMS this is a very arduous and time-consuming task. Therefore, we
propose to use ergodic Markov set-chains.

To view a BMS as a Markov set-chain we need the following assumptions:

[1] only a BMS that forms irreducible ergodic finite homogeneous Markov
chain is under consideration;
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[2] the number of claims of a policyholder with claim frequency l conforms
to a Poisson distribution;

[3] the claim frequency l varies in the interval [l(1), l(2)], where

0 < l(1) < l(2) < 1. (3)

Actual claim frequencies hardly ever exceed 1; therefore condition (3) is not
restrictive in the analysis of real-life BMS. However, it is necessary that the fol-
lowing relationship be satisfied

pk(l) ∈ [min{pk(l(1)); pk(l(2))}, max{pk(l(1)); pk(l(2))}] , (4)

for k = 0,1,2, ... and l ∈ [l(1), l(2)]. It is easy to verify that p0(l) and pk(l) for
k = 1,2,... are respectively a decreasing and increasing function of l in the inter-
val (0, 1), which ensures that relationship (4) holds.

Under assumptions [1]-[3] we can determine the matrix interval that com-
prises all transition matrices of the Markov set-chain. Lower and upper bounds
on that interval can be expressed as

, , ,min minp p p pK Tk k
k

k ij ij
1 2

0

1 2
= =

3

=

! ] ] ] ]g g g g
: D& &0 0 (5)

, , ,max maxp p p pQ Tk k
k

k ij ij
1 2

0

1 2
= =

3

=

! ] ] ] ]g g g g
: D& &0 0 (6)

where superscripts (1) and (2) indicate that a given probability is calculated for l(1)

and l(2), respectively. Note that K and Q are nonnegative r ≈ r matrices such
that K ≤ Q. From relationship (4) and equations (5) and (6) we obtain

P(l ) ∈ [K,Q ] for l ∈ [l(1), l(2)].

Hence, the interval [K,Q ] contains all transition matrices of irreducible, ergodic,
and finite homogeneous Markov chains that describe the same BMS and dif-
fer only in the assumed value of the claim frequency of a policyholder.

Theorem 3. Let a Markov set-chain be a model of a BMS satisfying assump-
tions [1]-[3]. Let [K,Q] be its transition matrix interval, where K and Q are given
by equations (5) and (6). Then the Markov set-chain is ergodic.

PROOF: Note that the arrangement of all nonzero elements in each matrix
from the interval [K,Q ] is identical and depends on the transition rules expressed
in matrices Tk. The interval [K,Q ] comprises one-step transition matrices of
irreducible ergodic finite and homogeneous Markov chains. Each of these
matrices is both irreducible and primitive and in its canonical form the posi-
tioning of zero and positive elements is identical. As the same pattern of zero
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and positive elements is characteristic of any matrix from the interval [K,Q ],
including K and Q, all matrices from this interval are irreducible and primitive.
By Definition 2 and Theorem 1, the sufficient condition for the Markov set-
chain to be ergodic is met.

It can also be proved that the transition matrix interval [K,Q ] of the model
is tight. To this end let us define two sets of indices. Let 

i i i: , ,minA j p p pi j j j
1 2 1

= =] ] ]g g g
&& 0 0

i i i: , ,minB j p p pi j j j
1 2 2

= =] ] ]g g g
&& 0 0

where i, j ∈ S. It can be easily verified that for the above sets the conditions
hold:

i i i: , ,maxA j p p pi j j j
1 2 2

= =] ] ]g g g
&& 0 0

i i i: , .maxB j p p pi j j j
1 2 1

= =] ] ]g g g
&& 0 0

The sets Ai and Bi are disjoint. Their definition and the inequality K ≤ Q imply
the following relationships:

– if t ∈ Ai for i ∈ S, then pit
(1) is an element of matrix K and pit

(2) is an element
of matrix Q ;

– if t ∈ Bi for i ∈ S, then pit
(2) is an element of matrix K and pit

(1) is an element
of matrix Q.

As an immediate consequence of the above implications we obtain

pit
(1) ≤ pit

(2) for t ∈ Ai and i, t ∈ S, (7)

pit
(2) ≤ pit

(1) for t ∈ Bi and i, t ∈ S. (8)

Furthermore, referring to the stochastic property of the transition matrices
P(l(1)) = [ pij

(1)] and P(l(2)) = [ pij
(2)] we have

i ip p 1t
t A

t
t B

1 1
+ =

! !i i

! !] ]g g and i ip p 1t
t A

t
t B

2 2
+ =

! ! ii

! !] ]g g for i, t ∈ S. (9)

Theorem 4. Let a Markov set-chain be a model of a BMS satisfying assump-
tions [1]-[3]. Let [K,Q ] be its transition matrix interval, where K and Q are given
by equations (5) and (6). Then the interval [K,Q ] is tight.

PROOF: Since [K,Q ] = {P : Pi ∈ [Ki, Qi ] for i = 1,2,...,r}, where Pi, Ki, Qi are
i-th rows of P, K and Q respectively, it suffices to show that, for all i ∈ S,
i-th rows of K and Q are bounds on tight vector intervals.
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If the probability pib from the matrix K is a function of the claim frequency
l(1) then equations (7) and (9) lead to

i i i i i it t t tp p p p p p 1

! ! ! !

b

t b
t A

t b
t B

b

t b
t A

t b
t B

1 2 1 1 1 1

i i

$+ + + + =
! ! ! !i i

! ! ! !] ] ] ] ] ]g g g g g g for all i, b, t ∈ S,

and if pib depends on l(2) then from (8) and (9) we have

i i i i i it t t tp p p p p p 1

! ! ! !

b

t b
t A

t b
t B

b

t b
t A

t b
t B

2 2 1 2 2 2

i i

$+ + + + =
! ! ! !i i

! ! ! !] ] ] ] ] ]g g g g g g for all i, b, t ∈ S.

If the probability pib from the matrix Q is a function of the claim frequency
l(1) then equations (8) and (9) imply that 

i i i i i it t t tp p p p p p 1

! ! ! !

b

t b
t A

t b
t B

b

t b
t A

t b
t B

1 1 2 1 1 1

i i

#+ + + + =
! ! ! !i i

! ! ! !] ] ] ] ] ]g g g g g g for all i, b, t ∈ S,

and if pib depends on l(2) then from (7) and (9) we have

i i i i i it t t tp p p p p p 1

! ! ! !

b

t b
t A

t b
t B

b

t b
t A

t b
t B

2 1 2 2 2 2

i i

#+ + + + =
! ! ! !i i

! ! ! !] ] ] ] ] ]g g g g g g for all i, b, t ∈ S.

Thus, conditions (1) are fulfilled, which means that the vector intervals bounded
by i-th rows of K and Q and, consequently, the matrix interval [K, Q ] are
tight.

4. NUMERICAL EXAMPLE

In the preceding section we have shown that Markov set-chain theory enables us
to examine the consequences of claim frequency changes within a given inter-
val. In order to illustrate the application of the model described in section 2
we analyse the BMS currently employed in first-party coverage insurance by
Powszechny Zaklad Ubezpieczen SA (PZU), a Polish insurance company.

The BMS of PZU consists of 13 classes. New policyholders enter the sys-
tem in class C5. The premium levels for each class and the transition rules
are given in Table 1. The properties of the system allow for modelling it both
as an irreducible ergodic finite homogeneous Markov chain, and as an ergodic
Markov set-chain.

Since the average claim frequency in first-party coverage insurance in
Poland has been close to 0.15 over recent years, let us consider a policyholder
with claim frequency varying from 0.1 to 0.2. Having assumed that the num-
ber of claims follows the Poisson distribution, by equations (5) and (6) we get
bounds K and Q on the interval comprising all possible transition matrices
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of the ergodic Markov set-chain – the model of the BMS for the policyholder.
By Theorem 4 the obtained interval is tight, and therefore the Hi-Lo method
can be employed to calculate bounds on sets of each step transition matrices.
Given the data we obtained lower and upper limit bounds L∞ and H∞, which
are rank one matrices with the following rows:

BONUS-MALUS SYSTEMS AS MARKOV SET-CHAINS 61

TABLE 1

BONUS-MALUS SYSTEM OF PZU

Class number after

Class Premium level 
0 1 2 3 4 5

6 or
number (in percentage) more

claims

1 200 2 1 1 1 1 1 1
2 150 3 1 1 1 1 1 1
3 130 4 1 1 1 1 1 1
4 115 5 2 1 1 1 1 1
5 100 6 3 1 1 1 1 1
6 90 7 4 2 1 1 1 1
7 80 8 5 3 1 1 1 1
8 80 9 6 4 2 1 1 1
9 70 10 7 5 3 1 1 1
10 60 11 8 6 4 2 1 1
11 50 12 9 7 5 3 1 1
12 50 13 10 8 6 4 2 1
13 40 13 11 9 7 5 3 1

SOURCE: General Conditions for First-Party Coverage Insurance of Powszechny Zaklad Ubez-
pieczen SA established on 25th April 2003.

� �⎡ 0.0000208⎤ ⎡ 0.0024550 ⎤⎢ 0.0000446⎥ ⎢ 0.0035783 ⎥
⎢ 0.0001074⎥ ⎢ 0.0053440 ⎥
⎢ 0.0002213⎥ ⎢ 0.0077067 ⎥
⎢ 0.0005600⎥ ⎢ 0.0117437 ⎥
⎢ 0.0010778⎥ ⎢ 0.0165209 ⎥

l∞ = [ l∞
j ] = ⎢ 0.0029749⎥ , h∞ = [h∞

j ] = ⎢ 0.0263297 ⎥ .
⎢ 0.0050562⎥ ⎢ 0.0349721 ⎥
⎢ 0.0162052⎥ ⎢ 0.0615415 ⎥
⎢ 0.0217997⎥ ⎢ 0.0715952 ⎥
⎢ 0.0855492⎥ ⎢ 0.1531372 ⎥
⎢ 0.0672202⎥ ⎢ 0.1336289 ⎥
⎣ 0.5140922⎦ ⎣ 0.7789784 ⎦
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The vectors l∞ and h∞ are bounds on the interval of all possible stationary prob-
ability distributions. Note that their elements are minimum and maximum
steady-state probabilities that the policyholder belongs to a given class, and
therefore they do not add up to 1. The variability range of the probabilities for
a driver with claim frequency in the interval [0.1, 0.2] is diversified. Generally,
in higher classes (with lower premiums) the steady-state probabilities are higher
and more sensitive to the claim frequency changes. Consequently, the driver has
a better chance of being in a high-discount class, however the probability of this
event is subject to variations that are larger than for the probability of being
in a low-discount class.

The analysis of bounds on mean first passage times may also provide valu-
able information. In the context of the model of a BMS each of these times
indicates an average time needed by a policyholder from class Ci to reach Cj

for the first time. In our numerical example, the matrices of lower and upper
bounds on these times M” l = [m” l

ij ] and M” h = [m” h
ij ] are as follows:

62 M. NIEMIEC

⎡ 407.33 1.11 2.33 3.68 5.06 6.46 7.87 9.29 10.71 12.13 13.54 14.96 16.38 ⎤
⎢ 496.29 279.46 1.22 2.57 3.95 5.36 6.77 8.18 9.60 11.02 12.44 13.86 15.28 ⎥
⎢ 604.95 339.87 187.12 1.35 2.73 4.14 5.55 6.96 8.38 9.80 11.22 12.64 14.05 ⎥
⎢ 737.67 413.65 226.82 129.76 1.38 2.79 4.20 5.61 7.03 8.45 9.87 11.29 12.70 ⎥
⎢ 800.51 503.98 275.52 156.67 85.15 1.40 2.82 4.23 5.65 7.07 8.49 9.90 11.32 ⎥
⎢ 855.54 546.35 335.25 189.79 102.13 60.53 1.41 2.83 4.24 5.66 7.08 8.50 9.92 ⎥

M” l = ⎢ 886.27 583.36 362.86 230.53 123.16 72.04 37.98 1.42 2.83 4.25 5.67 7.09 8.51 ⎥
⎢ 909.07 603.70 386.87 248.98 149.14 86.39 44.48 28.59 1.42 2.84 4.25 5.67 7.09 ⎥
⎢ 922.60 618.60 399.72 264.93 160.48 104.23 52.73 33.01 16.25 1.42 2.84 4.26 5.67 ⎥
⎢ 931.58 627.13 408.91 273.12 170.15 111.65 63.12 38.72 17.93 13.97 1.42 2.84 4.26 ⎥
⎢ 936.66 632.54 413.84 278.77 174.73 117.86 66.95 46.01 20.30 15.15 6.53 1.42 2.84 ⎥
⎢ 939.47 635.28 416.68 281.47 177.64 120.45 70.00 48.34 23.51 16.90 6.06 7.48 1.42 ⎥
⎣ 940.56 636.46 417.73 282.71 178.60 121.84 70.76 50.07 23.88 19.35 5.81 7.23 1.28 ⎦
⎡ 48039.25 1.22 2.71 4.54 6.52 8.64 10.84 13.1 15.41 17.74 20.09 22.45 24.82 ⎤
⎢ 53090.48 22425.35 1.49 3.31 5.3 7.42 9.62 11.88 14.19 16.52 18.87 21.23 23.6 ⎥
⎢ 58672.94 24782.61 9314.63 1.82 3.8 5.92 8.13 10.39 12.69 15.02 17.37 19.74 22.11 ⎥
⎢ 64842.53 27387.79 10292.87 4518.94 1.98 4.10 6.31 8.57 10.87 13.20 15.55 17.91 20.28 ⎥
⎢ 66351.92 30267.07 11374.11 4992.74 1785.76 2.12 4.32 6.59 8.89 11.22 13.57 15.93 18.3 ⎥
⎢ 67461.81 30970.92 12569.22 5516.52 1972.05 927.84 2.20 4.47 6.77 9.10 11.45 13.81 16.18 ⎥

M” h = ⎢ 67806.03 31488.27 12860.73 6095.58 2178.12 1023.87 336.15 2.26 4.57 6.90 9.25 11.61 13.98 ⎥
⎢ 68007.59 31648.20 13074.79 6236.26 2406.07 1130.20 369.92 197.78 2.30 4.63 6.98 9.34 11.71 ⎥
⎢ 68079.66 31741.53 13140.39 6339.38 2460.80 1247.94 407.47 216.98 61.71 2.33 4.68 7.04 9.41 ⎥
⎢ 68116.41 31774.42 13178.33 6370.47 2500.68 1275.68 449.19 238.43 66.59 45.87 2.35 4.71 7.08 ⎥
⎢ 68130.08 31790.82 13191.16 6388.15 2512.11 1295.72 458.33 262.38 72.22 49.08 11.69 2.36 4.73 ⎥
⎢ 68135.98 31796.44 13197.14 6393.64 2518.24 1300.98 464.68 267.16 78.69 52.87 11.16 14.88 2.37 ⎥
⎣ 68137.60 31798.44 13198.65 6395.81 2519.55 1303.48 465.67 270.31 79.19 57.3 10.81 14.65 1.95 ⎦

Note that the variability range of the mean first passage times is strongly
diversified. It is relatively narrow for the mean times of the first promotion to
higher-discount classes as well as for movement between classes C9, C10, C11,
C12, and C13. For the remaining times the range is wide, its spread exceeds
50 years and in some cases even 67 000 years. Such diversity of the variability
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ranges of the mean times indicates difference in their sensitivity to the changes
in claim frequency. The fluctuation of claim frequency between 0.1 and 0.2
can result in a maximal change of the mean time equal only to 0.11 (from 1.11
to 1.22 in case of the transfer from C1 to C2), as well as to over 67 197 years
(from 940.56 to 68137.60 in case of the transfer from C13 to C1).

The resulting values of the mean first passage times merit particular atten-
tion. For example, some transfers of a policyholder with claim frequency in
the interval [0.1, 0.2] are virtually impossible. It is hard to expect that the pol-
icyholder will ever move to another class, if the lower bound on the mean
time for such a transfer exceeds 50 years. Yet, such high values are found in
approximately 40% of the elements of the matrix M” l. These are mainly lower
bounds on the mean times of downgrading in the class hierarchy. This means
that it is relatively difficult for the policyholder to reach a class with higher
premium in the PZU system. On the other hand, in most cases the expected
times for lowering a premium are significantly shorter and hence the transfer
to higher-discount classes is reachable. For instance, the mean time of the first
passage from the initial class C5 to the best class C13 amounts to 11.32 years at
best, and to 18.3 years at worst, which is usually shorter than driving life. These
results show that the transition rules of the system are soft for drivers with
claim frequency in the interval [0.1, 0.2]. PZU may encounter problems result-
ing from the clustering of policyholders in high-discount classes.

Also, it is worth mentioning that in most cases the variability ranges of
stationary distribution and mean first passage times cannot be calculated by
applying the theory of homogeneous Markov chains to claim frequencies 0.1
and 0.2. It follows from the fact that, in general, stationary probabilities and
mean first passage times are not monotonic functions of l. If we model the
PZU system as two homogeneous Markov chains with claim frequencies 0.1
and 0.2, we find the following stationary probability distributions:
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� �⎡ 0.0000208 ⎤ ⎡ 0.0024550 ⎤⎢ 0.0000446 ⎥ ⎢ 0.0035775 ⎥
⎢ 0.0001074 ⎥ ⎢ 0.0053389 ⎥
⎢ 0.0002213 ⎥ ⎢ 0.0076864 ⎥
⎢ 0.0005601 ⎥ ⎢ 0.0116807 ⎥
⎢ 0.0010783 ⎥ ⎢ 0.0163578 ⎥

p�(0.1) = [pj (0.1)] = ⎢ 0.0029781 ⎥ , p�(0.2) = [pj (0.2)] = ⎢ 0.0258993 ⎥ .
⎢ 0.0050711 ⎥ ⎢ 0.0340366 ⎥
⎢ 0.0163053 ⎥ ⎢ 0.0590492 ⎥
⎢ 0.0221666 ⎥ ⎢ 0.0669832 ⎥
⎢ 0.0905421 ⎥ ⎢ 0.1390218 ⎥
⎢ 0.0819259 ⎥ ⎢ 0.1138214 ⎥
⎣ 0.7789784 ⎦ ⎣ 0.5140922 ⎦

Comparing the above values with the lower and upper bounds on all possible
stationary probabilities obtained with the use of Markov set-chain theory, we
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observe that only for j = 1 and j = 13 we get lj
∞ = min{pj(0.1), pj(0.2)} and hj

∞ =
max{pj(0.1), pj(0.2)}. These results suggest that the steady-state probabilities
p1(l) and p13(l) can be monotonic functions of l in the interval [0.1, 0.2].
For the remaining stationary probabilities we have lj

∞ < min{pj(0.1), pj(0.2)}
or hj

∞ > max{pj(0.1), pj(0.2)}. Similar observations relate to the mean first pas-
sage times. Applying the theory of homogeneous Markov chains we obtain the
following matrices of mean first passage times M” (0.1) = [m” ij(0.1)] and M” (0.2) =
[m” ij(0.2)] for l = 0.1 and l = 0.2 respectively.

64 M. NIEMIEC

⎡ 48039.25 1.11 2.33 3.68 5.06 6.46 7.87 9.29 10.71 12.13 13.54 14.96 16.38 ⎤
⎢ 53090.48 22425.3 1.22 2.57 3.95 5.36 6.77 8.18 9.60 11.02 12.44 13.86 15.28 ⎥
⎢ 58672.94 24782.57 9314.51 1.35 2.73 4.14 5.55 6.96 8.38 9.80 11.22 12.64 14.05 ⎥
⎢ 64842.53 27387.75 10292.78 4518.69 1.38 2.79 4.20 5.61 7.03 8.45 9.87 11.29 12.70 ⎥
⎢ 66351.92 30267.04 11374.04 4992.55 1785.47 1.40 2.82 4.23 5.65 7.07 8.49 9.90 11.32 ⎥
⎢ 67461.81 30970.88 12569.14 5516.36 1971.85 927.41 1.41 2.83 4.24 5.66 7.08 8.50 9.92 ⎥

M” (0.1) = ⎢ 67806.03 31488.24 12860.66 6095.40 2177.97 1023.54 335.78 1.42 2.83 4.25 5.67 7.09 8.51 ⎥
⎢ 68007.59 31648.16 13074.72 6236.09 2405.91 1129.92 369.68 197.20 1.42 2.84 4.25 5.67 7.09 ⎥
⎢ 68079.66 31741.49 13140.32 6339.21 2460.64 1247.63 407.29 216.52 61.33 1.42 2.84 4.26 5.67 ⎥
⎢ 68116.41 31774.38 13178.25 6370.3 2500.53 1275.38 449.01 238.02 66.36 45.11 1.42 2.84 4.26 ⎥
⎢ 68130.08 31790.78 13191.08 6387.97 2511.95 1295.41 458.15 261.93 72.07 48.44 11.04 1.42 2.84 ⎥
⎢ 68135.98 31796.41 13197.07 6393.47 2518.08 1300.67 464.50 266.72 78.53 52.26 10.79 12.21 1.42 ⎥
⎣ 68137.60 31798.40 13198.57 6395.64 2519.39 1303.17 465.49 269.86 79.04 56.64 10.65 12.07 1.28 ⎦
⎡ 407.33 1.22 2.71 4.54 6.52 8.64 10.84 13.10 15.41 17.74 20.09 22.45 24.82 ⎤
⎢ 496.29 279.52 1.49 3.31 5.30 7.42 9.62 11.88 14.19 16.52 18.87 21.23 23.60 ⎥
⎢ 604.95 339.92 187.3 1.82 3.80 5.92 8.13 10.39 12.69 15.02 17.37 19.74 22.11 ⎥
⎢ 737.67 413.69 226.95 130.1 1.98 4.10 6.31 8.57 10.87 13.2 15.55 17.91 20.28 ⎥
⎢ 800.51 504.03 275.62 156.92 85.61 2.12 4.32 6.59 8.89 11.22 13.57 15.93 18.30 ⎥
⎢ 855.54 546.39 335.36 189.98 102.44 61.13 2.20 4.47 6.77 9.10 11.45 13.81 16.18 ⎥

M” (0.2) = ⎢ 886.27 583.41 362.97 230.75 123.39 72.47 38.61 2.26 4.57 6.90 9.25 11.61 13.98 ⎥
⎢ 909.07 603.75 386.98 249.19 149.41 86.73 44.90 29.38 2.30 4.63 6.98 9.34 11.71 ⎥
⎢ 922.60 618.64 399.82 265.14 160.73 104.62 53.03 33.58 16.94 2.33 4.68 7.04 9.41 ⎥
⎢ 931.58 627.18 409.02 273.33 170.41 112.02 63.46 39.2 18.35 14.93 2.35 4.71 7.08 ⎥
⎢ 936.66 632.58 413.95 278.99 174.98 118.25 67.25 46.55 20.58 15.89 7.19 2.36 4.73 ⎥
⎢ 939.47 635.33 416.79 281.68 177.89 120.83 70.31 48.87 23.82 17.56 6.42 8.79 2.37 ⎥
⎣ 940.56 636.50 417.84 282.93 178.85 122.22 71.06 50.62 24.14 20.12 6.00 8.36 1.95 ⎦

For the mean times of the first promotion to higher-discount classes and of the
transfer to the worst class C1 we have m” l

ij = min{m” ij(0.1), m” ij(0.2)} and m” h
ij =

max{m” ij(0.1), m” ij(0.2)}, which may imply that these times are monotonic functions
of l in the interval [0.1, 0.2]. The remaining times may be neither non-
decreasing nor non-increasing functions of claim frequency, as m” l

ij < min{m” ij(0.1),
m” ij(0.2)} or m” h

ij > max{m” ij(0.1), m” ij(0.2)}. This means that most times of down-
grading in the class hierarchy may increase as claim frequency grows.

5. CONCLUSIONS

In this paper we propose the application of ergodic Markov set-chains to the
analysis of a BMS. We relax the assumption of a constant claim frequency of
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a policyholder, which is necessary when modelling the system as a homogeneous
Markov chain. It is shown that the theory of the Markov set-chains broadens
the scope of studies set in the framework of the classical Markov chain theory.
It enables us to examine the consequences of claim frequency changes within
a given interval. Moreover, it provides tools for determining the variability
range of transition probabilities, stationary distributions, as well as mean first
passage times. Therefore, one can analyse the sensitivity and intensity of var-
ious measures in response to the changes in claim frequency. The obtained
information may be crucial to insurance companies having interest not only in
BMS evaluation, but also in determining the consequences of changes in claim
frequency, which they can affect to a limited extent only.
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