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Abstract

We show that there exists some δ > 0 such that, for any set of integers B with |B ∩
[1, Y ]| � Y 1−δ for all Y � 1, there are infinitely many primes of the form a2 + b2 with
b∈B. We prove a quasi-explicit formula for the number of primes of the form a2 + b2 ≤
X with b∈B for any |B|=X1/2−δ with δ < 1/10 and B ⊆ [ηX1/2, (1− η)X1/2]∩Z,
in terms of zeros of Hecke L-functions on Q(i). We obtain the expected asymptotic
formula for the number of such primes provided that the set B does not have a large
subset which consists of multiples of a fixed large integer. In particular, we get an
asymptotic formula if B is a sparse subset of primes. For an arbitrary B we obtain
a lower bound for the number of primes with a weaker range for δ, by bounding the
contribution from potential exceptional characters.
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1. Introduction

The distribution of prime numbers in sparse sets is a central topic in modern analytic number
theory. A key motivating question is Landau’s fourth problem, which asks if there are infinitely
many prime numbers of the form n2 + 1. This is far beyond the current methods as the set is
very sparse: the number of integers up to X of this form is of order X1/2.

As an approximation to Landau’s question much attention has been given to Gaussian prime
numbers p= a2 + b2 with b restricted to some specific sparse set B. A major breakthrough was
achieved by Friedlander and Iwaniec [FI98b] who proved that there are infinitely many primes
of the form a2 + b4, that is, with B being the set of squares. Following this, there have been
many variants where b is drawn from a sparse set B, for instance, the papers of Heath-Brown
and Li, Pratt, and the current author [HBL17, Mer22, Pra20]. We also point out the results of
Heath-Brown [HB01], Li [Li21], and Maynard [May20] for primes in other polynomial sequences,
where Li’s result has the record for the sparsest polynomial sequence with primes, with size of
the set being X43/67+ε.

Notably, all of the above-mentioned results exploit heavily the structure of the specific sparse
set B, leaving open the question of what can be said about an arbitrary sparse set B. In this
direction Fouvry and Iwaniec [FI97] proved that one can take B with density (logX)−C for
any C > 0 and establish an asymptotic formula for the number of primes a2 + b2 ≤X with
b∈B. Using the argument of Fouvry and Iwaniec one would be required to improve upon the
famous Siegel–Walfisz theorem to reach sparser sets B. In comparison, our main result obtains
unconditionally a power saving in the density of B for the first time.

Theorem 1.1. There is some (computable) δ > 0 such that the following holds. If B is a set
of integers with |B ∩ [0, Y ]| � Y 1−δ for all Y � 1, then there are infinitely many primes of the
form a2 + b2 with b∈B.
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This result is a corollary of the following lower bound for the number of such primes, which
is weaker than expected by a factor of �εX

−ε.

Theorem 1.2. There is some (computable) δ > 0 such that the following holds for any small
η > 0. For all sufficiently large X and for all B ⊆ [ηX1/2, (1− η)X1/2]∩Z with |B| ≥X1/2−δ we
have, for any ε > 0, ∑

p=a2+b2≤X
1B(b)�εX

1/2−ε|B|.

Deduction of Theorem 1.1 from Theorem 1.2. Let δ > 0 be small and let B be a set of integers
with |B ∩ [0, Y ]| � Y 1−δ for all Y � 1. Then by the pigeonhole principle for any ε > 0 for any
sufficiently large Y , there is some Y1 ∈ [Y 1−δ−ε, Y ] such that B1 :=B ∩ [Y1/4, Y1/2] satisfies
|B1| ≥ Y 1−δ−ε

1 . By Theorem 1.2 with X = Y 2
1 and a trivial upper bound for a2 + b2 ≤X1−4ε we

have ∑
X1−4ε<p=a2+b2≤X

1B1
(b) =

∑
p=a2+b2≤X

1B1
(b)−

∑
a2+b2≤X1−4ε

1B1
(b)

�εX
1/2−ε|B1|.

Therefore, for all large Y there exists a prime number p= a2 + b2 ∈ (Y 2−2δ−8ε, Y 2] with b∈B,
so that, in particular, there are infinitely many primes of the form a2 + b2 with b∈B.

Remark 1.3. A back-of-the-envelope estimate shows that it should be possible to establish
Theorem 1.2 for some δ ∈ (1/20, 1/10) but we have not checked this as it depends on the numer-
ical constants c1, c2, c3 in Lemmas 2.13 and 2.14 as well as optimization of Theorem 3.1: this
would require a separate lengthy optimization similar to the arguments in [HB92]. It is possible
to generalize our results to general binary quadratic forms instead of a2 + b2 by adapting ideas
from [LSX20].

Remark 1.4. The lower bound in Theorem 1.2 is the best that can be hoped for in general
with the current technology. In fact, improving the lower bound in Theorem 1.2 to the correct
order of magnitude would imply the non-existence of Siegel zeros by a suitable application of
Theorem 3.3. The implied constant in the lower bound �ε in Theorem 1.2 is ineffective but
the result can be made effective with ε= δ for some very small δ > 0 by using the class number
formula, so that Theorem 1.1 is effective in all aspects.

Remark 1.5. The argument we give works for η=X−ε for some small ε > 0. It is possible to
extend the proof of Theorem 1.2 to handle sets B ⊆ [0, X1/2]. The possibility that B or the
variable a is restricted to a narrow interval [0, X1/2−δ′ ] for some δ′ ≤ δ adds only a technical
problem, namely, all of the Gaussian primes b+ ia counted lie in a very narrow sector. See
Remark 7.7 for further details on how to modify our argument.

In the case that B is unbiased, we are able to obtain an asymptotic formula similar to [FI97]
for δ < 1/10. Let

ρ(d) := |{ν ∈Z/dZ : ν2 + 1≡ 0 (d)}|
and define

ω(b) :=
∏
p|b

(
1− ρ(p)

p

)−1

.

Then the following result is a corollary of our quasi-explicit formula (cf. Theorem 3.3).
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Theorem 1.6. Let η > 0 be small. Let C ′′ > 0 be large compared with C ′ > 0 which is large
compared with C > 0. Let λb be complex coefficients with |λb| ≤Xo(1), supported on [ηX1/2,
(1− η)X1/2]∩Z, and satisfying ∑

b

|λb| ≥X2/5+ε.

Suppose that for all (logX)C
′′
< q≤Xδ+η we have∑
b≡0 (q)

|λb| ≤ 1

(logX)C′

∑
b

|λb|. (1.1)

Then ∑
a2+b2≤X

λbΛ(a
2 + b2) =

4

π

∑
a2+b2≤X
(a,b)=1

(λbω(b) +OC,C′,C′′(|λb|(logX)−C)).

Remark 1.7. With more work the assumptions that |λb| ≤Xo(1) and
∑

b |λb| ≥X2/5+ε may be
replaced (here and later) by

‖λb‖1 ≥X1/5+ε‖λb‖2,
where ‖λb‖p :=

(∑
b |λb|p

)1/p
. By adapting Harman’s sieve [Har07] one can get a correct order

lower bound for 1/2− δ for some δ ∈ (1/8, 1/10).

Remark 1.8. We note that ρ(p) = 1+ χ4(p) with χ4 being the unique non-trivial character to
modulus 4 and

4

π
=
∏
p

(
1− ρ(p)

p

)(
1− 1

p

)−1

. (1.2)

Also, for all b,∑
a2+b2∼X
(a,b)=1

ω(b)∼
∑

a2+b2∼X

ϕ(b)

b
ω(b) =

∑
a2+b2∼X

∏
p|b

(
1− ρ(p)

p

)−1(
1− 1

p

)
,

so that the main term is of the same form as in [FI97, Theorem 1].

The assumption (1.1) in Theorem 1.6 is very mild since C ′′ can be taken to be large compared
with C ′ and, thus, (1.1) applies to most instances that come up in nature. For example, we
immediately get as a corollary [Mer22, Theorem 3] for large k and a weak version of [Pra20,
Theorem 1.1] where the base is taken to be large with B being the set of numbers missing one
digit.

In particular, we get an asymptotic formula if B is a sparse subset of primes.

Corollary 1.9. Let

B ⊆ [ηX1/2, (1− η)X1/2]∩ P

with |B| ≥X2/5+ε. Then, for any C > 0,∑
a2+b2≤X

1B(b)Λ(a
2 + b2) =

4

π

∑
a2+b2≤X

1B(b) +OC

(
X1/2|B|
(logX)C

)
.

The assumption (1.1) in Theorem 1.6 may be replaced by a wide zero-free region for Hecke
L-functions (cf. § 2.7 for the relevant notation). For the statement, we let M(u) denote the
smallest integer m with u|m.
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Theorem 1.10. For all C > 0, there is some C ′ > 0 such that the following holds. Let λb be
complex coefficients with |λb| ≤Xo(1), supported on [ηX1/2, (1− η)X1/2]∩Z, and satisfying∑

b

|λb| ≥X2/5+ε.

Assume that Hecke L-functions L(s, ξkχ) on Q(i) with |k| ≤Xη and modulus M(u)≤X1/10+η

have no zeros in the region

σ > 1− C ′ log logX
logX

, |t| ≤Xη. (1.3)

Then ∑
a2+b2≤X

λbΛ(a
2 + b2) =

4

π

∑
a2+b2≤X
(a,b)=1

(λbω(b) +OC(|λb|(logX)−C)).

1.1 Overview of the proof

Our goal is to estimate ∑
p=a2+b2∼X

1B(b), (1.4)

where |B|=X1/2−δ. It is immediately apparent that potential Siegel zeros can cause a problem,

since if χ1 ∈ ̂(Z/q1Z)× is an exceptional character (necessarily quadratic) to modulus q1 ≤Xδ

and if B ⊆ q1Z, then for b∈B
μ(a2 + b2)≈ χ1(a

2 + b2) = χ1(a
2) = 1,

implying that the sequence a2 + b2 is biased towards numbers with an even number of prime
factors. In this case we would expect the main term for (1.4) to be multiplied essentially by
L(1, χ1). Note that the function

b+ ia �→ χ(a2 + b2)

defines a Dirichlet character on (Z[i]/q1Z[i])×.
Similarly as in the proof of Linnik’s theorem [Lin44], our argument splits into two cases

depending on whether there is a Siegel zero or not. We choose a small parameter ε1 > 0 and we
will take δ to be small in terms of ε1. If there is a zero

β1 ≥ 1− ε1
logX

,

then we can use a similar argument as in [FI10, Chapter 24.2] to give a lower bound for primes
of the form a2 + b2, using just Type I information. This works for a certain fixed ε1 once δ > 0
is sufficiently small.

For simplicity, let us then assume in this sketch that we are in the situation of Theorem 1.10,
that is, for Dirichlet characters χ to moduli u∈Z[i] with M(u)≤Xδ+η Hecke L-functions on
Q(i) have no zeros in the wider region (1.3). By Vaughan’s identity, evaluating (1.4) is reduced
to estimating

Type I sums:
∑
d≤D

α(d)
∑

a2+b2∼X
a2+b2≡0 (d)

1B(b) (1.5)
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and for MN =X

Type II sums: S(α, β) :=
∑
m∼M
n∼N

α(m)β(n)
∑

mn=a2+b2

1B(b), (1.6)

where α, β denote bounded coefficients.
For the Type I sums (1.5) the argument goes back to [FI97] and we get an asymptotic formula

for D=X1−δ−o(1) by applying Poisson summation for the free variable a and the quadratic large
sieve (cf. Lemma 2.12). For small δ the exponent of distribution approaches 1− o(1), so that we
only need very little parity breaking Type II information.

For the Type II sums (1.6) it suffices to consider the case when β = μ, the Möbius function.
Similar to [FI98b], by unique factorization in Q(i) we essentially have, for w, z ∈Z(i),

a2 + b2 =mn= |wz|2 = |b+ ia|2
and get

S(α, μ) =
∑

|w|2∼M
|z|2∼N

α(|w|2)μ(|z|2)1B(Re(wz)).

After using Cauchy–Schwarz similarly to [FI98b] we essentially need to show cancellation in∑
|z1|2,|z2|2∼N

μ(|z1|2)μ(|z2|2)
∑

b1,b2∈B
b1z2≡b2z1 (Im(z2z1))

1

=:
∑

|z1|2,|z2|2∼N
μ(|z1|2)μ(|z2|2)TB(z1, z2).

The goal is to evaluate the sum TB(z1, z2) with a main term MB(z1, z2) and then bound∑
|z1|2,|z2|2∼N

μ(|z1|2)μ(|z2|2)MB(z1, z2) (1.7)

by catching the oscillations from μ(|z|2). All of the previous works [FI98b, HBL17, Mer22, Pra20]
rely on specific analytic and arithmetic properties of the set B to evaluate the sum TB(z1, z2).

For a general sparse set B we first factor out b0 = (b1, b2) to get, assuming for simplicity that
b0|Im(z2z1),

TB(z1, z2) =
∑
b0

∑
b0b′1,b0b

′
2∈B

b′1z2≡b′2z1 (Im(z2z1)/b0)

1.

It is crucial to carefully track the dependency on b0 since it is possible that a large subset of
B ×B has a large common factor b0, for instance, if B is in qZ for some fixed q≤Xδ.

To evaluate TB(z1, z2) use Dirichlet characters to expand the congruence b′1z2 ≡
b′2z1 (Im(z2z1)/b0). The contribution from Dirichlet characters with a large conductor
d≥Xδ+η/b0 may be bounded by using the large sieve for multiplicative characters (Lemma 2.11).
The Dirichlet characters with a small conductor d <Xδ+η/b0 give the main termMB(z1, z2) and
we can bound (1.7) provided that for any f = db0 ≤Xδ+η and a∈ (Z/fZ)×, we have∑

|z1|2,|z2|2∼N
z2≡az1 (f)

μ(|z1|2)μ(|z2|2)� N2

f2(logX)C
.
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This follows by standard arguments (e.g. using Heath-Brown’s identity for μ) from the assump-
tion (1.3), provided that N is sufficiently large compared with f , say, N >Xηf3. We give a more
detailed sketch of the argument for the Type II sums in § 6.1.

Without assuming the zero-free region (1.3), for the Type II sums we need to extract the con-
tribution from the potential exceptional characters before applying Cauchy–Schwarz to S(α, μ).
Denoting μz := μ(|z|2), we write

μz = μ#z + μ�z,

where μ#z is an approximation for μz and μ�z is a function which is balanced along arithmetic

progressions (cf. (1.8)). Importantly, μ#z must be simple enough so that S(α, μ#) can be evaluated
using only Type I information.

Let χj for j ≤ J = (logX)O(1) denote the worst of the possible exceptional characters χj of
conductors uj ∈Z[i] withM(uj)≤Xδ+η and denote the normalized correlation of two coefficients
α, β by

C(α, β) :=
⎛⎝ ∑

|z|2∼N
αzβz

⎞⎠⎛⎝ ∑
|z|2∼N

|βz|
⎞⎠−1

.

Then, for our approximation, we essentially choose

μ#z :=
∑
j≤J

χj(z)C(μ, χj).

The idea is similar in spirit to the dispersion method of Drappeau [Dra15] which also takes into
account contributions from multiple characters. This construction is also motivated by the prime
number theorem of Gallagher [Gal70, Theorem 7] and its use by Montgomery and Vaughan to
get a power saving for the exceptional set in the binary Goldbach problem [MV75]. For the

function μ� := μz − μ#z , we can then unconditionally show that for any f ≤Xδ+η, N >Xηf3,
and a∈ (Z/fZ)× ∑

|z1|2,|z2|2∼N
z2≡az1 (f)

μ�zμ
�
z �

N2

f2(logX)C
. (1.8)

Taking into account the bias S(α, μ�) from the exceptional characters for the Type II sums, we
obtain the quasi-explicit formula Theorem 3.3.

The paper is structured as follows. In § 2 we present some basic lemmas. In § 3 we split the
proof of Theorem 1.2 into two cases depending on the existence of a Siegel zero (Theorems 3.1
and 3.2) and state the quasi-explicit formula Theorem 3.3. In § 4 we evaluate Type I sums and
in § 5 we give a proof of Theorem 1.2 under the assumption that a Siegel zero does exist. In §§ 6,
7, and 8 we estimate Type II sums. In §§ 9, 11, and 12 we deduce our main theorems.

1.2 Notation and conventions

Our notation and conventions are as follows.

– a, b, c, d, f,m, n, p: Ideals of Z[i], reserving p for prime ideals.
– u, v, w, z: Gaussian integers.
– (z, w): Greatest common primary divisor.

– χ, ψ, u: Dirichlet characters χ, ψ ∈ ̂(Z[i]/uZ[i])×, u∈Z[i].
– ξk(z): Character ξk(z) = (z/|z|)k = eik arg z.
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– Nn: Norm of an ideal, N (z) = |z|2.
– M(z): Smallest integer m with z|m, N (z)1/2 ≤M(z)≤N (z).
– k, �, m, n, p, q, r, s: Integers, reserving p for a prime number.
– νj : Small power of X, νj =X−ηj .
– η: A generic small constant.
– C: A generic large constant.
– F : A smooth compactly supported function.
– HN (n): Indicator of Nn∈ [N,N(1 + ν2)] for ν2 =X−η2 .
– W : Denotes X1/(log logX)2 .
– P (W ): Denotes

∏
p<W p.

2. Lemmas

2.1 Introducing finer-than-dyadic smooth weights

Here we describe a device that allows us to partition a sum smoothly into finer-than-dyadic
intervals. Let ν ∈ (0, 1/10) be small (we will use ν =X−ε or ν = log−C X), and fix a non-negative
C∞-smooth function F supported on [1− ν, 1 + ν] and satisfying

|F (j)| �j ν
−j , j ≥ 0 and

ˆ 2

1/2
F (1/t)

dt

t
= ν.

Suppose that we want to introduce a smooth partition to bound a sum of the form
∑

n≤N fn.
We can write (using a change of variables t �→ t/n)∑

n≤N
fn =

1

ν

∑
n≤N

fn

ˆ 2

1/2
F (1/t)

dt

t
=

1

ν

∑
n≤N

ˆ 2N

1/2
fnF (n/t)

dt

t

=
1

ν

ˆ 2N

1/2

∑
n≤N

fnF (n/t)
dt

t
,

so that ∣∣∣∣ ∑
n≤N

fn

∣∣∣∣≤ 1

ν

ˆ 2N

1/2

∣∣∣∣ ∑
n≤N

fnF (n/t)

∣∣∣∣dtt .
Hence, at the cost of a factor ν−1 logN , it suffices to consider sums of the form∑

n≤N
fnF (n/t)

for t≤ 2N . Naturally, if the original sum is
∑

n∼N fn (dyadic n), then it suffices to consider∑
n∼N fnF (n/t) for t�N at a cost ν−1. The effect is the same as with the usual smooth

partition of unity except that we did not need to construct explicitly the partition functions F .
We use the notation Ft(n) := F (n/t).

We also have the following variant on R/2πZ. Fix ν1 =X−η1 for some small η1 > 0 and let
G :R/2πZ→C be a non-negative C∞-smooth function supported on [−ν1, ν1], satisfying

|G(j)| �j ν
−j
1 , j ≥ 0 and

ˆ
G(θ) dθ= ν1.

Then, for a sum over Gaussian integers, we may write∑
z∈Z[i]

fz =
1

ν1

ˆ
R/2πZ

∑
z∈Z[i]

fzG(arg z − θ) dθ

to obtain a smooth finer-than-dyadic partition in terms of arg z.
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2.2 Elementary estimates

Lemma 2.1. We have ∑
1≤a≤A

(a, d)≤ τ(d)A.

Proof. Denoting c= (a, d) and a= ca′, we have∑
1≤a≤A

(a, d)≤
∑
c|d

c
∑

1≤a′≤A/c
1≤ τ(d)A.

In handling the weights 1(n,P (W ))=1 we can use the following standard bound for exceptionally
smooth numbers, which effectively gives a version of the fundamental lemma of the sieve (see,
for instance, [Ten15, Chapter III.5, Theorem 1]).

Lemma 2.2. For any 2≤Z ≤ Y , we have∑
n∼Y

P+(n)<Z

1 � Y e−u/2,

where u := log Y/ log Z.

We also require the following elementary bound (see, for instance, [FI98a, Lemma 1]).

Lemma 2.3. For every square-free integer n and every k≥ 2, there exists some d|n such that
d≤ n1/k and

τ(n)≤ 2kτ(d)k.

From this we get the more general version.

Lemma 2.4. For every integer n and every k≥ 2, there exists some d|n such that d≤ n1/k and

τ(n)≤ 2k
2

τ(d)k
3

.

Proof. Write n= b1b
2
2 · · · bk−1

k−1b
k
k with b1, . . . , bk−1 square-free, by letting bk be the largest integer

such that bkk|n, so that n/bkk is k-free and splits uniquely into b1b
2
2 · · · bk−1

k−1 with bj square-free.
We have

τ(n)≤ τ(b1)τ(b2)
2 · · · τ(bk)k.

By Lemma 2.3 for all j ≤ k− 1 there is some dj |bj with dj ≤ b
1/k
j and τ(bj)≤ 2kτ(dj)

k. Hence,
for d= d1 · · · dk−1bk, we have

d≤ (b1 · · · bk−1)
1/kbk ≤ (b1 · · · bk−1b

k
k)

1/k ≤ n1/k

and

τ(n)≤ (2τ(d1) · · · τ(dk−1)τ(bk))
k2 ≤ 2k

2

τ(d)k
3

.

2.3 Sieve bounds

The following version of the fundamental lemma of the sieve follows from applying [FI10,
Theorem 6.9] to the real and the imaginary parts of an.

Lemma 2.5 (Fundamental lemma of the sieve). Let A= (an) be a sequence of complex coeffi-
cients and let κ≥ 0, Z ≥ 2, and D≥Z9κ+2. Suppose that for some X and for some real-valued
multiplicative function g(d), we have, for all square-free d,∑

n≡0 (d)

an = g(d)X+ rd
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and suppose that, for all p, we have 0≤ g(p)< 1. Suppose that for some K > 1 we have for all
W <Z ∏

W≤p<Z
(1− g(p))−1 ≤K

(
log Z

logW

)κ
.

Use the notation

V (Z) :=
∏
p

(1− g(p)).

Then, for some bounded coefficients λd depending only on κ, we have

∑
(n,P (Z))=1

an =XV (Z)(1 +Oκ,K(e−s)) +O

⎛⎜⎜⎝∣∣∣∣ ∑
d<D
d|P (Z)

λdrd

∣∣∣∣
⎞⎟⎟⎠ .

Remark 2.6. The fact that λd depend only on κ and not the sequence an will be important for

us since we apply the same sieve to several sequences a
(b)
n indexed by b∈B and then use the

summation over b∈B while bounding the remainder
∑

b∈B
∣∣∑

d<D λdr
(b)
d

∣∣ (cf. Proposition 4.1).

In our set-up, the functions g(b)(d) and V (b)(Z) also depend on b with g(b)(d) = 1(d,2b)=1ρ(d)/d.
Thus, we have ∑

b∈B
V (b)(Z) = V (z)

∑
b∈B

∏
p|b

2<p<Z

(1− ρ(p)/p)−1,

where the product over p|b, 2< p<Z may be completed to all prime factors p|b, p �= 2 with a
negligible error term if Z is not too small.

2.4 Poisson summation

The following lemma gives a truncated version of the Poisson summation formula.

Lemma 2.7 (Poisson summation). Let F be as in § 2.1 for some ν ∈ (0, 1/10) and denote
FN (n) := F (n/N). Let x� 1 and let q∼Q be an integer. Let ε > 0 and denote

H := ν−1(QN)εQ/N.

Then, for any A> 0,∑
n≡a (q)

FN (n) =
N

q
F̂ (0) +

N

q

∑
1≤|h|≤H

F̂

(
hN

q

)
eq(−ah) +OA,ε,F ((QN)−A),

where f̂(h) :=
´
f(u)e(hu) du is the Fourier transform.

Proof. By the usual Poisson summation formula we have∑
n≡a (q)

FN (n) =
N

q

∑
h

F̂

(
hN

q

)
eq(−ah).

For |h|>H, we have by integration by parts j ≥ 2 times

F̂

(
hN

q

)
=

ˆ
F (u)e(uhN/q) du�j ν

−j+1(hN/q)−j �j ν(QN)−jε(h/H)−2,

which gives the result.
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We will also need the two-dimensional Poisson summation formula.

Lemma 2.8. Let F :R2 →C be a C∞-smooth compactly supported function such that

|F (j,k)| � ν−j1 ν−k2 ,

ˆ
R2

|F | � ν1ν2

and let FN (n) := F (n1/N1, n2/N2). Then∑
n∈Z2

FN (n) =
∑
h∈Z2

F̂N (h)

and

F̂N (h)�C ν1ν2N1N2(1 + ν1|h1|/N1)
−C(1 + ν2|h2|/N2)

−C .

2.5 Fourier expansions

We have the following lemma on Mellin transforms, where the construction of the non-negative
majorant F̃ is from the proof of [IK04, Lemma 7.1] (cf. the function g(y), with xm = logm).

Lemma 2.9. Fix a non-negative C∞-smooth function F supported on [1− ν, 1 + ν] and
satisfying

|F (j)| �j ν
−j , j ≥ 0 and

ˆ 2

1/2
F (1/t)

dt

t
= ν.

Then, for any c∈R,

F (x) =
1

2πi

ˆ c+i∞

c−i∞
Ḟ (s)x−s ds,

where the Mellin transform is

Ḟ (s) :=

ˆ ∞

0
F (x)xs

dx

x
�C,σ ν(1 + ν|s|)−C .

Furthermore, |Ḟ (it)| has a smooth majorant F̃ (t) such that, for m, n∼M ,∣∣∣∣ ˆ F̃ (t)(m/n)it dt

∣∣∣∣� 1|m−n|≤νM .

Similarly, we have the following lemma on Fourier series, which will be applied with the
characters

eik arg z =

(
z

|z|
)k

to expand smooth weights G(arg z).

Lemma 2.10. Let θ ∈R/2πZ and letG be a bounded smooth function supported on [θ− ν, θ+ ν]
and satisfying

|G(j)| �j ν
−j , j ≥ 0 and

ˆ
R/2πZ

G(α) dα= ν.

Then

G(α) =
∑
k

Ǧ(k)eikα
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with

Ǧ(k) :=

ˆ
R/2πZ

F (α)e−ikα dα�C ν(1 + ν|k|)−C .

Furthermore, there is a majorant G̃(k) of |Ǧ(k)| such that∣∣∣∣∑
k

G̃(k)eikx
∣∣∣∣� 1|x|≤ν .

2.6 Large sieve bounds

For Type II sums we need the multiplicative large sieve inequality of Bombieri and Davenport
(cf., for instance, [FI10, (9.52)]).

Lemma 2.11. For any complex numbers γn, we have∑
d≤D

d

ϕ(d)

∑∗

χ (d)

∣∣∣∣ ∑
n≤N

γnχ(n)

∣∣∣∣2 � (D2 +N)
∑
n≤N

|γn|2.

For Type I sums we need the large sieve inequality for roots of quadratic congruences
(cf. [FI97] and, in particular, [FI05, Lemma 14.4] for this variant with the twist by q).

Lemma 2.12. Let q≥ 1. For any complex numbers γn we have∑
d∼D

(d,q)=1

∑
ν2+1≡0 (d)

∣∣∣∣ ∑
n≤N

γned(νnq)

∣∣∣∣2 � (qD+N)
∑
n≤N

|γn|2.

2.7 Zeros of Hecke L-functions

We say that a Gaussian integer z is primary if z ≡ 1 (2(1 + i)), so that every odd ideal of Z[i] has
a unique primary generator. Note that this definition is multiplicative. We extend any function
ψ :Z[i]→C to a function on odd ideals by defining ψ(a) :=ψ(z) if z is the primary generator of
a. For k ∈Z, we let ξk denote the character

ξk(z) :=

(
z

|z|
)k

= eik arg z,

which controls the angular distribution of z. For a Dirichlet character χ∈ ̂(Z[i]/uZ[i])× with a
modulus u∈Z[i] \ {0} we define the Hecke L-function by

L(s, ξkχ) :=
∑

a⊆Z[i]
(a,2)=1

ξk(a)χ(a)

(Na)s
=

∑
z∈Z[i]\{0}
z primary

ξk(z)χ(z)

|z|2s .

For a modulus u we define

Lu(s, ξk) :=
∏

χ∈ ̂(Z[i]/uZ[i])×

L(s, ξkχ).

We have the following lemmas, where all the constants are effectively computable. We will
not need the Deuring–Heilbronn zero repulsion as we deal with the case of a Siegel zero via a
different method. The first lemma is classical (cf., for instance, [IK04, Chapter 5]).
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Lemma 2.13 (Zero-free region, Landau–Page). There is a constant c1 > 0 such that the function
Lu(s, ξk) has at most one zero in the region

σ > 1− c1
log(|u|(2 + |t|)(2 + |k|)) .

If such a zero exists, then it is real and simple, k= 0, and it is a zero of some L(s, χ1) with a
quadratic character χ1.

We let N∗(α, T, K, Q) denote the number of zeros of L(s, ξkχ) with primitive characters χ,
|k| ≤K, and modulus |u|2 ≤Q with σ≥ α, |t| ≤ T . The following lemma is a generalization of
[Gal70, Theorem 6] to Gaussian integers.

Lemma 2.14 (Log-free zero-density estimate). There is some constants c2, c3 > 0 such that

N∗(α, T, K, Q)≤ c3(Q
2KT )c2(1−α).

As a corollary to the zero-free region (Lemma 2.13) we get the following lemma, by taking
δ > 0 small enough in terms of c1 and for two different moduli u1, u2 applying Lemma 2.13 with
u= u1u2.

Lemma 2.15. Let δ > 0 be sufficiently small in terms of c1. Then there is at most one modulus
|u1| ≤X2δ with a primitive character χ1 such that L(s, ξkχ1) has a zero β1 ≥ 1− 1√

δ logX
. If such

a zero exists, then it is real and simple, k= 0, and it is a zero of some L(s, χ1) with a real
character χ1.

The following lemma is proved by the same argument as in [MV07, (11.7)].

Lemma 2.16. Let χ∈ ̂(Z[i]/uZ[i])× for some |u|2 ≤Q and let |k| ≤Q. If L(s, ξkχ) has no zeros
counted by N∗(α, T, K, Q), then for all σ > (1 + α)/2, |t| ≤ T, |k| ≤K we have

|L(s, ξkχ)|−1 � logQ.

2.8 Character sums

We need the following lemma for computing sums over primitive characters.

Lemma 2.17. For any a we have ∣∣∣∣∑∗

χ (d)

χ(a)

∣∣∣∣≤ (a− 1, d),

where the sum extends over primitive Dirichlet characters of (Z/dZ)×.

Proof. By the Chinese remainder theorem we have

S(a; d) :=
∑∗

χ (d)

χ(a) =
∏
pk||d

S(a; pk).

Thus, it suffices to show that

|S(a; pk)| ≤ (a− 1, pk).

This follows from

S(a; pk) =
∑
χ (pk)

χ(a)−
∑

χ (pk−1)

χ(a)

=ϕ(pk)1a≡1 (pk) −ϕ(pk−1)1a≡1 (pk−1).
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We will need the smoothed Polyá–Vinogradov bound on Gaussian integers, which is a
consequence of Poisson summation (Lemma 2.8) and the Gauss sum bound on Z[i].

Lemma 2.18. Let F :R2 →C be as in Lemma 2.8 and for z = x+ iy ∈C define F (z) := F (x, y).
Let χ be a character of modulus u∈Z[i]. Then∑

z

F (z)χ(z)� |u|.

The following lemma is required for the proof of Theorem 1.6.

Lemma 2.19. Let k≥ 1 and let p be a prime number. Let χ∈ ̂(Z[i]/pkZ[i])× with conductor pk

or πk1 π̄k2 with k=max{k1, k2}. Then∑
r (pk)

χ(r+ ip�)≤ 2pk/2+�/2.

Proof. Let q := pk. We have by r �→ r/s∑
r (q)

χ(r+ ip�) =
1

ϕ(q)

∑
(s,q)=1

∑
r (q)

χ(r+ ip�) =
1

ϕ(q)

∑
r,s (q)

χ(s)χ(r+ isp�).

The function s �→ χ(s) defines a multiplicative character over the integers and we let q1|q denote
its conductor. By expansion of χ(s) into additive characters we get∣∣∣∣ ∑

r (pk)

χ(r+ ip�)

∣∣∣∣≤ 1

q1ϕ(q)

∑
a (q1)

∣∣∣∣ ∑
t (q1)

χ(t)eq1(−at)
∣∣∣∣∣∣∣∣ ∑
r,s (q)

eq1(as)χ(r+ isp�)

∣∣∣∣.
We have (writing s �→ s/p� + tpk−�, p�|s)∑

r,s (q)

eq1(as)χ(r+ isp�) =
∑
z (q)

s≡0 (p�)

eq1(as/p
�)χ(z)

∑
t (p�)

eq1(atp
k−�).

Here ∑
t (p�)

eq1(atp
k−�) = p�1a≡0 (q1/(q1,pk−�)).

Hence, denoting q2 = (q1, p
k−�) and making the change of variables a �→ aq1/q2, we get∣∣∣∣ ∑

r (pk)

χ(r+ ip�)

∣∣∣∣≤ p�

q1ϕ(q)

∑
a (q2)

∣∣∣∣ ∑
t (q1)

χ(t)eq2(−at)
∣∣∣∣∣∣∣∣ ∑

z (q)
s≡0 (p�)

ep�q2(as)χ(z)

∣∣∣∣.
Since χ(t) is of conductor q1 we have the Gauss sum bound [MV07, Theorem 9.12]∣∣∣∣ ∑

t (q1)

χ(t)eq2(−at)
∣∣∣∣≤ q

1/2
1 . (2.1)

For the second sum we expand the condition s≡ 0 (p�) with additive characters to get∑
z (q)

s≡0 (p�)

ep�q2(as)χ(z) =
1

p�

∑
b (p�)

∑
z (q)

ep�q2(as)ep�(bs)χ(z).

The function

z �→ ep�q2(as)ep�(bs) = e

(
(a+ q2b)s

q2p�

)
=: eq(cs)
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is an additive character on Z[i]/qZ[i] since q2|pk−�. If χ is of conductor πk1 π̄k2 , then we get
by the Gauss sum bound (a direct generalization of [MV07, Theorem 9.12] to Z[i], denoting
r := q/(c, q)) ∣∣∣∣∑

z (q)

eq(cs)χ(z)

∣∣∣∣≤ 1πk1 π̄k2 |r
ϕZ[i](q)

ϕZ[i](r)
q≤ q, (2.2)

since πk1 π̄k2 |r and k=max{k1, k2} implies that r= pk = q. We also get the same bound if the
conductor of χ is pk, as then χ is primitive. Putting the bounds (2.1) and (2.2) together and
using q2 = (q1, p

k−�) we get (noting that q/ϕ(q)≤ 2 for q= pk)∣∣∣∣ ∑
r (pk)

χ(r+ ip�)

∣∣∣∣≤ p�

q1ϕ(q)
q2q

1/2
1 q≤ 2p�q2q

−1/2
1

≤ 2p�q
1/2
2 ≤ 2pk/2+�/2.

The previous lemma implies the following.

Lemma 2.20. Let b∈Z and u∈Z[i] and let Y > |u|4. Let χ be a primitive character modulo u
and let v= (u, b). Then, for any integer a0,∑

a∈(Y,Y+Y 1−η]
a≡a0 (4)
(a,b)=1

χ(b+ ia)�ε
Y 1−η

|u/v|1/2−ε .

Proof. We have ∑
a∈(Y,Y+Y 1−η]

a≡a0 (4)
(a,b)=1

χ(b+ ia) =
∑
c|b

(c,4u)=1

μ(c)
∑

ac∈(Y,Y+Y 1−η]
ac≡a0 (4)

χ(b+ iac).

Let u=mw, where m consists of all prime factors p≡ 3 (4). Let n denote the smallest integer
such that w|n. The contribution from c > Y/mn is trivially bounded by

�
∑
c|b

c>Y/mn

Y

c
�mnτ(b).

For c≤ Y/mn, we have∑
ac∈(Y,Y+Y 1−η]

ac≡a0 (4)

χ(b+ iac) =
Y 1−η

16cmn

∑
r (4mn)
rc≡a0 (4)

χ(b+ irc) +O(mn)� Y 1−η(b, mn)1/2

(mn)1/2
,

once we show that ∑
r (4mn)
rc≡a0 (4)

χ(b+ irc) =
∑

r (4mn)
r≡a0 (4)

χ(b+ ir)≤ (mn)1/2(b, mn)1/2.

To prove this, write

χ=
∏
pk||m

χpk
∏
πk||w

χπk .
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By the Chinese remainder theorem, we get (denoting k=max{k1, k2})∑
r (4mn)
r≡a0 (4)

χ(b+ ir) =

⎛⎝∏
pk||m

∑
r (pk)

χpk(b+ ir)

⎞⎠⎛⎝ ∏
πk1 π̄k2 ||w

∑
r (pk)

χπk1χπ̄k2 (b+ ir)

⎞⎠
and the claim follows by Lemma 2.19.

3. Set-up and statement of the quasi-explicit formula

Let λb be divisor-bounded coefficients and define

ω2(b) := 2
∏
p|b
p �=2

(
1− ρ(p)

p

)−1

.

Define the sequences over Gaussian integers A= (az) with

az := λRe(z)1(z,z)=1, aωz := λRe(z)ω2(Re(z))1(z,z)=1.

Note that (z, z) = 1 implies that (z, (1 + i)) = 1 and for z = b+ ia that (a, b) = 1.
For an ideal n= (z) we define

an =
∑

u∈{±1,±i}
auz, aωn =

∑
u∈{±1,±i}

aωuz

so that for any function f on the ideals we have∑
Nn∼X

anf(n) =
∑

|z|2∼X
azf((z)) =

∑
a2+b2∼X
(a,b)=1

(a2+b2,2)=1

λbf((b+ ia)).

In the case that there is a Siegel zero for the character χ1, for any finite set of integers B let
B1 ⊆B be the largest subset such that for all b∈B1 we have∑

a∼(X−b2)1/2
(a,b)=1

(a2+b2,2)=1

χ1((b+ ia))> 0 (3.1)

and let us denote

Ω(B) :=
∑

Nn∼X
aωn for λb := 1B(b).

We split the proof of Theorem 1.2 into two cases depending on whether there is a Siegel zero
β1 > 1− ε1/ logX or not and according to the size of Ω(B1). Theorem 1.2 is then an immediate
corollary of the following two theorems.

Theorem 3.1 (Exceptional case). Let ε1 ∈ (0, 1/10). Let B ⊆ [ηX1/2, (1− η)(2X)1/2]∩Z with
|B|=X1/2−δ and let λb = 1B(b). Suppose that for some χ1 of modulus M(u1)≤Xδ+η the
L-function L(s, χ1) has a zero β1 > 1− ε1/ logX and that Ω(B1)≥Ω(B)/2. Suppose that δ
is sufficiently small in terms of ε1. Then we have, for all ε > 0,∑

Np∼X
ap �εX

1/2−ε|B|.
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Theorem 3.2 (Regular case). Let ε1 ∈ (0, 1/10). Let B ⊆ [ηX1/2, (1− η)(2X)1/2]∩Z with |B|=
X1/2−δ and let λb = 1B(b). Suppose that the L-functions L(s, χ) have no zeros β > 1− ε1/ logX
or that Ω(B1)≤Ω(B)/2 and suppose that δ is sufficiently small in terms of ε1. Then∑

Np∼X
ap � ε1

1

logX

∑
Nn∼X

aωn .

In Theorem 3.2 the possible exceptional zero is not a Siegel zero, the potential zeros are only
somewhat close to the line Re(s) = 1 and we show that these zeros can have only a small influence
on the main term. This means that in all error terms it suffices to save only a power of logX
instead of a power of X. Theorem 3.1 is proved in § 5. Theorem 3.2 is proved in § 10 and is a quick
consequence of the following result. Recall that M(u) denotes the smallest integer m with u|m.

Theorem 3.3 (Quasi-explicit formula). Let η > 0 be small. Let δ ∈ (0, 1/10) and X� 1. For
every C1 > 0, there is some C2 > such that for some

J ≤ (logX)C2 ,

there is a set of primitive Hecke characters {ξkjχj}j≤J with Dirichlet characters χj to moduli
uj ∈Z[i] with M(uj)≤Xδ+η and |kj | ≤Xη such that the following holds. Let λb be coefficients
with |λb| ≤Xo(1), supported on [ηX1/2, (1− η)(2X)1/2]∩Z, and satisfying∑

b

|λb| ≥X1/2−δ.

Then

∑
Nn∼X

anΛ(Nn) =
4

π

∑
Nn∼X

aωn

⎛⎜⎜⎜⎜⎜⎝1−
∑
j≤J

ξkjχj(n)
∑
ρj

L(ρj ,ξkj
χj)=0

|Im(ρj)|≤Xη

(Nn)ρj−1

⎞⎟⎟⎟⎟⎟⎠
+O

(
1

(logX)C1
X1/2

∑
b

|λb|
)
.

The restriction M(uj)≤Xδ+η instead of a condition involving |uj | may appear unusual, but,
in fact, it occurs very naturally in the proof of the Type II estimate (Proposition 6.2), where
we consider the distribution of Gaussian integers in arithmetic progressions to moduli d which
are regular integers, so that uj |d. We prove Theorem 3.3 in § 11. It is possible that the range
δ < 1/10 may be improved a bit with further work but we seem to hit a hard barrier at δ= 1/6,
cf. Remark 8.1 for more details. It is also plausible that one could obtain a power saving in the
error term by taking into account J ≤Xη bad characters. The factors of Xη in the ranges for
uj , kj , Im(ρj) may be replaced by (logX)C3 for some large C3 > 0 but this is inconsequential for
our applications. We also note that the right-hand side may be expressed as a sum over Gaussian
integers by writing∑

Nn∼X
aωnξkjχj(n)(Nn)ρj−1 =

∑
u∈{±1,±i}

∑
|z|2∼X

aωuzξkjχj(z)(|z|2)ρj−11z≡1 (2(1+i))

=
1

4

∑
χ∈Z[i]/2(1+i)Z[i]

∑
u∈{±1,±i}

∑
|z|2∼X

aωuzξkjχjχ(z)(|z|2)ρj−1

=
∑

χ∈Z[i]/2(1+i)Z[i]
1ξkj

χjχ(i)=1

∑
|z|2∼X

aωz ξkjχjχ(z)(|z|2)ρj−1,

where the last equation follows from the change of variables z �→ z/u and summing over u.
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We conclude this section by making elementary reductions for the proof of Theorem 3.3, to
reduce to the case when λb = 1B(b) with B in a short interval.

3.1 Reduction to bounded λb

We can reduce from coefficients satisfying |λb| ≤Xo(1) to |λb| ≤ 1 as follows. Let ε > 0 be small
enough so that δ+ 2ε < 1/10 and denote

B0 := {b : 0< |λb| ≤ 1} and Bj := {b : 2j−1 < |λb| ≤ 2j}, 1≤ j ≤ logX.

The contribution from b∈Bj with |Bj | ≤X1/2−δ−ε is negligible, since for such j by |λb| ≤Xo(1)∑
b∈Bj

|λb| �Xo(1)|Bj | �X1/2−δ−ε+o(1).

For each j such that |Bj | >X1/2−δ−ε, we can renormalize λb by 2−j to get bounded coefficients
which satisfy ∑

b∈Bj

|2−jλb| ≥ 1

2
|Bj | ≥X1/2−δ−2ε.

Then the general case follows by applying the bounded case for each such j separately with the

weights λ
(j)
b := 2−jλb1b∈Bj

. Indeed, if we denote the claim in Theorem 3.3 by S(λ) =M(λ) +

O(E(λ)), then assuming that the theorem holds for the bounded λ
(j)
b , we get by linearity

S(λ) =
∑
j

2jS(λ(j)) =
∑
j

2j(M(λ(j)) +O(E(λ(j)))) =M(λ) +O(E(λ)).

Thus, it suffices to prove Theorem 3.3 for |λb| ≤ 1.

3.2 Reduction from λb to 1B

We can reduce the proof from general bounded weights λb to the weights of the type 1B(b) by a
finer-than-dyadic decomposition in terms of the values of λb. That is, for ν = (logX)−C we write

Ij :=

{
((1− ν)j+1, (1− ν ′)j ] 0≤ j < (logX)/ν,

[0, (1− ν)j ], j = �(logX)/ν�,

1|z|∞≤1 =
∑
j1,j2

1z∈Ij2×Ij2 .

Since |λb| ≤ 1, we obtain a partition

λb =
∑
j1,j2

(
1λb∈Ij2×Ij2 ((1− ν)j1 + i(1− ν)j2) +O(ν|λb|1λb∈Ij2×Ij2 )

)
,

where the contribution from the error term is negligible by crude bounds. We consider 1B for

B :=B(j1, j2) = {b∈ [ηX1/2, (1− η)X1/2] : λb ∈ Ij2 × Ij2}
and note that for j1, j2 with |B(j1, j2)|<X1/2−δ−η we can bound the contribution trivially.
Hence, it suffices to show Theorem 3.3 for λb = 1B(b).

3.3 Reduction to B in a short interval

Let B ⊆ [ηX1/2, (2− η)X1/2] and split

B =
⋃
j

Bj , Bj :=B ∩ [jX1/2−η, (j + 1)X1/2−η].
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The contribution from Bj with |Bj | ≤X−2η|B| is negligible by a crude bound. Thus, we only
need to deal with |Bj | ≥ |B|X−2η =X1/2−δ−2η. Therefore, it suffices to prove Theorem 3.3 for
λb = 1B(b) with

B ⊆ [Y, Y +X1/2−η] for some Y ∈ [ηX1/2, (2− η)X1/2]. (3.2)

From now on we always assume that λb = 1B(b) for a set B satisfying (3.2).

4. Type I information

For b∈B and for any function f on the ideals of Z[i] denote

a
(b)
z,f := 1Re(z)=b1(z,z=1)f((z)).

Define

g(b)(w) := 1(w,bw)=1
1

|w|2 .

We have Type I information provided by the following proposition.

Proposition 4.1 (Type I information). Let αw be divisor-bounded coefficients supported on
(w, 2w) = 1. Let χ be a Dirichlet character to modulus u and let ξ = ξk with |k| �Xη/1000. Let
q :=M(u)≤X1/4. Then

∑
b∈B

∣∣∣∣∣∣∣∣∣∣∣
∑

|w|2≤X1−δ−η/q2

(w,u)=1

αw

⎛⎜⎜⎜⎜⎜⎝
∑

|z|2∼X
z≡0 (w)

a
(b)
z,ξχ − g(b)(w)

∑
a∼(X2−b2)1/2

(a,b)=1
(a2+b2,2)=1

ξχ((b+ ia))

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
�X1/2−η/100|B|.

The same is true if |z|2 ∼X is replaced by |z|2 ∈ [X ′, X ′(1 + ν)] or by a smooth weight F (|z|2/X ′)
as in § 2.1 with X ′ ∼X and ν ≥X−η/1000, with the same change applied to the condition a∼
(X2 − b2)1/2.

Proof. Let us split d dyadically into d∼D≤X1−δ−η/q2 and denote

S(b)(α) :=
∑

|w|2∼D
(w,u)=1

αw

⎛⎜⎜⎜⎜⎜⎝
∑

|z|2∼X
z≡0 (w)

a
(b)
z,ξχ − g(b)(w)

∑
a∼(X2−b2)1/2

(a,b)=1
(a2+b2,2)=1

ξχ((b+ ia))

⎞⎟⎟⎟⎟⎟⎠ .

We apply § 2.1 with ν =X−η/80 to split a into finer than dyadic ranges to get (bound-
ing the part A≤X1/2−η trivially using the divisor bound and dropping the condition
a2 + b2 ∼X)

S(b)(α) =
1

ν

ˆ 2X1/2

X1/2−η

S(b)(α, A)
dA

A
+O(X1/2−η/100),
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with

S(b)(α, A) :=
∑

|w|2∼D
(w,u)=1

αw

⎛⎜⎜⎜⎜⎜⎝
∑

a≡−bi (w)
(a,b)=1

(a2+b2,2)=1

FA(a)ξχ((b+ ia))− g(b)(w)
∑

(a,b)=1
(a2+b2,2)=1

FA(a)ξχ((b+ ia))

⎞⎟⎟⎟⎟⎟⎠ .

Since b+ ia is odd, we have

ξχ((b+ ia)) = ξχ(u)ξχ(b+ ia)

for some unit u depending on z modulo 2(1 + i). Since a is restricted to a short interval, for a
fixed b the function ξk(b+ ia) with k�Xη/1000 is equal to a constant up to a negligible error
term and may therefore be dropped. By splitting B into residue classes modulo 4 we may assume
that u does not depend on b. Thus, we can split a into congruence classes modulo 4q and d= |w|2
with a≡ a0d (4q) to get, for some unit ua0d,

S(b)(α, A) =
∑

|w|2∼D
(2bu,w)=1

αw
∑
a0 (4q)

ξχ(ua0d)χ(b+ ia0d)

×
∑

ν∈Z/dZ
ν≡−i (w)

⎛⎜⎜⎜⎜⎜⎝
∑

a≡νb (d)
a≡a0d (4q)
(a,b)=1

FA(a)− g(b)(w)
∑

a≡a0d (4q)
(a,b)=1

FA(a)

⎞⎟⎟⎟⎟⎟⎠ ,

where the sum over ν contains just the one element ν =−r/s for w= r+ is. Note that (a, b) = 1
implies that (w, b) = 1 and that (w, w) = 1, so that (r, s) = 1 and we may restrict to ν ∈Z/dZ in
the above.

It suffices to show that

∑
b∈B

∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

αw
∑
a0 (4q)

ξχ(ua0d)χ(b+ ia0d)

×
∑
ν (d)

ν≡−i (w)

⎛⎜⎜⎜⎜⎜⎝
∑

a≡νb (d)
a≡a0d (4q)
(a,b)=1

FA(a)− g(b)(w)
∑

a≡a0d (4q)
(a,b)=1

FA(a)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
�X1/2−η/40|B|.

Let us first deal with the cross-condition χ(b+ ia0d) between b and d. If (b, q) = 1, we could
just make the change of variables a0 �→ a0b and χ(b) would factor out. In general, we have for
some characters χpk modulo pk:

χ(b+ ia0d) =
∏
pk||q

χpk(b+ ia0d).

Denoting

(b, q) = q1 =
∏

p�||(b,q)
p�
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and making the change of variables a0 �→ a0b/p
� modulo pk we get

χ(b+ ia0d) =

⎛⎝∏
p�||q1

χpk(b/p
�)

⎞⎠ ∏
pk||q
p�||q1

χpk(p
� + ia0d).

Note that the first factor depends only on b and the second factor no longer depends on b but
on q1. The residue classes b/p� and p� combine to unique residue classes θb,q and γq1,q modulo
8q by the Chinese remainder theorem. Thus, we get

∑
q1|q

∑
b∈B

(b,q)=q1

∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

αw
∑
a0 (4q)

ξχ(ua0d)χ(γq1,q + ia0d)

×
∑
ν (d)

ν≡−i (w)

⎛⎜⎜⎜⎜⎜⎝
∑

a≡νb (d)
a≡a0θb,qd (4q)

(a,b)=1

FA(a)− g(b)(w)
∑

a≡a0θb,qd (4q)
(a,b)=1

FA(a)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
.

Dropping the condition (b, q) = q1, using the divisor bound for
∑

q1|q 1 = τ(q), taking the sum
over a0 to the outside, and absorbing the factor χ(ua0d)χ(γq1,q + ia0d) into the coefficient αw, it
suffices to show that for any a0,

∑
b∈B

(b+ia0,u)=1

∣∣∣∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

αw
∑
ν (d)

ν≡−i (w)

⎛⎜⎜⎜⎜⎜⎝
∑

a≡νb (d)
a≡a0θb,qd (4q)

(a,b)=1

FA(a)− g(b)(w)
∑

a≡a0θb,qd (4q)
(a,b)=1

FA(a)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
� X1/2−η/39|B|

q
.

We expand the condition (a, b) = 1 using the Möbius function and use triangle inequality to
get (note that (b+ ia0, u) = 1 implies that (c, q) = 1)

∑
(c,q)=1

∑
b∈B
b≡0 (c)

∣∣∣∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

αw
∑
ν (d)

ν≡−i (w)

⎛⎜⎜⎜⎜⎜⎝
∑

a≡νb (d)
a≡a0θb,qd (4q)

a≡0 (c)

FA(a)− g(b)(w)
∑

a≡a0θb,qd (4q)
a≡0 (c)

FA(a)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
=: S≤η + S>η,

where we have partitioned the sum depending on whether c≤Xη/20 or c >Xη/20. The second
sum can be bounded trivially by

∑
a0 (4q)

S>η �
∑

c>Xη/20

∑
b∈B
b≡0 (c)

∑
d∼D

(2bq,d)=1

⎛⎜⎜⎝ ∑
ν2+1≡0 (d)

∑
a≡νb (d)
a≡0 (c)

FA(a) + g(b)(d)
∑

a≡0 (c)

FA(a)

⎞⎟⎟⎠
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�
∑

c>Xη/20

∑
b∈B
b≡0 (c)

∑
d∼D

(2bq,d)=1

⎛⎜⎜⎝ ∑
a2+b2≡0 (d)
a≡0 (c)

FA(a) + g(b)(d)
∑

a≡0 (c)

FA(a)

⎞⎟⎟⎠
�

∑
c>Xη/20

∑
b∈B
b≡0 (c)

⎛⎝ ∑
a≡0 (c)

FA(a)τ(a
2 + b2) + (logX)O(1)

∑
a≡0 (c)

FA(a)

⎞⎠ .

By the divisor bound for τ(a2 + b2) and τ(b), we obtain∑
a0 (4q)

S>η �
∑
b∈B

∑
c|b

c>Xη/20

Xη/80

(
X1/2

c
+ 1

)
�X1/2−η/20+η/80∑

b∈B
τ(b)�X1/2−η/40|B|.

Hence, it remains show that for any a0

S≤η � X1/2−η/40|B|
q

.

By writing

S≤η =
∑

c≤Xη/20

Sc

it suffices to show that for every c≤Xη/20

Sc� X1/2−η/10|B|
q

.

Applying Poisson summation (Lemma 2.7, note that d, q, c are all pairwise coprime) we get

Sc ≤ Tc(α, A) +Xη/10Uc(α, A) +Oε(X
−100),

where for

H :=
qDXη/10

X1/2
, (4.1)

we have (denoting α′
w := αw(D/|w|2))

Tc(α, A) := F̂ (0)A
∑
b∈B
b≡0 (c)

∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

αw

(
1

c dq
− g(b)(w)

cq

)∣∣∣∣∣∣∣∣,

Uc(α, A) :=
1

H

∑
0<|h|≤H

∑
b∈B
b≡0 (c)

∣∣∣∣∣∣∣∣
∑

|w|2∼D
(2bu,w)=1

α′
wF̂ (hA/c dq)

∑
ν (d)

ν≡−i (w)

ed(hb4cqν)e4q(a0 dθb,qhcd)

∣∣∣∣∣∣∣∣ .
Note that the phase e4q(a0 dθb,qhcd) = e4q(a0θb,qhc) does not depend on d or ν and thus it may
be replaced by 1.

By definition, g(b)(w) matches with 1/d when (b, w) = 1, so that, in fact, T (α, A) = 0. Thus,
it suffices to show that

Uc(α, A)� X1/2−η/5|B|
q

. (4.2)
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4.0.1 Bounding U(α, A). The smooth cross-condition F̂ (hA/c dq) may be removed by using
the Mellin inversion formula (Lemma 2.9) at a cost of a factor �Xη/40. We expand the condition
(b, d) = 1 using the Möbius function to get

1(b,d)=1 =
∑
e

μ(e)1e|b1e|d.

For each c and e, let

Vc,e(α, A) :=
∑

|w|2∼D/e
(d,2cq)=1

∑
ν (d)

ν≡−i (w)

∣∣∣∣ ∑
n�HX1/2/(ce)

γ(ce)n ed(4cqhbν)

∣∣∣∣
=

∑
d∼D/e

(d,2cq)=1

∑
ν2+1≡0 (d)

∣∣∣∣ ∑
n�HX1/2/(ce)

γ(ce)n ed(4cqhbν)

∣∣∣∣,
for some coefficients

|γ(ce)n | ≤ 1

H

∑
n=hb

1B(bce).

Then, by rearranging the sums, we have

Uc(α, A)�Xη/40
∑
e

Vc,e(α, A)

and for (4.2) it suffices to show that

Vc,e(α, A)� X1/2−η/4|B|
eq

.

By a divisor bound∑
n�HX1/2/(ce)

|γ(ce)n |2 �Xη/100 1

H

∑
n�HX1/2/(ce)

|γ(ce)n | �Xη/100 1

H
|B|.

By Cauchy–Schwartz and Lemma 2.12, using (4.1), we have

Vc,e(α, A)�
(
D

e

)1/2

⎛⎜⎜⎝ ∑
d∼D/e

(d,2cq)=1

∑
ν2+1≡0 (d)

∣∣∣∣∣∣
∑

n�HX1/2/(ce)

γ(ce)n ed(hb4cqν)

∣∣∣∣∣∣
2
⎞⎟⎟⎠

1/2

�Xη/100 D
1/2

eH1/2
(qD+HX1/2)1/2|B|1/2

� e−1D1/2X1/4+η/100|B|1/2

� X1−δ−η/4

eq
,

by using

D≤X1−δ−η/q2.

5. Proof of Theorem 3.1

In this section, we prove Theorem 3.1 by following a similar strategy as in [FI10, Chapter 24.2].
We first note that by restricting to b∈B1 (recall (3.1)) we may assume that for all b we have
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a2+b2∼X
(a,b)=1

(a2+b2,2)=1

χ1((b+ ia))≥ 0. (5.1)

We define the Dirichlet convolution on ideals of the Gaussian integers as

(f ∗ g)(a) :=
∑
cd=a

f(c)g(d).

We define the auxiliary function

λ1(a) := (1 ∗ χ1)(a),

which assuming the existence of a Siegel zero for L(1, χ1) is sparsely supported, precisely, for
square-free a it is supported on a such that for all p|a we have χ1(p) =+1.

We set A′ = (a′n) with a′n = anλ1(n)1(n,u1)=1 and define the multiplicative functions

g1(d) :=
∏
p|d

g1(p), g1(p) :=
1p�=p

Np

(
1 + χ1(p)− χ1(p)

Np

)(
1− χ1(p)

Np

)(
1− 1

Np2

)−1

,

g′(d) :=
∑
Nd=d

g1(d), g′(p) =
ρ(p)

p

(
1 + χ1(p)− χ1(p)

p

)(
1− χ1(p)

p

)(
1− 1

p2

)−1

,

denoting p= pp, which is well defined since ρ(p) �= 0 precisely if p splits in Z[i] and χ1(p) = χ1(p)
since χ1 is real. We also set

V ′(Z) :=
∏

2<p<Z

(1− g′(p)),

Y :=L(1, χ1)
∑

a2+b2∼X
b∈B

(a,b)=1
(b+ia,2u1)=1

(1 + χ1((b+ ia))
∏
p|b

(
1− χ1(p)

Np

)∏
p|b
p �=2

(1− g′(p))−1

(
1− 1

p2

)
.

Note that by (5.1) the contribution from the terms with χ1((b+ ia)) is positive and, therefore,
we may drop it to conclude

Y�L(1, χ1)
∑

a2+b2∼X
b∈B

(a,b)=1
(b+ia,2u1)=1

∏
p|b

(
1− χ1(p)

Np

)∏
p|b
p �=2

(1− g′(p))−1

(
1− 1

p2

)
.

We define

S(A′, Z) :=
∑

Nn∼X
(Nn,P (Z))=1

a′n.

We note for large primes p the function g′(p) is essentially p−1ρ(p)(1 + χ1(p)).
Theorem 3.1 is then a direct corollary of the following and the lower bound L(1, χ1)�ε

|u1|−ε. Note that from the assumption Ω(B1)≥Ω(B)/2 it follows that |B1| �ε |B|X−ε since
ω(b) =X±o(1).

Proposition 5.1. Suppose that the assumptions of Theorem 3.1 hold. Then for Z = |u1|4 we
have

S(A′, 2X1/2) = V ′(Z)Y
(
1 +O

(
log Z

logX
+ δ(Z,X)

))
,
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where

δ(Z,X) =
∑

Z≤Np<2X1/2

λ1(p)

Np
< (1− β)(logX +O(log Z)). (5.2)

Remark 5.2. Note that by introducing the weight λ1(n) we have already removed all prime
factors of n with χ1(p) =−1, which by the Siegel zero assumption is most of the primes if ε1 is
small. Thus, we are in a situation of a low-dimensional sieve as we only need to shift out prime
divisors with χ1(p) =+1.

We first gather Type I information. Note that (a, b) = 1 implies that d is not divisible by a
rational prime.

Lemma 5.3. Denote q=M(u1). Let αd be divisor-bounded coefficients supported on square-free

d with (d, d) = 1. Let g
(b)
1 (d),Y(b) be defined similarly as in § 4. Then

∑
Nd≤X1−2δ−4η/q4

αd

⎛⎜⎜⎝ ∑
Nn∼X
n≡0 (d)

a′n −
∑
b∈B

g
(b)
1 (d)Y(b)

⎞⎟⎟⎠�X1−δ−η/100.

Proof. The function λ1(n) is multiplicative and we have similarly to [FI10, (24.5)] (denoting
n= dm)

λ1(dm) =
∑

c|(d,m)

μ(c)χ1(c)λ1(d/c)λ1(m/c).

We have

λ1(m/c) =
∑

ab=m/c

χ1(a) = (1 + χ1(m/c))
∑

ab=m/c
Na<Nb

χ1(a) +O(1Nm/c=�).

The contribution from the error term where Nm/c=� may be bounded by crude bounds. We
have

χ1(m/c) = χ1(cd)χ1(n).

The contribution from N c>Xη can be bounded by crude bounds. We obtain∑
Nd≤X1−2δ−4η/q4

αd

∑
Nn∼X
n≡0 (d)

a′n +O(X1−δ−η/100) =
∑

Nd≤X1−2δ−4η/q4

αd

∑
c|d

N c≤Xη

μ(c)χ1(c)
∑

N cda2≤2X

χ1(a)

×
∑

Nn∼X
Nn>N cda2

n≡0 (cda)

an1(n,u1)=1(1 + χ1(cd)χ1(n)).

We now relax the cross-conditions Nn>N cda2 and Nn∼X by introducing a finer-than-dyadic
decomposition for Nn (using § 2.1 with ν =X−η/1000) to get for X ′ ∼X sums of the type
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Nd≤X1−2δ−4η/q4

αd

∑
c|d

N c≤Xη

μ(c)χ1(c)
∑

N cda2≤X′

χ1(a)

×
∑

n≡0 (cda)

anFX′(Nn)1(n,u1)=1(1 + χ1(cd)χ1(n)) =: S1 + S2,

where

S1 :=
∑

N f≤X1−δ−η/q2

(f,f)=1

α1(f)
∑

n≡0 (f)

anFX′(Nn)1(n,u1)=1,

S2 :=
∑

N f≤X1−δ−η/q2

(f,f)=1

α2(f)
∑

n≡0 (f)

anFX′(Nn)χ1(n),

with

α1(f) :=
∑
f=cda

Nd≤X1−2δ−4η/q4

c|d
N c≤Xη

N cda2≤X′

αdλ1(d/c)μ(c)χ1(c)χ1(a),

α2(f) :=
∑
f=cda

Nd≤X1−2δ−4η/q4

c|d
N c≤Xη

N cda2≤X′

αdχ1(d)λ1(d/c)μ(c)χ1(a).

Note that Nd≤X1−2δ−4η/q4, N c≤Xη, and N cda2 ≤X ′ imply that N cda≤X1−δ−η/q2. If n=
(z), then in S2 the character value

χ1(n) = χ1((z))

depends only on the residue class of z modulo 4(1 + i)u1 (note that (a, b) = 1 implies 2 � z). Thus,
by Proposition 4.1, we get

S1 =
∑
b∈B

∑
N f≤X1−δ−η/q2

(f,u1f)=1

α1(f)g
(b)(f)X(b)

1 +O(X1/2−η/100|B|),

S2 =
∑
b∈B

∑
N f≤X1−δ−η/q2

(f,u1f)=1

α2(f)g
(b)(f)X(b)

2 +O(X1/2−η/100|B|),

with

X(b)
1 :=

∑
(a,b)=1

FX′(a2 + b2)1(b+ia,2u1)=1,

X(b)
2 :=

∑
(a,b)=1

FX′(a2 + b2)χ1((b+ ia))1(b+ia,2)=1.
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Note that we have picked up the condition (f, f) from (a, b) = 1 implicit in an. We have∑
N f≤X1−δ−2η/q2

(f,u1f)=1

α1(f)g
(b)(f) =

∑
Nd≤X1−2δ−4η/q4

αd

∑
c|d

N c≤Xη

λ1(d/c)μ(c)χ1(c)

×
∑

Na≤(X′/N cd)1/2

(a,ad)=1

χ1(a)g
(b)(a)

and ∑
N f≤X1−δ−2η/q2

(f,u1f)=1

α2(f)g
(b)(f) =

∑
Nd≤X1−2δ−4η/q4

αdχ1(d)
∑
c|d

N c≤Xη

λ1(d/c)μ(c)

×
∑

Na≤(X′/N cd)1/2

(a,ad)=1

χ1(a)g
(b)(a).

To evaluate the sum over a, we have (by applying a Möbius expansion to (a, a) = 1)∑
Na≤(X′/N cd)1/2

(a,ad)=1

χ1(a)g
(b)(a)

=
∑

Na≤(X′/N cd)1/2

(a,adb)=1

χ1(a)
1

Na
=

∑
(k,db)=1

μ(k)

k2

∑
k2Na≤(X′/N cd)1/2

(a,db)=1

χ1(a)
1

Na

=
∏

(p,bd)=1

(
1− 1

p2

) ∏
(p,bd)=1

(
1− χ1(p)

Np

)−1

+O(X−η)

=
L(1, χ1)

ζ(2)

∏
p|b

(
1− 1

p2

)−1∏
p|b

(
1− χ1(p)

Np

)∏
p|d

(
1− χ1(p)

Np

)(
1− 1

Np2

)−1

+O(X−η),

since χ1(p) = χ1(p) and (d, d) = 1. Let us denote (noting that the contribution from N c>Xη

may now be added back in at a negligible cost)

g1(d) :=
1

Nd

∏
p|d

(
1− χ1(p)

Np

)(
1− 1

Np2

)−1∑
c|d

λ1(d/c)μ(c)χ1(c)
1

N c
,

g2(d) :=
χ1(d)

Nd

∏
p|d

(
1− χ1(p)

Np

)(
1− 1

Np2

)−1∑
c|d

λ1(d/c)μ(c)
1

N c
.

The functions gj are multiplicative with

g1(p) =
1

Np

(
1 + χ1(p)− χ1(p)

Np

)(
1− χ1(p)

Np

)(
1− 1

Np2

)−1

,

g2(p) =
χ1(p)

Np

(
1 + χ1(p)− 1

Np

)(
1− χ1(p)

Np

)(
1− 1

Np2

)−1

= g1(p),

where the last equality holds since χ1(p)
2 = 1. Hence, we have

S1 + S2 =
∑
b∈B

∑
Nd≤X1−2δ−4η/q4

αdg
(b)
1 (d)Y(b) +O(X−η)
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with

Y(b) =
L(1, χ1)

ζ(2)

∑
a

(a,b)=1
(b+ia,2u1)=1

FX′(a2 + b2)(1 + χ1((b+ ia)))
∏
p|b
p �=2

(
1− 1

p2

)−1

×
∏
p|b
p �=2

(
1− χ1(p)

Np

)
.

5.1 Proof of Proposition 5.1

We apply a sieve argument to the sequence A′′ = (a′′n) over integers defined by

a′′n :=
∑

Nn=n

a′n.

Note that then

S(A′, 2X1/2) = S(A′′, 2X1/2).

The proof is essentially the same as in [FI10, Proof of Proposition 24.1], but we give it for
completeness as it is short. Let D :=X1−2δ−4η/q4 and denote s= logD/ log Z. By Buchstab’s
identity we have

S(A′′, 2X1/2) = S(A′′, Z)−
∑

Z≤p<2X1/2

S(A′′
p, p).

By the fundamental lemma of the sieve (Lemma 2.5, see also Remark 2.6) and Lemma 5.3 we
have

S(A′′, Z) = V ′(Z)Y(1 +O(e−s)) +O(X1−δ−η/100),

where

e−s� s−1 � log Z

logX
.

By an upper bound sieve (e.g. using Lemma 2.5) with level D/p>X1/4 and Lemma 5.3 we have∑
Z≤p<2X1/2

S(A′′
p, p)≤

∑
Z≤Np<2X1/2

S(A′′
p, Z)� δ(Z,X)V ′(Z)Y+O(X1−δ−η/100).

Combining the two estimates we get Proposition 5.1, noting that the bound (5.2) can be proved
by a similar argument as in [FI10, (24.20)].

Remark 5.4. Instead of taking a small Z and using the fundamental lemma of the sieve, we can
take a larger Z and use the linear sieve lower and upper bounds [FI10, Theorem 11.12]. Taking
Z =X1/4 we get that the lower bound for S(A′′, 2X1/2) is proportional to (denoting the linear
sieve functions by f, F )

4f(4(1−O(δ)))− ε14

ˆ 1/2

1/4

F (4(1− α−O(δ)))

α
dα+O(δ) = (1− ε1)2 log(3) +O(δ).

To make the right-hand side positive we can certainly take any ε1 < 1 and δ= (1− ε1)/100, for
instance.
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6. Type II information: preliminaries

We now fix small parameters η, η1, η2, η3 > 0 such that η1 is small compared with η, η2 is small
compared with η1, and η3 is small compared with η2, that is,

η3 � η2 � η1 � η.

For instance, for our purposes it would suffice to take any small η > 0 and let

η1 = η/100, η2 = η1/2, η3 = η2/100.

We denote

νj =X−ηj , j ∈ {1, 2, 3}.
We often refer to these parameters in the course of the following sections.

Let G :R/2πZ→C be a non-negative C∞-smooth function supported on [−ν1, ν1] as in
Lemma 2.10, satisfying

|G(j)| �j ν
−j
1 , j ≥ 0 and

ˆ
G(θ) dθ= ν1.

and recall that

G(arg z) =
∑
k

Ǧ(k)ξk(z).

For a set of Hecke characters Ψ= {ξχ} and u∈Z[i] \ {0} we let Ψu denote the set of characters
induced to modulus u. We say that ξχ is primitive if χ is a primitive Dirichlet character. The
following definition depends on the choice of η, ηj but since these are fixed throughout the
argument we omit this dependency in the notation.

Definition 1 (Q-regularity). Let C1, C2 > 0 and Q,N,X ≥ 1. Let βn be complex coefficients.
We say that βn is (Q,N,X, C1, C2)-regular if there exists a set of primitive characters Ψ= {ξχ}
with |Ψ| ≤ (logX)C2 such that the following holds. For any ξχ∈Ψ, we have

M(cond(χ))≤Q and ξ = ξk, |k| ≤ ν−2
1

and for any u∈Z[i] with M(u)≤Q and N ′ ∼N we have

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

⎛⎝ ∑
Nn∈[N ′,N ′(1+ν2)]

βnξkψ(n)

⎞⎠
∣∣∣∣∣∣∣∣
2

≤ ν21ν
2
2N

2

ϕZ[i](d)(logX)C1
.

Given a function Q=Q(N,X), we say that βn is Q-regular if for any C1 > 0 there is some
C2 > 0 and some X0 > 0 such that for all X ≥X0 and for all N ≥Xη the coefficient βn is
(Q,N,X, C1, C2)-regular.

Informally speaking, coefficient βn is Q-regular if it is equidistributed in residue classes and
polar boxes apart from a set of Hecke characters of size ≤ (logX)O(1), uniformly in the size of
the modulus of the M(u)≤Q. We need the fact that the Möbius function restricted to rough
numbers is Q-regular for Q close to N1/3, which we prove in § 6.4 using the zero density estimate
(Lemma 2.14).

Lemma 6.1. Let W :=X1/(log logX)2 . The coefficient

βn := μ(Nn)1(n,P (W ))=1
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is Q-regular for any Q=Q(N,X) with N ≥XηQ3. Furthermore, for fixed Q,X, C1 > 0, a
fixed set of characters Ψ with C2 �C1 works for all ranges of N >XηQ3 in the definition
of (Q,N,X, C1, C2)-regularity.

The exponent 3 in N >XηQ3 is not the best that can be obtained but it suffices for our
purposes. This could be improved by using results on large values of Dirichlet polynomials
(analogous to [Hux74]). We have Type II information given by the following proposition. We
will apply it with βn as above but it applies equally well to, e.g., products of k primes.

Proposition 6.2 (Type II information). LetW :=X1/(log logX)2 and let ν = (logX)−C for some
C > 0. For every C1 > 0, there is some C2 �C1

1 such that the following holds. LetMN =X ′ ∼X
with

X3δ+4η <N <X1/2−δ−η.

Let αm, βn be bounded coefficients, supported on (mn, P (W )) = 1 and

Nm∈ [M,M(1 + ν)], Nn∈ [N,N(1 + ν)].

Let F be a smooth function as in § 2.1 with the parameter ν. Suppose that for Q=Xδ+η

the coefficient βn is Q-regular and let ξkjχj denote the corresponding Hecke characters with
j ≤ J ≤ (logX)C2 . Then∑

m,n

αmβnamn =
∑
j≤J

∑
m,n

αmβnξkjχj(mn)

Nmn

∑
a

F (Nmn/Na)

F̂ (0)
aωa ξkjχj(a) +O

(
X1/2|B|
(logX)C1

)
.

Remark 6.3. Note that on the right-hand side of Proposition 6.2 we have the sequence aωa which
is twisted by ω, which arises from the assumption (mn, P (W )) = 1. In particular, Proposition 6.2
as stated would be false without restricting to (mn, P (W )) = 1.

We set

αw := α(w) and βz := β(z)1z primary,

so that in the latter we may swap freely between Gaussian integers z and ideals n and that∑
m,n

αmβnamn =
∑
w,z

αwβzawz.

We have included the complex conjugate in w to make our notation match with those of [FI98b].

6.1 Sketch of the argument

As the proof of Proposition 6.2 is quite technical, we include here a simplified non-rigorous
sketch. In § 6.2 we construct an approximation β#n for β such that the difference

β�n := βn − β#n

is balanced along arithmetic progressions. Write

S(α, β) = S(α, β#) + S(α, β�).

The approximation will be simple enough that S(α, β#) can be evaluated by Type I information,
so let us consider

S(α, β�) =
∑
w

∑
z

αwβ
�
z1B(Re(wz)),

where the aim is to capture the oscillations from β�z. By applying Cauchy–Schwarz we get

S(α, β�)�M1/2U1/2,
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with

U :=
∑
z1,z2

β�z1β
�
z2

∑
w

1B(Re(wz1))1B(Re(wz2))FM (|w|2),

for some smooth majorant FM of the interval [M, 2M ]. The goal is to evaluate the sum over w
with a main term M(z1, z2) and then show that∑

z1,z2

β�z1β
�
z2M(z1, z2)� N |B|2

(logX)C

is small due to cancellations from the coefficients β�z.
Similarly as in [FI98b], we note that by denoting bj =Re(wzj) and

Δ= Im(z1z2), a≡ z2/z1 (Δ),

we have

iΔw= z2b1 − z1b2. (6.1)

Note that typically |Δ| ≈N . The parts where Δ= 0 or |Δ|<N/(logX)C correspond to diagonal
contributions and may be bounded by crude estimates. Thus, we assume for simplicity that
|Δ| �N .

Let b0 := (b1, b2) and write bj = b0b
′
j . Note that in the situation that B ⊆ q1Z we have q1|b0,

so that b0 can be quite large for a large subset of B ×B. As usual, in most places dealing with
greatest common divisors does not cause serious problems but the dependency on b0 will be
crucial for our argument.

We have b0|Δw by (6.1) and, for simplicity, let us assume that b0|Δ. Then w= (z2b1 −
z1b2)/(iΔ) is fixed once we fix zj , bj , so that (ignoring the smooth weight FM ) we have to bound

V =
∑
b0

∑
z1,z2
|Δ|N
b0|Δ

β�z1β
�
z2

∑
b′2≡ab′1 (Δ/b0)

1B(b0b
′
1)1B(b0b

′
2).

Note that

a≡ z2/z1 ≡ Re(z1z2)

|z1|2 (Δ)

is congruent to an integer, so that the congruence b′2 ≡ ab′1 (Δ/b0) lives in Z/(Δ/b0)Z.
By expansion with Dirichlet characters and sorting into primitive characters we get (ignoring

issues with greatest common divisors)

V =
∑
b0

∑
z1,z2
|Δ|N
b0|Δ

β�z1β
�
z2

1

ϕ(Δ/b0)

∑
d|Δ/b0

∑∗

χ (d)

χ(a)

∣∣∣∣ ∑
b0b∈B

χ(b)

∣∣∣∣2,
where, morally,

1

ϕ(Δ/b0)
≈ b0
N
.

We split this into two parts, db0 >X
δ+η and db0 ≤Xδ+η. The contribution from the small d is

our main term M(z1, z2) referred to in the above.
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For the large db0, we get

∑
b0

b0
∑

db0>Xδ+η

∑
DN

D≡0 (db0)

⎛⎜⎜⎝ 1

N

∑
z1,z2
|Δ|=D

1

⎞⎟⎟⎠ ∑∗

χ (d)

∣∣∣∣ ∑
b0b∈B

χ(b)

∣∣∣∣2

�N
∑
b0

∑
Xδ+η<db0�N

1

d

∑∗

χ (d)

∣∣∣∣ ∑
b0b∈B

χ(b)

∣∣∣∣2,
and applying the large sieve for multiplicative characters (Lemma 2.11) we get

�N(N +X1/2−δ−η)|B| �X−ηN |B|2
by using N �X−η|B|. Note that we are applying the large sieve to a very sparse set B/b0 ∩Z,
which causes a loss in the diagonal terms and we are forced to take db0 at least a bit bigger than
Xδ.

For the small db0, we can rewrite the conditions b0d|Δ, a≡ z2/z1 (Δ) as z2 ≡ az1 (b0d) to get

1

N

∑
b0

b0
∑

db0≤Xδ+η

∑
a (b0d)

∑∗

χ (d)

χ(a)

∣∣∣∣ ∑
b0b∈B

χ(b)

∣∣∣∣2 ∑
z2≡az1 (b0d)

β�z1β
�
z2 . (6.2)

We now see what precisely is required of the balanced function β�z, we need∑
z2≡az1 (b0d)

β�z1β
�
z2 �

N2

ϕZ[i](b0d)(logX)C
,

where the modulus may be as large as Xδ+η. This would follow if there were no zeros of L(s, χ)
with a real part > 1−C ′ log logX/ logX. Since this is not known, we need to construct the

approximation β#z in a way that takes into account these possible bad characters. By the zero-
density estimate (Lemma 2.14) this means that the approximation needs to see � (logX)O(1)

of the characters. For technical reasons (due to the smooth weight FM ) the approximation also
needs to see the distribution of βz with respect to arg z and |z|2. Note that, in the case, that
B ⊆ q1Z we have always q1|b0, where q1 can be as large as Xδ.

6.2 An approximation for βn

For the approximation, it is convenient to use a rough finer-than-dyadic partition of unity instead
of § 2.1, so that the different parts do not overlap. Let ν2 =X−η2 , and let

HN ′(n) := 1(N ′,N ′(1+ν2)](Nn),

so that

1(N,2N ](Nn) =
∑

N ′=N(1+ν2)n∈[N,2N)

HN ′(n).

We can, of course, choose ν2 so that 2 = (1 + ν2)
k for some k� ν−2

2 .
Let βn be Q-regular and let Ψ= {ξkjχj} denote the set of J ≤ (logX)C2 characters, and

denote the moduli of the characters by u1, . . . , uJ and the primitive characters by χ1, . . . , χJ .
For any two coefficients α, β, we define their normalized W -rough correlation as

CW (β, α) :=

⎛⎜⎜⎝ ∑
(n,P (W ))=1

(n,n)=1

βnαn

⎞⎟⎟⎠
⎛⎜⎜⎝ ∑

(n,P (W ))=1
(n,n)=1

|αn|

⎞⎟⎟⎠
−1
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if the denominator is non-zero. We then define the approximation β#n for βn,

β#n = β#n (Ψ) :=
∑

N ′=N(1+ν2)j∈[N,2N ]

HN ′(n)1(n, nP (W ))=1

(∑
j≤J

ξkjχj(n)CW (β, ξkjχjHN ′)

)
,

and the balanced function,

β�n := βn − β#n ,

so that we have a decomposition

βn = β#n + β�n.

Morally, the approximation β# can be viewed as a kind of ‘expansion’ with respect to a ‘basis’,
which is justified since the functions ξχHN ′ are approximately orthogonal overW -rough number,
as the following lemma shows. For the lemma, recall that all functions of odd Gaussian integers
z are extended to n by considering the primary generator, for instance, we write G(arg n) =
G(arg z) if z is the primary generator of n.

Lemma 6.4. Let ψ, χ be a characters to coprime moduli u, u1 and let ξ = ξk with |k| � (ν1)
−2.

Let N >Xη|u|2|u1|. Then, for any C > 0, we have∑
n

HN ′(n)1(n,nP (W ))=1(ξψχ(n)− 1ξψχ=1)�C
ν2N

(logN)C

and, for any (m, u) = 1,∑
(n,u)=1

HN ′(n)1(n,nP (W ))=1

(
1n≡m (u)G(arg n)ξχ(n)−

1χ=1Ǧ(−k)
ϕZ[i](u)

)
�C

ν1ν2N

ϕZ[i](u)(logN)C
.

Proof. We prove the second claim, the first is similar but easier. By applying § 2.1 with a smooth
function F with the parameter ν1 we split Nn smoothly into finer-than-dyadic intervals. The
contribution from the edges of the support of HN ′ gives a negligible contribution by trivial
bounds. It then suffices to show that for any N1 ∼N∑

(n,u)=1

FN1
(Nn)1(n,nP (W ))=1

(
1n≡m (u)G(arg n)ξχ(n)−

1χ=1Ǧ(−k)
ϕZ[i](u)

)
�C

ν21N

ϕZ[i](u)(logN)C
.

We let z denote a primary generator of n. The condition (z, z) = 1 may be dropped with a
negligible error term since z is supported on (z, P (W )) = 1. We write

1(z,P (W ))=1 =
∑

v|(z,P (W ))
|v|2≤Nη1

μ(v) +
∑

v|(z,P (W ))
|v|2>Nη1

μ(v)

and write ∑
(n,u)=1

FN1
(Nn)1(n,nP (W ))=1

(
1n≡m (u)G(arg n)ξχ(n)−

1χ=1Ǧ(−k)
ϕZ[i](u)

)
,

=
∑

z≡1 (2(1+i))

FN1
(|z|2)1(z,P (W ))=1

(
1z≡w (u)G(arg z)ξχ(z)−

1χ=1Ǧ(−k)
ϕZ[i](u)

)
.

= S≤ + S>.
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For the large v we note that by v|P (W ) there is some factor v0|v such that |v0|2 ∈ (Xη1 , Xη1W ].
Thus, by Ǧ(−k)� ν1

S>�
∑

|v0|2∈(Xη1 ,Xη1W ]
v0|P (W )
(v0,u)=1

∑
z≡0 (v0)

τ(z)O(1)FN1
(|z|2)1z≡w (u)G(arg z)

+
ν1

ϕZ[i](u)

∑
|v0|2∈(Xη1 ,Xη1W ]

v0|P (W )
(v0,u)=1

∑
z≡0 (v0)

τ(z)O(1)FN1
(|z|2).

Recall that η is large compared with η1. Hence, by counting the sum over z ≡ 0 (v0) (using
Lemma 2.4 to handle τ(z)O(1)) and applying Lemma 2.2, we get

S>� ν21N

ϕZ[i](u)(logN)C
.

For small v we split into two cases depending on χ �= 1 and χ= 1. For χ �= 1, by writing
z = uvz′ + α we have

S≤ =
∑

v|P (W )
|v|2≤Nη1

(v,uu1)=1

μ(v)
∑

z≡0 (v)

FN1
(|z|2)1z≡w (u)G(arg z)ξχ(z)

=
∑

v|P (W )
|v|2≤Nη1

μ(v)
∑
z′
FN1

(|uvz′ + α|2)G(arg uvz + α)ξ(uvz′ + α)χ(uvz′ + α)

=
∑

v|P (W )
|v|2≤Nη1

μ(v)χ(uv)
∑
z′
FN1

(|uvz′ + α|2)G(arg uvz + α)ξ(uvz′ + α)χ(z′ + α(uv)−1),

since (uv, u1) = 1. Treating the weight

z′ �→ FN1
(|uvz′ + α|2)G(arg uvz + α)ξ(uvz′ + α)

as a smooth weight, we get by the Polyá–Vinogradov bound (Lemma 2.18)

S≤ �NO(η1)|u1| �N−η/2 ν21N

ϕZ[i](u)

by N1−η > |u|2|u1| since η1 is small compared with η.
For χ= 1, we have by Lemma 2.10 and ˇ(Gξk)(�) = Ǧ(�− k)

S≤ =
∑

v|P (W )
|v|2≤Nη1

(v,uu1)=1

μ(v)
∑

z≡0 (v)

FN1
(|z|2)

(
1z≡w (u)G(arg z)ξ(z)−

Ǧ(−k)
ϕZ[i](u)

)

=
∑

v|P (W )
|v|2≤Nη1

(v,uu1)=1

μ(v)
∑
��=0

Ǧ(�− k)
∑

z≡0 (v)

FN1
(|z|2)1z≡w (u)ξ�(z)

+
∑

v|P (W )
|v|2≤Nη1

(v,uu1)=1

μ(v)Ǧ(−k)
∑

z≡0 (v)

FN1
(|z|2)

(
1z≡w (u) −

1

ϕZ[i](u)

)
.
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Estimating the contribution from |�|> (ν1)
−3 trivially (by Lemma 2.10) and for |�| ≤ (ν1)

−3

applying the Poisson summation formula on Z[i] we get

S≤ �N−η/2 ν21N

ϕZ[i](u)
.

Our main lemma about the approximation is the following, which says that β�n is balanced
over arithmetic progressions restricting to small polar boxes.

Lemma 6.5. Let N >XηQ3. For any C1 > 0, there is some C2 �C1
1 such that the following

holds. Let ξ = ξk with k= (logN)O(1). Let βn be Q-regular, and let β�n be as above with |Ψ|=
J ≤ (logX)C2 . Suppose that βn is supported on (n, P (W )) = 1. Let N ′ =N(1 + ν2)

j ∈ [N, 2N ]
and θ ∈R/2πZ. Then, for any u∈Z[i] with M(u)≤Q, we have

S =
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∑
n

β�nψ(n)HN ′(n)G(arg n− θ)

∣∣∣∣2 � ν21ν
2
2N

2

ϕZ[i](u)(logX)C1
.

Proof. Let us first show that in the approximation β#n we can replace the characters with conduc-
tor dividing u by characters with modulus u. Suppose that ψ is induced by a primitive character
ψ′ of modulus u′ <u. Then

ψ(n) =ψ′(n)1(z,u/u′) =ψ′(n)−ψ′(n)1(n,u/u′)>1.

Since we have defined the correlation by sums over (n, P (W )) = 1, the characters agree unless
N (n, (u/u′))>W , so that we have

CW (β, ξkjψ
′HN ′) = CW (β, ξkjψHN ′) +O(W−1(logX)O(1)).

Thus, if the approximation includes a character whose conductor is a proper divisor of u, we
may replace it by the character with (n, u) = 1 at a negligible cost (by using orthogonality of
characters). Let us assume that this has been done, so that the moduli of the characters χj
satisfy either uj = u or (uj , u) = 1. Let Ψu denote the characters ξψ modulo u that are equal to
ξkjχj for some j. By expanding G with Lemma 2.10 we get

S =
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∑
k

Ǧ(k)

(∑
n

β�nξkψ(n)HN ′(n)

)∣∣∣∣2.
Denote

S(Ψu) :=
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ∈Ψu

Ǧ(k)

(∑
n

β�nξkψ(n)HN ′(n)

)∣∣∣∣∣∣∣∣
2

,

S(Ψ�
u) :=

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

β�nξkψ(n)HN ′(n)

)∣∣∣∣∣∣∣∣
2

.

Then by Cauchy–Schwarz ((A+B)2 ≤ 2(A2 +B2)) we have

S� S(Ψu) + S(Ψ�
u).
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6.2.1 Bounding S(Ψu). By the definition of β�n, we see that for ξkψ= ξkj0χj0 we have∑
n

β�nξkψ(n)HN ′(n) =
∑
j �=j0

CW (β, ξkjχjHN ′)
∑
n

HN ′(n)1(n,nP (W ))=1ξkψξkjχj(n).

Thus, by Cauchy–Schwarz on j and k (recall that for ψξk ∈Ψ we have |k| ≤ (ν1)
−2 by

Q-regularity) and using |Ǧ(k)| � ν1 we have

S(Ψu)� 1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣
∑
j≤J

CW (β, ξkjχjHN ′)

×
∑
k

ξkψ∈Ψu

ξkψ �=ξkj
χj

Ǧ(k)
∑
n

HN ′(n)1(n,nP (W ))=1ξkψξkjχj(n)

∣∣∣∣∣∣∣∣∣∣∣

2

� sup
j≤J

(logX)3C
′

ϕZ[i](u)

∑
k

|Ǧ(k)|2
∑

ψ∈ ̂(Z[i]/uZ[i])×

ξkψ∈Ψu

ξkψ �=ξkj
χj

∣∣∣∣∑
n

HN ′(n)1(n,nP (W ))=1ξkψξkjχj(n)

∣∣∣∣2

� sup
j≤J

|k|≤ν−2
1

ξkψ �=ξkj
χj

ν21(logX)4C
′

ϕZ[i](u)

∣∣∣∣∑
n

HN ′(n)1(n,nP (W ))=1ξkψξkjχj(n)

∣∣∣∣2.
By Lemma 6.4 we get

S(Ψu)� ν21ν
2
2N

2

ϕZ[i](u)(logX)C
.

6.2.2 Bounding S(Ψ�
u). By Cauchy–Schwarz ((A+B)2 ≤ 2(A2 +B2)) we have

S(Ψ�
u) =

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

β�nξkψ(n)HN ′(n)

)∣∣∣∣∣∣∣∣
2

� S1(Ψ
�
u) + S2(Ψ

�
u),

with

S1(Ψ
�
u) :=

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣ ∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

βnξkψ(n)HN ′(n)

)∣∣∣∣2,
S2(Ψ

�
u) :=

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∑
j≤J

CW (β, ξkjχjHN ′)

×
∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

HN ′(n)1(n, nP (W ))=1ξkψξkjχj(n)

)∣∣∣∣2.
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By the assumption that βn is Q-regular we have

S1(Ψ
�
u)�

ν21ν
2
2N

2

ϕZ[i](u)(logX)C1
.

For S2(Ψ
�
u) we have by Cauchy–Schwarz on j

S2(Ψ
�
u) := sup

j≤J
(logX)C

′

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

HN ′(n)1(n, nP (W ))=1ξkψξkjχj(n)

)∣∣∣∣∣∣∣∣
2

,

we write ∑
k

ξkψ �∈Ψu

Ǧ(k) =
∑
k

Ǧ(k)− Ǧ(kj)1ψ=χj
−

∑
k

ξkψ∈Ψu

ξkψ �=ξkj
χj

Ǧ(k).

The contribution from the third sum may be extracted from S2(Ψ
�
u) by Cauchy–Schwarz and

bounded by the same argument as with S(Ψu). Thus, we are left with bounding

S3(Ψ
�
u) := sup

j≤J
(logX)C

′

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∑
k

Ǧ(k)

(∑
n

HN ′(n)1(n, nP (W ))=1ξkψξkjχj(n)

)

− Ǧ(kj)1ψ=χj

∑
n

HN ′(n)1(n, nP (W ))=1

∣∣∣∣2
= sup
j≤J

(logX)C
′

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∑
n

HN ′(n)G(arg n)1(n, nP (W ))=1ψξkjχj(n)

− Ǧ(kj)1ψ=χj

∑
n

HN ′(n)1(n, nP (W ))=1

∣∣∣∣2.
The claim now follows by orthogonality of characters and Lemma 6.4 since N1−η >Q3 and
|u|, |uj | ≤Q.

Remark 6.6. When constructing the approximation β#n we have a choice of using either the
physical space or the Fourier space. To approximate βn with respect to arithmetic progressions
and sectors of Z[i] we use the Fourier space (i.e. characters χ, ξ), whereas to approximate βn
with respect to the size of Nn we use the physical space (i.e. smooth partition HN ′). These
are the most convenient choice for using existing zero-density estimates and information about
exceptional characters.

6.3 Partitioning the Type II sum

With the approximation for βn defined as in § 6.2, we can extract the main term from the Type
II sum by writing

S(α, β) = S(α, β#) + S(α, β�).

By (a, b) = 1, we may restrict to (w, w) = 1. Since we are working with rough numbers the con-
dition (a, b) = 1 may be dropped with a negligible error term. By definition, an =

∑
u∈{±1,±i} auz
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so that we have

S(α, β�) =
∑

|w|2∼M
(w,w)=1

∑
|z|2∼N

αwβ
�
z1B(Re(wz)) +OC

(
X1/2|B|
(logX)C

)
.

The two contributions are bounded by the following two propositions, which together imply
Proposition 6.2.

Proposition 6.7. Suppose that the assumptions of Proposition 6.2 hold and let β�n be as in
§ 6.2. Then, for every C1 > 0, there is some C2 > 0∑

|w|2∼M
(w,w)=1

∑
|z|2∼N

αwβ
�
z1B(Re(wz))�

X1/2|B|
(logX)C1

.

Proposition 6.8. Suppose that the assumptions of Proposition 6.2 hold and let β#n be as in
§ 6.2. Then, for any C > 0,∑

m,n

αmβ
#
n amn =

∑
j≤J

∑
m,n

αmβnξkjχj(mn)

Nmn

∑
a

F (Nmn/Na)

F̂ (0)
aωa ξkjχj(a) +O

(
X1/2|B|
(logX)C

)
.

Remark 6.9. We want to carry the condition (w, w) = 1 through the application of Cauchy–
Schwarz. To see why, consider a situation where B ⊆ d0Z with d0 >X

η being very smooth so
that τ(d0) is larger than any fixed power of logX. Let us split the Type II sum according to the
g.c.d. of w and d0, which gives us ∑

e|d0

∑
w≡0 (e)

∑
z

1B(Re(wz)).

Now in the inner sum e|w means that e|b is automatic, so that the density on the inside is
bumped up, that is, we morally have∑

w≡0 (e)

1≈ M

e2
,
∑
z

1B(Re(wz))≈ e
X1/2|B|
M

.

Prior to Cauchy–Schwarz this is not an issue since we still get converging sum
∑

e|d0 e
−1. However,

after applying Cauchy–Schwarz to w, we get∑
e|d0

∑
w≡0 (e)

∣∣∣∣∑
z

1B(Re(wz))

∣∣∣∣2 ≈N |B|2
∑
e|d0

1,

which means that we have picked up a large divisor function τ(d0). This would be problematic
since we can only save a fixed power of logX from Lemma 6.5. We resolve this issue by keeping
the condition (w, w) = 1 so that w has no non-trivial integer divisors, but there are also other
ways to deal with this.

6.4 Proof of Lemma 6.1

Note that M(u)≤Q implies that |u| ≤Q, so that by N >XηQ3 we have N >Xη|u|3. By

Lemma 2.14 we can take for σQ := 1− C′
2 log logQ
logQ with some large C ′

2 > 0 to get

J ≤N∗(σQ, Xη, Xη, Q2)≤ (logX)C2
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and let Ψ be the set of primitive characters ξψ such that L(s, ξψ) has a zero counted in the
above with M(u)≤Q. Recall that we now specify

βn := 1Nn∼Nμ(Nn)1(n,P (W ))=1.

Then, for Lemma 6.1, we need to show that if Ψu denotes the set of characters modulo u
which are induced by Ψ, then for any N ′ ∈ [N, 2N ] for any C1 > 0 there is some C2 > 0 such
that

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

⎛⎝ ∑
Nn∈(N ′,N ′(1+ν2)]

βnξkψ(n)

⎞⎠
∣∣∣∣∣∣∣∣
2

� ν21ν
2
2N

2

ϕZ[i](d)(logX)C1
. (6.3)

The contribution from the trivial character ψ= ψ0 is bounded by a similar but easier argument
as below, using Heath-Brown’s identity and the Vinogradov strength zero-free region of Coleman
[Col90]. We then restrict to ψ �=ψ0. We apply § 2.1 to Nn with ν1 =X−η1 , using the assumption
that η2 is small compared with η1 to replace Nn∈ (N ′, N ′(1 + ν2)] with a smooth weight. It
then suffices to show that for any N1 ∼N , we have

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

(∑
n

βnξkψ(n)FN1
(Nn)

)∣∣∣∣∣∣∣∣
2

� ν41N
2

ϕZ[i](d)(logX)C1
.

The proof strategy is classical so we will be brief. We use the Heath-Brown identity [IK04,
(13.58)] with K = 3

μ(n) =

3∑
k=1

(−1)k+1

(
3

k

) ∑
n=m1m2m2n1n2n3

mj≤2N1/3

μ(m1)μ(m2)μ(m3).

Let F1 be as in § 2.1 with ν = 1/2. Using the Heath-Brown identity and a dyadic decomposition
(smooth for the free variable a), we get sums of Type I

SI :=
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

⎛⎜⎜⎜⎜⎜⎝
∑
aNm∼M

(ma,P (W ))=1

FN1
(Nma)α(m)F1,A(Na)ξkψ(ma)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣

2

,

with M � 2N2/3 and AM ∼N and sums of Type II

SII :=
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

⎛⎜⎜⎝ ∑
Nmj∼Mj

(mj ,P (W ))=1

FN1
(Nm1m2m3)

× α1(m1)α2(m2)α3(m3)ξkψ(m1m2m3)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
2

,

with α1(m) = 1 or α1(m) = μ(Nm), M1M2M3 ∼M and

N1/6 �M1 �N1/3.
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To see this note that we are in the Type I case unless all of the variables nj are �N1/3, and
in that case we can take the M1 for the Type II sum to be the range of largest variable mj , nj ,
which must be �N1/6.

To show (6.3) it then suffices to show that

SI , SII � ν41N
2

ϕZ[i](d)(logX)C1
.

For SI , we let D=Xη1 and write

1(a,P (W ))=1 =
∑

d|(a,P (W ))

μ(d) =
∑

d|(a,P (W ))
Nd≤D

μ(Nd) +
∑

d|(a,P (W ))
Nd>D

μ(Nd).

The contribution from Nd>D is bounded by using Lemma 2.2, after using orthogonality of
characters and Lemma 2.10. For SI , we then need to bound

S′
I :=

1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

Ǧ(k)

⎛⎜⎜⎜⎝ ∑
aNm∼M

(m,P (W ))=1

∑
d|(n,P (W ))

Nd∼D

μ(d)F1,A(Nda)α(m)ξkψ(dma)

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
2

,

with D�Xη1 and M �N2/3.
Denote

M(t, ξψ) :=
∑

Nm∼M
1(m,P (W ))=1α(m)(Nm)−itξψ(m),

Mj(t, ξψ) :=
∑

Nm∼Mj

1(m,P (W ))=1αj(m)(Nm)−itξψ(m),

A(t, ξψ) :=
∑
a

∑
d|(a,P (W ))

Nd≤D

μ(d)F1,A(Nda)(Nda)−itξψ(a).

Then, for ψ �= ψ0, we have the standard point-wise bounds

A(t, ξkψ)�D(1 + |t|)(1 + |k|)|u| (6.4)

and for α1 = 1 or α1 = μ with M1 �X1/6 once C2 is large compared with C1, with ξψ �∈Ψu,

M1(t, ξψ)� M1

(logX)C1
. (6.5)

The bound (6.4) follows by the Polyá–Vinogradov bound (i.e. the convexity bound for L(s, ξψ)
in the u aspect, Lemma 2.18). The bound (6.5) follows by the truncated Perron’s formula and
shifting the contour to (1 + σQ)/2 (justified by ξψ �∈Ψu), using the bound Lemma 2.16 for
1/L(s, ξψ), and taking C ′

2 > 0 in the definition of σQ sufficiently large.
By Mellin inversion (Lemma 2.9), we get

FN1
(x) =

1

2πi

ˆ
Ḟ (s)N s

1x
−s ds,

with

|Ḟ (s)| �C ν1(1 + ν1|t|)−C .
Hence, we have

S′
I � JI and SII � JII ,
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with

JI :=
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

|Ǧ(k)|
ˆ

|Ḟ (it)||MA(t, ξkψ)| dt

∣∣∣∣∣∣∣∣
2

,

JII :=
1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

ψ �=ψ0

∣∣∣∣∣∣∣∣
∑
k

ξkψ �∈Ψu

|Ǧ(k)|
ˆ

|Ḟ (it)||M1M2M3(t, ξkψ)| dt

∣∣∣∣∣∣∣∣
2

.

To bound JI we apply Cauchy–Schwarz on t, k, (6.4), and orthogonality of characters to get,
for some coefficients γn and for some t, ξ,

JI � ν
O(1)
1

D2|u|2
ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

∣∣∣∣M(t, ξψ)

∣∣∣∣2
� ν

O(1)
1 D2|u|2

∑
n1≡n2 (u)

Nn1,Nn2�M

|γn1
γn2

|

� ν
O(1)
1 D2M2 + ν

O(1)
1 |u|D2M.

By N >Nη|u|3, M �N2/3, and D=Xη1 we get

JI �N4/3+O(η1) + |u|N2/3+O(η1) �N−η N2

ϕZ[i](u)

since η1 is small compared with η, which is sufficient for bounding JI .
For JII we apply the bound (6.5) for M1 and Cauchy–Schwarz in the t, k variables to get

JII � M2
1

(logX)C1

¨
|Ḟ (it1)Ḟ (it2)|

∑
k1,k2

|Ǧ(k1)Ǧ(k2)|

× 1

ϕZ[i](u)

∑
ψ∈ ̂(Z[i]/uZ[i])×

|M2(t1, ξk1ψ)M3(t2, ξk2ψ)|2 dt1 dt2.

By orthogonality of characters and Lemmas 2.10 and 2.9 we get

JII � M2
1

(logX)C1
T 2

∑
m21,m22,m31m32

Nmjk∼Mj

m21m31≡m22m32 (u)
|Nm21−Nm22|�ν1M2

| argm21−argm22|�ν1
|Nm31−Nm32|�ν1M3

| argm31−argm32|�ν1

1.

Let us denote m2j = (wj) and m3j = (zj) so that

JII � M2
1

(logX)C1
T 2

∑
w1,w2,z1,z2
|wj |2∼M2

|zj |2∼M3

w1z1≡w2z2 (u)
|w1−w2|2�ν1M2

|z1−z2|2�ν1M3

1.
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Writing w2 =w1 + u, z1 = z2 + v we get (using Lemma 2.4 to handle τ(w)τ(z))

JII � M2
1

(logX)C1
T 2

∑
w1,u,v,z2
|w1|2∼M2

|u|2�ν1M2

|z2|2∼M3

v�ν1M3

w1v≡uz2 (u)

1

� M2
1

(logX)C1
T 2

∑
|w|2,|z|2�ν1M2M3

w≡z (u)

τ(w)τ(z)

� ν4N2

ϕZ[i](u)(logN)C1−O(1)
,

using M1 �N1/3, M1M2M3 �N to get M2M3 �N2/3 �Xη|u|2.

7. Type II information: proof of Proposition 6.7

7.1 Cauchy–Schwarz

Let FM (m) = F (m/M) with a fixed smooth majorant F for the interval [1, 2], supported on
[1/2, 3]. By applying Cauchy–Schwarz we get∑

|w|2∼M
(w,w)=1

∑
|z|2∼N

αwβ
�
z1B(Re(wz))�M1/2U(β)1/2,

where

U(β) :=
∑

|z1|2,|z2|2∼N
β�z1β

�
z2

∑
(w,w)=1

FM (|w|2)1B(Re(wz1)).

It then suffices to show that

U(β)� N |B|2
(logX)C1

. (7.1)

Define

Δ=Δ(z1, z2) := Im(z1z2) = |z1z2| sin(arg z2 − arg z1).

Note that typically |Δ| �N . We partition the sum into a main term and diagonal terms by
writing

U(β) = V (β) +O(U0(β) +U1(β)),

where

V (β) :=
∑

|z1|2,|z2|2∼N
Δ �=0

(z1,z2)=1

β�z1β
�
z2

∑
(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2)),

U0(β) :=
∑

|z1|2,|z2|2∼N
Δ=0

|β�z1β�z2 |
∑

(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2)),

U1(β) :=
∑

|z1|2,|z2|2∼N
Δ �=0

(z1,z2)>1

|β�z1β�z2 |
∑

(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2).
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For V (β) we apply § 2.1 with G :R/2πZ→R being a non-negative smooth function with the
parameter ν1 =X−η1 to the variables arg z1 and arg z2 to get

V (β) = ν−2
1

ˆ
(R/2πZ)2

V (β, θ) dθ1 dθ2,

with

V (β, θ) =
∑

|z1|2,|z2|2∼N
Δ �=0

(z1,z2)=1

β�z1,θ1β
�
z2,θ2

∑
(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2))

and

β�z,θ = β�zG(arg z − θ).

We now further partition V (β) according to the size of |Δ|. Let ν3 =X−η3 and write

V (β) = V>ν3(β) + V≤ν3(β),

where V>ν3(β) is the part where | sin(θ1 − θ2)|> ν3, which implies (since η3 is small compared
with η1)

|Δ|= |z1z2| | sin(arg z2 − arg z1)| � ν3N.

We then have the following lemmas, which together imply Proposition 6.7.

Lemma 7.1 (Off-diagonal contribution). For | sin(θ1 − θ2)|> ν3,

V (β, θ)� ν21N |B|2
| sin(θ1 − θ2)|(logX)C1

.

Lemma 7.2 (Diagonal contribution). We have

U0(β)�εX
1/2+ε|B|

Lemma 7.3 (Pseudo-diagonal contribution I). We have

U1(β)� N |B|2
W 1−η

Lemma 7.4 (Pseudo-diagonal contribution II). We have

V≤ν3(β)�εX
εν3N |B|2

7.2 Proof of Lemma 7.1

It suffices to show that for |θ1 − θ2 (mod π)|> ν3 we have

V (β, θ) =
∑

|z1|2,|z2|2∼N
(z1,z2)=1

β�z1,θ1β
�
z2,θ2

×
∑

(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2))

� ν21N |B|2
| sin(θ1 − θ2)|(logX)C

. (7.2)

We note that (z1, z2) = (z1, z1) = (z2, z2) = 1 implies (Δ, |z1|2|z2|2) = 1. By symmetry, this
can be seen from

(Δ, z1) = (Δ, z1) = (Im(z2z1), z1) = (z2z1, z1) = 1.
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Denoting Re(wz1) = bj , we have

iΔw= z2b1 − z1b2.

Let b0 := (b1, b2). Since (w, w) = 1, we know that b0|Δ. Thus,

i(Δ/b0)w= z2b1/b0 − z1b2/b0. (7.3)

Denoting bj = b0b
′
j , we have

V (β, θ) =
∑
b0≥1

∑
|z1|2,|z2|2∼N
(z1,z2)=1
Δ≡0 (b0)

β�z1,θ1β
�
z2,θ2

∑
b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

(w,w)=1

1B(b0b
′
1)1B(b0b

′
2)FM

(∣∣∣∣b0 z2b′1 − z1b
′
2

Δ

∣∣∣∣2).

We now wish to remove the smooth weight FM . Recall that already b0b
′
j ∈ [Y, Y +X1/2−η] by

(3.2). We introduce a rough finer-than-dyadic partition for |z1|2, |z2|2 by using HN ′ as in § 6.2
with ν2 =X−η2 . Let N1, N1 ∼N , and denote

β�z,i := β�zHNi
(z)G(arg z − θi).

To prove (7.2) it then suffices to prove that for N1, N1 ∼N and for | sin(θ1 − θ2)| ≥ ν3 we have

V ′(β,N , θ) :=
∑

|z1|2,|z2|2∼N
(z1,z2)=1

β�z1,1β
�
z2,2

×
∑

(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2))

� ν21ν
2
2N |B|2

| sin(θ1 − θ2)|(logX)C
. (7.4)

Using | sin(θ1 − θ2)|> ν3 we have Δ= |z1z2| sin(arg2 − arg z1)� ν3N , so that for some constant
FM (N , θ)

FM

(∣∣∣∣b0 z2b′1 − z1b
′
2

Δ

∣∣∣∣2)= FM (N , θ) +O(ν2ν
−2
3 ). (7.5)

Therefore, we have

V ′(β,N , θ) = FM (N , θ)V (β,N , θ) + ν2ν
−2
3 O(W (β,N , θ)),

where

V (β,N , θ) :=
∑
b0

∑
|z1|2,|z2|2∼N
(z1,z2)=1
Δ≡0 (b0)

β�z1,1β
�
z2,2

∑
b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

(w,w)=1

1B(b0b
′
1)1B(b0b

′
2)

W (β,N , θ) :=
∑
b0

∑
(|z1|2,|z2|2∼N

(z1,z2)=1
Δ≡0 (b0)

|β�z1,1||β�z2,2|
∑

b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

(w,w)=1

1B(b0b
′
1)1B(b0b

′
2).

Then (7.4) follows from the following two lemmas once η3 is small compared with η2 so that
ν2ν

−3
3 =X−η2+3η3 <X−η2/2, say.
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Lemma 7.5. For any C1 > 0, there is some C2 > 0 for β�n as in § 6.2 such that for | sin(θ1 − θ2)|>
ν3 we have

V (β,N , θ)� ν21ν
2
2

N |B|2
| sin(θ1 − θ2)|(logX)C1

.

Lemma 7.6. For | sin(θ1 − θ2)|> ν3, we have

W (β,N , θ)� ν21ν
2
2N |B|2(logX)O(1)

| sin(θ1 − θ2)| .

7.2.1 Proof of Lemma 7.5. The condition (w, w) = 1 has served its purpose so we remove
it by expanding

1(w,w)=1 =
∑
�|w

μ(�),

where � runs over integers. Writing w= �w′, we get from (7.3)

i(Δ/b0)�w
′ = z2b

′
1 − z1b

′
2. (7.6)

We have (
�Δ

b0
, b′j

)
= 1. (7.7)

To see this, by using (b′1, b′2) = 1 and (7.6), we get that for j ∈ {1, 2},(
�Δ

b0
, b′j

) ∣∣∣∣ (�Δb0 , zj
)
,

and (7.7) follows since the left-hand side is an integer and by (zj , zj) = 1 the only integer dividing
zj is 1. Similarly, we also get (z1z2, �) = 1 by (7.6). Thus,

a := z2/z1 ≡ b′2/b
′
1 (�)

is congruent to a rational integer, which is equivalent to saying that Δ≡ 0 (�). Thus, we get

V (β,N , θ) =
∑
b0,�

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

∑
b′2≡ab′1 (�Δ/b0)
(b′1b

′
2,�Δ/b0)=1
(b′1,b

′
2)=1

1B(b0b
′
1)1B(b0b

′
2).

By expanding the congruence b′2 ≡ ab′1 (�Δ/b0) into Dirichlet characters and splitting into
primitive characters we get

V (β,N , θ) =
∑
b0,�

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

× 1

ϕ(�Δ/b0)

∑
d|�Δ/b0

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,�Δ/(db0))=1

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠ .

We separate db0 >X
δ+η/2 and db0 ≤Xδ+η/2, that is, write

V (β,N , θ) = V≤(β,N , θ) + V>(β,N , θ).
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For the large db0, we use the expansion

1(b′1,b′2)=1 =
∑

c|(b′1,b′2)
μ(c)

to get

V>(β,N , θ) =
∑
b0,�

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

× 1

ϕ(�Δ/b0)

∑
d|�Δ/b0

db0>Xδ+η/2

∑
(c,d)=1

μ(c)
∑∗

χ (d)

χ(a)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,�Δ/(db0))=1

χ(b)

∣∣∣∣∣∣∣∣
2

.

We split the sum according to a0 = (b0, �) which gives us

V>(β,N , θ) =
∑
b0
a0|b0

∑
(�,b0)=a0

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 (b0�/a)

β�z1,1β
�
z2,2

× 1

ϕ(�Δ/b0)

∑
d|�Δ/b0

db0>Xδ+η/2

∑
(c,d)=1

μ(c)
∑∗

χ (d)

χ(a)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,�Δ/(db0))=1

χ(b)

∣∣∣∣∣∣∣∣
2

.

Recall that by | sin(θ1 − θ2)| � ν3 we have |Δ| � ν3N . For any fixed D with ν3N �D�N we
have (combining the variables z2z1 = z, using a divisor bound, and recalling that Δ= Im(z2z1))∑

|z1|2,|z2|2∼N
|Δ|=D�ν3N

1

ϕ(�Δ/b0)
�Xη/200

∑
|z|2∼N2

|Im(z)|=D�ν3N

b0
�D

� Xη/200b0
ν3�

,

which gives us (since η3 is small compared with η)

V>(β,N , θ)� sup
L�X

Xη/100

L

∑
b0
a0|b0

∑
�∼L

�≡0 (a0)

b0
∑
D�N

D≡0 (b0�/a0)

∑
d|�D/b0

db0>Xδ+η/2

∑
(c,d)=1

×
∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,�D/(db0))=1

χ(b)

∣∣∣∣∣∣∣∣
2

.

By a dyadic partition, we get (denoting D′ = �D/(db0)

V>(β,N , θ)� sup
B0,D0,L

Xδ+η/2�D0B0�LN

Xη/50B0

L

∑
b0∼B0

a0|b0

∑
�∼L

�≡0 (a0)

∑
D′∼LN/B0D0

D′≡0 (�2/a0)

×
∑
d∼D0

∑
(c,d)=1

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,D′)=1

χ(b)

∣∣∣∣∣∣∣∣
2
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� sup
B0,D0,L

Xδ+η/2�D0B0�LN

Xη/50B0

L

∑
b0∼B0

a0|b0

∑
�∼L

�≡0 (a0)

∑
D′∼LN/B0D0

D′≡0 (�2/a0)

× sup
D′′

∑
d∼D0

∑
(c,d)=1

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,D′′)=1

χ(b)

∣∣∣∣∣∣∣∣
2

�Xη/40N sup
B0,D0,L

Xδ+η/2�D0B0�LN

1

D0L

∑
b0∼B0

∑
c

sup
D′′

∑
d∼D0

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(cb,D′′)=1

χ(b)

∣∣∣∣∣∣∣∣
2

.

By the large sieve for multiplicative characters (Lemma 2.11) we obtain

V>(β,N , θ)�Xη/30N(N +X1/2−δ−η/2)|B| �X−η/4N |B|2,
since N ≤X−η|B|. This is sufficient for Lemma 7.5 since η1, η2 are small compared with η.

To bound the contribution from the small db0 recall that

V≤(β,N , θ) =
∑
b0,�

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

× 1

ϕ(�Δ/b0)

∑
d|�Δ/b0

db0≤Xδ+η/2

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,�Δ/(db0))=1

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠ .

We expand the conditions (b′1b′2, �Δ/(db0)) = 1 by using the Möbius function to get

V≤(β,N , θ) =
∑

(e1,e2)=1

μ(e1)μ(e2)
∑
b0,�

μ(�)
∑

|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

× 1

ϕ(�Δ/b0)

∑
de1e2|�Δ/b0
db0≤Xδ+η/2

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0e1b′1,b0e2b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(e1b
′′
1)χ(e2b

′′
2)

⎞⎟⎟⎟⎟⎟⎠ .

We have

1

ϕ(�Δ/b0)
=

b0
�|Δ|

∏
p|�Δ/b0

(
1 +

1

p− 1

)
=

b0
�|Δ|

∑
d1|�Δ/b0

|μ(d1)|
ϕ(d1)

.

Since z1, z2 are restricted to polar boxes, we have

|Δ|=N
1/2
1 N

1/2
2 | sin(θ2 − θ2)|(1 +O(ν2)) :=D(1 +O(ν2)). (7.8)

Plugging this in, we get

V≤(β,N , θ) = V ′
≤(β,N , θ) +O(W≤(β,N , θ)), (7.9)
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with

V ′
≤(β,N , θ) :=

1

D

∑
d1

|μ(d1)|
ϕ(d1)

∑
(e1,e2)=1

μ(e1)μ(e2)
∑
b0,�

b0μ(�)

�

∑
|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

β�z1,1β
�
z2,2

×
∑

db0≤Xδ+η/2

[d1,de1e2]|�Δ/b0

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0e1b′1,b0e2b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(e1b
′′
1)χ(e2b

′′
2)

⎞⎟⎟⎟⎟⎟⎠ ,

W≤(β,N , θ) :=
ν2
D

∑
d1

1

ϕ(d1)

∑
(e1,e2)=1

∑
b0,�

b0
�

∑
|z1|2,|z2|2∼N
(z1,z2)=1

Δ≡0 ([b0,�])

|β�z1,1β�z2,2|

×
∑

db0≤Xδ+η/2

[d1,de1e2]|�Δ/b0

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0e1b′1,b0e2b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(e1b
′′
1)χ(e2b

′′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
.

Let us first consider V ′
≤(β,N , θ). We note that the sums over d1, e2, e2, � converge quickly,

so that we expect to be able to bound the contribution from large ranges of d1, e2, e2 by crude
estimates. We have

�

(b0, �)

∣∣∣∣Δ/b0 and
[d1, de1e2]

([d1, de1e2], �)

∣∣∣∣Δ/b0.
Denoting

f := f(�, d1, d, e1, e2) := b0 ·
[

[d1, de1e2]

([d1, de1e2], �)
,

�

(b0, �)

]
,

we get f |Δ, which is equivalent to saying that

z2 ≡ az1 (f)

for some a (f). Note that |f | �N . Thus,

V ′
≤(β,N , θ) =

1

D

∑
d1

|μ(d1)|
ϕ(d1)

∑
(e1,e2)=1

μ(e1)μ(e2)
∑
b0,�

b0μ(�)

�

×
∑

db0≤Xδ+η/2

∑
a (f)

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠
∑

z2≡az1 (f)
(z1,z2)=1

β�z1,1β
�
z2,2

.

We write

V ′
≤(β,N , θ) = V ′′

≤(β,N , θ) +E≤(β,N , θ), (7.10)

where E≤(β,N , θ) is the part where f >Xδ+η.
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For f ≤Xδ+η, we note by (z1, z2) = 1 we have (z1z2, f) = 1. By dropping the condition
(z1, z2) = 1, we get

V ′′
≤(β,N , θ) = V ′′′

≤ (β,N , θ) +O(Z≤(β,N , θ)) (7.11)

with

V ′′′
≤ (β,N , θ) =

1

D

∑
d1

|μ(d1)|
ϕ(d1)

∑
(e1,e2)=1

μ(e1)μ(e2)
∑
b0,�

b0μ(�)

�

×
∑

db0≤Xδ+η/2

f≤Xδ+η

∑
a (f)

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠
∑

z2≡az1 (f)
(z1z2,f)=1

β�z1,1β
�
z2,2

and

Z≤(β,N , θ) :=
1

D

∑
d1

1

ϕ(d1)

∑
(e1,e2)=1

∑
b0,�

b0
�

×
∑

db0≤Xδ+η/2

f≤Xδ+η

∑
a (f)

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
∑

z2≡az1 (f)
(z1z2,f)=1

|(z1,z2)|2≥W

|β�z1,1β�z2,2|.

By expanding z2 ≡ az1 (f) with Dirichlet characters we have

V ′′′
≤ (β,N)≤ 1

D

∑
d1

1

d1

∑
(e1,e2)=1

∑
b0,�

b0
�

∑
db0≤Xδ+η/2

∑
a (f)

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
× 1f≤Xδ+η

ϕZ[i](f)

∑
ψ∈ ̂(Z[i]/fZ[i])×

∣∣∣∣ ∑
z1,z2

β�z1,1ψ(z1)β
�
z2,2

ψ(z2)

∣∣∣∣.
By applying Cauchy–Schwarz on ψ and using Lemma 6.5 we get

|V ′′′
≤ (β,N)| � ν21ν

2
2N

2

D(logX)C1

∑
d1,e1,e2

∑
b0,�

∑
db0≤Xδ+η/2

b0
d1�f2

×
∑
a (f)

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
.
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By Lemma 2.17 (with the argument ab′1/b′2) and Lemma 2.1 this is bounded by

� ν21ν
2
2N

2

D(logX)C1

∑
d1,b0,�

∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

∑
e1|b′1
e2|b′2

∑
db0≤Xδ+η/2

(b′1b
′
2,d)=1

b0
d1�f2

∑
a (f)

(a,d)=1

(d, b′2 − ab′1)

� ν21ν
2
2N

2

D(logX)C1

∑
d1,b0,�

∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

∑
e1|b′1
e2|b′2

∑
db0≤Xδ+η/2

(b1b2,d)=1

τ(d)b0
d1�f

.

Using

f = b0 ·
[

[d1, de1e2]

([d1, de1e2], �)
,

�

(b0, �)

]
≥ b0d

(d, �)
,

by Lemma 2.1 and (7.8), we get

|V ′′′
≤ (β,N)| � ν21ν

2
2N

2

D(logX)C1

∑
b1,b2∈B

∑
d,�≤X

τ(d)(�, d)

d�

� ν21ν
2
2N |B|2

| sin(θ2 − θ1)|(logX)C1
,

which is sufficient.
The argument for bounding Z≤(β,N , θ) from (7.11) is the same except that instead of

expanding into Hecke characters and Lemma 6.5 we use the trivial bound∑
z2≡az1 (f)
(z1z2,f)=1

|(z1,z2)|2≥W

|β�z1,1β�z2,2|=
∑

|z0|2≥W

∑
z′2≡az′1 (f)
(z1z2,f)=1

|β�z0z1,1β�z0z2,2|

� (logX)O(1)
∑

W<|z0|2�N

(
ν1ν2N

|z0|2 + 1

)(
ν1ν2N

|z0|2f2 + 1

)

� (logX)O(1)

(
ν21ν

2
2N

2

Wf2
+ ν1ν2N(logX) +N

)
� (logX)O(1) ν

2
1ν

2
2N

2

Wf2
,

where the last bound holds since N >X3δ+3η and f2 ≤Xδ+2η. This gives us

Z≤(β,N , θ)� (logX)O(1) ν21ν
2
2N |B|2

| sin θ2 − θ1|W ,

which suffices for Lemma 7.5.
For E≤(β,N , θ) from (7.10) with large f we will need to use a slightly different argument

since the modulus f can be as large as N which would make f2 much bigger than N . We write

E≤(β,N , θ) =
1

D

∑
d1

|μ(d1)|
ϕ(d1)

∑
(e1,e2)=1

μ(e1)μ(e2)
∑
b0,�

b0μ(�)

�

×
∑

db0≤Xδ+η/2

f>Xδ+η

∑
a (f)

∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠
∑

z2≡az1 (f)
β�z1,1β

�
z2,2
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� 1

D

∑
d1

1

ϕ(d1)

∑
e1,e2

∑
b0,�

b0
�

×
∑

db0≤Xδ+η/2

f>Xδ+η

∑∗

χ (d)

∣∣∣∣ ∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

∣∣∣∣ ∑
z1,z2
f |Δ

|β�z1,1β�z2,2|

� N2

D

∑
d1

1

ϕ(d1)

∑
e1,e2

∑
b0,�

b0
�

×
∑

db0≤Xδ+η/2

f>Xδ+η

1

|f |
∑∗

χ (d)

∣∣∣∣ ∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

∣∣∣∣.

By using f >Xδ+η and db0 ≤Xδ+η/2 we get f−1 ≤X−η/2(b0d)−1, which gives us

E≤(β,N , θ)�X−η/2N2

D

∑
d1�X

1

ϕ(d1)

∑
e1,e2

∑
b0,��X

1

�

×
∑

db0≤Xδ+η

1

d

∑∗

χ (d)

∣∣∣∣ ∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

∣∣∣∣.
By using the expansion

1(b′1,b′2)=1 =
∑

c|(b′1,b′2)
μ(c),

Cauchy–Schwarz, orthogonality of characters, and a divisor bound, we have∑∗

χ (d)

∑
e1,e2

∣∣∣∣ ∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

ej |b′j

χ(b′1)χ(b
′
2)

∣∣∣∣≤∑
c

∑
χ (d)

∑
e1,e2

∣∣∣∣ ∑
b0b′1,b0b

′
2∈B

ej |b′j
c|b′j

χ(b′1)χ(b
′
2)

∣∣∣∣

�εX
ε

⎛⎜⎜⎜⎜⎜⎝
∑
e1,e′1

∑
b0b1,b0b′1∈B

e1|b1
e′1|b′1

d1b1≡b′1 (d)

⎞⎟⎟⎟⎟⎟⎠
1/2⎛⎜⎜⎜⎜⎜⎝

∑
e2,e′2

∑
b0b2,b0b′2∈B

e2|b2
e′2|b′2

d1b2≡b′2 (d)

⎞⎟⎟⎟⎟⎟⎠
1/2

�Xη/4
∑
e1,e′1

∑
b0b1,b0b′1∈B

e1|b1
e′1|b′1

d1b1≡b′1 (d),

where the last bound follows by symmetry. Hence, we have

E≤(β,N , θ)�X−η/4N2

D

∑
b0,d,e1,e′1

db0≤Xδ+η/2

∑
b0b1,b0b′1∈B

e1|b1
e′1|b′1

1b1≡b′1 (d).
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The contribution from b′1 = b1 is bounded by

�X−η/8N2

D
|B|Xδ+η/2 �X−η/8N2

D
|B|2.

The contribution from b′1 �= b1 is bounded by

�X−η/4N2

D

∑
b0,e1,e′1

∑
b0b1,b0b′1∈B

e1|b1
e′1|b′1

1b1 �=b′1τ(b
′
1 − b1)�X−η/8N2

D
|B|2

by applying the divisor bound τ(n)�ε n
ε. Therefore, by (7.8) we get (recall that ν3 is small

compared with ν)

E≤(β,N , θ)�X−η/10N |B|2.
Finally, the error term W≤(β,N , θ) from (7.9) is bounded by exactly the same argument as

above except that in the part f ≤Xδ+η we use the trivial estimate∑
|z1|2,|z2|2∼N
z2≡az1 (f)

|β�z1,1||β�z2,2| � (logX)O(1) ν
4
1N

2

|f |2

instead of expanding into Hecke characters and Lemma 6.5.

7.2.2 Proof of Lemma 7.6. The argument is exactly the same as in § 7.2.1, except that in
the part f ≤Xδ+η we use the trivial estimate∑

|z1|2,|z2|2∼N
z2≡az1 (f)

|β�z1,1||β�z2,2| � (logX)O(1) ν
4
1N

2

|f |2

instead of expanding into Hecke characters and Lemma 6.5.

7.3 Proof of Lemma 7.2

Since Δ= 0, we have

z1b2 = z2b1.

Multiplying both sides by w and taking the imaginary parts we find

a1b2 = a2b1.

Hence, we get

U0(γ)�
∑

a1,a2�X1/2

b1,b2�X1/2

a1b2=a2b1

1B(b1)1B(b2)�εX
1/2+ε|B|,

by using the divisor bound τ(�)�ε �
ε.

7.4 Proof of Lemma 7.3

Since (z1z2, P (W )) = 1, having (z1, z2)> 1 implies |(z1, z2)|2 ≥W . Let z0 = (z1, z2) and zj = z0z
′
j .

Denoting w0 = z0w and Δ′ = Im(z′1z
′
2), we have

bj =Re(w0z
′
j),
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which implies that

iΔ′w0 = z′2b1 − z′1b2, (7.12)

so that w0 is fixed once we fix z′j , bj . Furthermore, we have∑
(z0,P (W ))=1

1z0|w0
�εW

ε.

Note also that (w0, w0) = 1 implies that (b1, b2) = b0|Δ′. Then denoting bj = b0b
′
j and a

′ = z′2/z′1
we have

U1(β) =
∑

|z1|2,|z2|2∼N
Δ �=0

(z1,z2)>1

(z′j ,z
′
j)=1

β�z1β
�
z2

∑
(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2))

� sup
W�Z�N

∑
|z′1|2,|z′2|2N/Z

Δ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

∑
z0,w0

(w0,w0)=1
(z0,P (W ))=1

z0|w0

|z0|2∼Z

|β�z0z′1β�z0z′2 |1B(Re(w0z
′
1))1B(Re(w0z

′
2))

�εW
ε sup
W�Z�N

∑
b0

∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

Δ′≡0 (b0)

∑
b′2≡ab′1 (Δ′/b0)
(b′1b

′
2,Δ

′/b0)=1
(b′1,b

′
2)=1

1B(b0b
′
1)1B(b0b

′
2).

Thus, denoting

VZ(β) :=
∑
b0

∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

Δ′≡0 (b0)

∑
b′2≡ab′1 (Δ′/b0)
(b′1b

′
2,Δ

′/b0)=1
(b′1,b

′
2)=1

1B(b0b
′
1)1B(b0b

′
2),

it suffices to show that

VZ(β)�εW
εN |B|2

W
. (7.13)

We apply a similar argument as in § 7.5 except that certain parts will be easier by positivity. By
expanding into Dirichlet characters, we get

VZ(β)� (logX)
∑
b0,

∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

Δ′≡0 (b0)

b0
|Δ|

∑
d|Δ′/b0

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,Δ

′/(db0))=1

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
.

We split into the parts db0 ≤Xδ+η/2 and db0 >X
δ+η/2

VZ(β)� (logX)(VZ,≤(β) + VZ,>(β)).
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For large db0 we expand the condition (b′1, b′2) to get

VZ,>(β)�
∑
c

∑
b0,

∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

Δ′≡0 (b0)

b0
|Δ|

∑
d|Δ′/b0
db0>Xδ+η

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(b,Δ′/(db0))=1

χ(b)χ(b′2)

∣∣∣∣∣∣∣∣
2

.

By using the estimate ∑
|z′1|2,|z′2|2∼N/Z

(z′1,z
′
2)=1

(z′j ,z
′
j)=1

Δ′=D

1�εX
εN

Z
, (7.14)

we get (denoting D=D′ db0)

VZ,>(β)�εX
εN

Z

∑
c

∑
b0,

b0
∑

db0>Xδ+η

∑
D�N/Z
db0|D

1

D

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(b,D/(db0))=1

χ(b)χ(b′2)

∣∣∣∣∣∣∣∣
2

�εX
εN

Z

∑
c

∑
b0,

b0
∑

db0>Xδ+η

∑
D′�N/(Zdb0)

1

D′ db0

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(b,D′)=1

χ(b)χ(b′2)

∣∣∣∣∣∣∣∣
2

�εX
εN

Z

∑
c

∑
b0,

sup
D′

∑
Xδ+η<db0�N/Z

1

d

∑∗

χ (d)

∣∣∣∣∣∣∣∣
∑

cb0b∈B
(b,D′)=1

χ(b)χ(b′2)

∣∣∣∣∣∣∣∣
2

.

By applying the multiplicative large sieve (Lemma 2.11) similarly as in § 7.2.1, we get

VZ,>(β)� (logX)O(1)N |B|2
W

,

which suffices for (7.13).
For small db0, using Lemma 2.17 we write

VZ,≤(β)�
∑

db0≤Xδ+η

b0
∑
a (db0)

∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

z′2≡az′1 (db0)

1

|Δ′|

∣∣∣∣∣∣∣∣∣∣∣
∑∗

χ (d)

χ(a)

⎛⎜⎜⎜⎜⎜⎝
∑

b0b′1,b0b
′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,Δ

′/(db0))=1

χ(b′1)χ(b
′
2)

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
�

∑
db0≤Xδ+η

b0
∑
a (db0)

∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,d)=1

(d, b′2 − ab′1)
∑

|z′1|2,|z′2|2∼N/Z
Δ′ �=0

(z′1,z
′
2)=1

(z′j ,z
′
jP (W ))=1

z′2≡az′1 (db0)

1

|Δ′| .

We note that z′2 ≡ az′1 (db0) implies that for z = z2z1, we have z ≡ z (db0), that is, denoting
z = r+ is, we get s≡ 0 (db0). Thus, using the divisor bound
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z=z2z1

(zj ,P (W ))=1

1�εW
ε,

we get ∑
|z′1|2,|z′2|2∼N/Z

Δ′ �=0
(z′1,z

′
2)=1

(z′j ,z
′
jP (W ))=1

z′2≡az′1 (db0)

1

|Δ′| �εW
ε

∑
|r1|,|r2|�(N/Z)1/2

r2≡ar1 (db0)

∑
0<|s|�N/Z
s≡0 (db0)

1

s

�εW
ε

(
N

Zd2b20
+

N1/2

Z1/2 db0

)
�εW

ε N

Wd2b20
, (7.15)

where the last step follows from N >X3δ+3η and db0 ≤Xδ+η. Therefore, we get by Lemma 2.1,

VZ,≤(β)�W ε N

W

∑
db0≤Xδ+η

∑
b0b′1,b0b

′
2∈B

(b′1,b
′
2)=1

(b′1b
′
2,d)=1

1

d2b0

∑
a (db0)

(d, b′2 − ab′1)

�εW
εN |B|
W

,

which completes the proof of (7.13).

7.5 Proof of Lemma 7.4

By recombining the finer-than-dyadic partitions for θ1, θ2, we get

V≤ν3(β)≤U�ν3(β),

with

U�ν3(β) :=
∑

|z1|2,|z2|2∼N
0<|Δ|�ν3N
(z1,z2)=1

|β�z1β�z2 |
∑

(w,w)=1

FM (|w|2)1B(Re(wz1))1B(Re(wz2)).

Similarly as in § 7.2, we write

U�ν3(β)� (logX)O(1)
∑
b0

∑
|z1|2,|z2|2∼N
0<|Δ|�ν3N
(z1,z2)=1

(z′j ,z
′
j)=1

Δ≡0 (b0)

∑
b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

1B(b0b
′
1)1B(b0b

′
2)FM

(∣∣∣∣b0 z2b′1 − z1b
′
2

Δ

∣∣∣∣2).

Using Δ� ν2N and MN ∼X we see that the smooth weight FM restricts z2b1 − z1b2 to a small
disc, that is,

U�ν3(β)�
∑
b0

∑
|z1|2,|z2|2∼N
0<|Δ|�ν3N
(z1,z2)=1

(z′j ,z
′
j)=1

Δ≡0 (b0)

∑
b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

1B(b0b
′
1)1B(b0b

′
2)1|z2b0b′1−z1b0b′2|�ν3N1/2X1/2 .
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Now recall that by (3.2) we have B ⊆ [Y, Y +X1/2−η] for some Y �X1/2. Hence, we obtain

U�ν3(β)�
∑
b0

∑
|z1|2,|z2|2∼N

|Δ|�=0
(z1,z2)=1

(z′j ,z
′
j)=1

Δ≡0 (b0)

∑
b′2≡ab′1 (Δ/b0)
(b′1b

′
2,Δ/b0)=1

(b′1,b
′
2)=1

1B(b0b
′
1)1B(b0b

′
2)1|z2−z1|�ν3N1/2 .

This can now be bounded by the same argument as in § 7.4, replacing the bounds (7.14) and
(7.15) by ∑

|z1|2,|z2|2∼N
(z1,z2)=1
(zj ,zj)=1
Δ=D

1|z2−z1|�ν3N1/2 �εX
εν3N,

respectively, and ∑
|z1|2,|z2|2∼N

Δ �=0
(z1,z2)=1

z2≡az1 (db0)

1|z2−z1|�ν3N1/2

|Δ| �εX
ε

∑
|r1|,|r2|�(N/Z)1/2

|r2−r1|�ν3N1/2

r2≡ar1 (db0)

∑
0<|s|�ν3N
s≡0 (db0)

1

s

�εX
ε

(
ν3N

d2b20
+
ν3N

1/2

db0

)
�εX

ε ν3N

d2b20
.

We get

U�ν3(β)�εX
εν3N |B|2,

which gives us Lemma 7.4.

Remark 7.7. Without the assumption B ⊂ [η1X
1/2, (2− η)X1/2] we would need to take

ν3 =X−δ−ε to get savings in this argument, since it is possible that Y �X1/2−δ. This means
that in the approximation for βn we need to track the distribution of βn in sectors with an angle
X−δ−η. It is possible to do so by a more careful argument but we do not pursue this issue here.
For this, we also note that the smooth weight

FM

(∣∣∣∣b1z2 − b2z1
Δ

∣∣∣∣2)= FM/Y 2

(∣∣∣∣z2 − z1
Δ

∣∣∣∣2)+O(X−η′
)

could be handled more efficiently in terms of the dependency on arg zj since it is a function of
the difference arg z2 − arg z1, so that we need an expansion to ξk only once instead of twice. Note
that B cannot simultaneously be multiples of a large fixed q and restricted to a narrow interval.
Thus, for this extension the condition M(u)≤Xδ+η ought to be replaced by |k|M(u)≤Xδ+η.

8. Type II information: proof of Proposition 6.8

Recall that we are trying to evaluate∑
Nm∼M

∑
Nn∼N

αmβ
�
namn =

∑
N ′

∑
Nm∼M

∑
n

HN ′(n)αm1(n,nP (W ))=1

(∑
j≤J

ξkjχj(n)CW (β, ξkjχjHN ′)

)
amn

=:
∑
j≤J

Sj .
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The condition (n, n) may be dropped since we have (z, z) = 1 in the definition of az. We have

Sj =
∑
N ′

CW (β, ξkjχjHN ′)
∑

Nm∼M

∑
n

HN ′(n)αm1(n,P (W ))=1ξkjχj(n)amn

=
∑
N ′

CW (β, ξkjχjHN ′)
∑

Nm∼M

∑
n

HN ′(n)αmξkjχj(m)1(n,P (W ))=1ξkjχj(mn)amn.

Here, for any C > 0,

CW (β, ξkjχjHN ′) =

( ∑
(n,n)=1

HN ′(n)βnξkjχj(n)

)( ∑
(n,nP (W ))=1

HN ′(n)|ξkjχj(n)|
)−1

=
1

ν2

∏
p≤W

(
1− ρ(p)

p

)−1∑
n

HN ′(n)
βnξkjχj(n)

Nn
+OC((logX)−C).

Then Proposition 4.1 follows from applying the fundamental lemma of the sieve (Lemma 2.5, see
also Remark 2.6) and Proposition 4.1 to handle 1(n,P (W ))=1 in Sj . Note that by N >X3δ+3η and

M(uj)≤Q≤Xδ+η, we get that Nm�X1−δ−η/M(uj)
2, which is required for Proposition 4.1.

This gives us a main term of the form∑
N ′

∑
j≤J

∑
m,n

αmβnHN ′(n)ξkjχj(mn)

Nmn

∑
a

HN ′(a/m)

ν2
aωa ξkjχj(a).

The weight HN′ (a/m)
ν2

may be replaced (with a negligible error term) by F (Nmn/Na)
̂F (0)

by a further

application of Poisson summation (Lemma 2.7) on the free variable a in z = b+ ia, completing
the proof.

Remark 8.1. There are two potential bottlenecks for improving the range of δ < 1/10 in
Theorem 3.3, namely, the exponent 3 in Lemma 6.1 and the exponent 2 in X1−δ−η/q2 in
Proposition 4.1. It is plausible that with more work these exponents may be improved to 2 and 1,
respectively, which would suffice to prove Theorem 3.3 for δ < 1/8. Both of these improvements
run into quite delicate issues and we have decided not to pursue this here. It is not clear whether
the boundary 1/8 can be improved, but we certainly hit a hard barrier at δ= 1/6 as this when
even the most optimistic the Type II range [N2δ, N1/2−δ] becomes empty.

9. Proof of Theorem 3.3

We apply a sieve argument to the sequence A= (an) over integers

an := F (n/X ′)
∑

Nn=n

an,

where for convenience we have split n into finer-than-dyadic intervals (as in § 2.1) with ν =
(logX)−C and X ′ ∼X. We also define an auxiliary sequence Bj by

b(j)n :=
∑

Nn=n

∑
m

F (Nn/Nm)ξkjχj(n)

F̂ (0)Nn
F (Nm/X ′)aωmξkjχj(m),

denoting ξk0χ0 = 1 for j = 0. Then Theorem 3.3 follows by using the explicit formula to evaluate
the sums ∑

n

Λ(Nn)
F (Nn/Nm)ξkjχj(n)

F̂ (0)Nn
,
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once we prove that for any C1 > 0, there is some C2 > 0 such that

S(A,Λ)=
∑
n

anΛ(n) =
∑

0≤j≤J1

S(Bj ,Λ)+O

(
X1/2|B|
(logX)C1

)
. (9.1)

Let Y =X3δ+4η and Z =X1/2+δ+η. Then Y Z ≤X1−δ−η for some η > 0 by δ < 1/10. By
Vaughan’s identity [Vau75] for n> Y we have

Λ(n) =
∑
b|n
b≤Y

μ(b) log
n

b
−
∑
bc|n
b≤Y
c≤Z

μ(b)Λ(c) +
∑
bc|n
b>Y
c>Z

μ(b)Λ(c). (9.2)

Applying this with both sides multiplied by (n, P (W )) = 1 we get

S(A,Λ)= S1(A) + S2(A) + S3(A) +O

(
X1/2|B|
(logX)C1

)
and, similarly, for j ≤ J write

S(Bj ,Λ)= S1(Bj) + S2(Bj) + S3(Bj) +O

(
X1/2|B|
(logX)C1

)
.

The sums S1, S2 correspond to Type I sums and S3 is a Type II sum, with all variables coprime
to P (W ).

By the fundamental lemma of the sieve (Lemma 2.5) and Type I information
(Proposition 4.1), for k= 1, 2 we get

Sk(A) = Sk(B0) +O

(
X1/2|B|
(logX)C1

)
=

∑
0≤j≤J1

Sk(Bj) +O

(
X1/2|B|
(logX)C1

)
,

since for j ≥ 1, k= 1, 2 for any C > 0,

Sk(Bj)�C X
1/2|B|(logX)−C .

By Type II information (Proposition 6.2, note that Y < b�X/Z) we get

S3(A) =
∑

1≤j≤Jj

S3(Bj) +O

(
X1/2|B|
(logX)C1

)
=

∑
0≤j≤Jj

S3(Bj) +O

(
X1/2|B|
(logX)C1

)
,

since for any C > 0,

S3(B0)�C X
1/2|B|(logX)−C .

By recombining Vaughan’s identity for Bj we get (9.1).

10. Proof of Theorem 3.2

We have two cases, no zeros β > 1− ε1/ logX or that in the case of a zero β > 1− ε1/ logX we
have Ω(B1)≤Ω(B)/2.

10.1 No zeros β > 1− ε1/ logX

Let us denote by an, a
ω
n the sequences corresponding to λ= 1B. By Theorem 3.3 we have

238

https://doi.org/10.1112/S0010437X24007632 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007632


On Gaussian primes in sparse sets

∑
Nn∼X

anΛ(Nn) =
4

π

∑
Nn∼X

aωn

⎛⎜⎜⎜⎜⎜⎝1−
∑
j≤J

ξkjχj(n)
∑
ρj

L(ρj ,ξkj
χj)=0

|Im(ρj)|≤Xη

(Nn)ρj−1

⎞⎟⎟⎟⎟⎟⎠
+O

(
1

(logX)C1
X1/2

∑
b

|λb|
)
. (10.1)

If there is a zero β1 ≥ 1− 1√
δ logX

as in Lemma 2.15 corresponding to χ1 real and ξk1 = 1, then

β1 ≤ 1− ε1/ logX and the contribution from that zero is

− 4

π

∑
Nn∼X

aωnχ1(n)(Nn)β1−1 ≥− 4

π

∑
Nn∼X

aωn(exp(−ε1) + o(1))

≥− 4

π

∑
Nn∼X

aωn(1− ε1/2),

since ε1 < 1/10. Therefore, the contribution from the first two terms in (10.1) is

4

π

∑
Nn∼X

aωn(1− χ1(n)(Nn)β1−1)� ε1
∑

Nn∼X
aωn .

Denoting σ0 = 1− 1√
δ logX

, by Lemma 2.15 the remaining zeros satisfy βj ≤ σ0 and they

contribute at most

�
∑

Nn∼X
aωn
∑
j≤J

∑
ρj

L(ρj ,ξkj
χj)=0

|Im(ρj)|≤Xη

βj≤σ0

Xβj−1

=Ω(B)
∑
j≤J

∑
ρj

L(ρj ,ξkj
χj)=0

|Im(ρj)|≤Xη

βj≤σ0

( ˆ βj

1/2
Xσ−1 logXdσ+X−1/2

)

�Ω(B)

ˆ σ0

1/2
N∗(σ, Xη, Xη, X2δ+2η)Xσ−1 logXdσ+Ω(B)X−1/2+O(δ+η).

The last term is negligible once δ, η are sufficiently small. By Lemma 2.14 the integral is bounded
by ˆ σ0

1/2
N∗(σ, Xη, Xη, X2δ+2η)Xσ−1 logX dσ�

ˆ σ0

1/2
Xc2(4δ+6η)(1−σ)+σ−1 logX dσ

�X(σ0−1)/2 = exp

(
− 1

2
√
δ

)
,

once δ, η are sufficiently small compared with the constant c2 in Lemma 2.14. Combining all of
the above estimates we have∑

Np∼X
ap � 1

logX

(
ε1 −O

(
exp

(
− 1

2
√
δ

))) ∑
Nn∼X

aωn � 1

logX
ε1

∑
Nn∼X

aωn

once δ is small enough compared with ε1.
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10.2 Zero β > 1− ε1/ logX and Ω(B1)≤Ω(B)/2

Let us call B2 =B \B1 so that Ω(B2)≥Ω(B)/2 and for all b∈B2, we have∑
a∼(X−b2)1/2

(a,b)=1
(a2+b2,2)=1

χ1((b+ ia))≤ 0. (10.2)

Let us denote by an, a
ω
n the sequences corresponding to λ= 1B and a

(2)
n , a

(2)ω
n the sequences

corresponding to λ= 1B2
. Then, by Theorem 3.3, we have

(logX)
∑

Np∼X
ap ≥ log(X)

∑
Np∼X

a
(2)
p

�
∑

Nn∼X
a
(2)
n Λ(Nn) =

4

π

∑
Nn∼X

a
(2)ω
n

⎛⎜⎜⎜⎜⎜⎝1−
∑
j≤J

ξkjχj(n)
∑
ρj

L(ρj ,ξkj
χj)=0

|Im(ρj)|≤Xη

(Nn)ρj−1

⎞⎟⎟⎟⎟⎟⎠
+O

(
1

(logX)C1
X1/2

∑
b

|λb|
)
.

The first term contributes ∑
Nn∼X

a
(2)ω
n =Ω(B2)≥ 1

2
Ω(B) =

1

2

∑
Nn∼X

aωn .

The contribution from 2≤ j ≤ J is handled similarly as in § 10.1 and similarly for j = 1 the zeros
β ≤ 1− ε1/ logX. The contribution from the Siegel zero β > 1− ε1/ logX for j = 1 is essentially
positive, since ξk1 = 1, χ1 is real, and by (10.2)

−
∑

Nn∼X
a
(2)ω
n χ1(n)(Nn)β−1 =−

∑
b∈B2

∑
a∼(X−b2)1/2

(a,b)=1
(a2+b2,2)=1

χ1((b+ ia))(a2 + b2)β−1

≥−
∑
b∈B2

∑
a∼(X−b2)1/2

(a,b)=1
(a2+b2,2)=1

(
χ1((b+ ia)) + 2ε1

)

≥−2ε1Ω(B2)≥−2ε1
∑

Nn∼X
aωn ,

since ε1 < 1/10. Therefore, we conclude that also in the second case∑
Np∼X

ap � 1

logX

(
1− 2ε1O

(
exp

(
− 1

2
√
δ

))) ∑
Nn∼X

aωn �
∑

Nn∼X
aωn

once δ is sufficiently small.

11. Proof of Theorem 1.6

By similar reductions as in § 3 it suffices to consider λb = 1B(b). The goal is to show that if uj
is a modulus of one of the characters ξkjχj and b does not have a large common factor with uj ,
then the sum over the free variable a of ξkjχj(b+ ia) exhibits cancellation. By Theorem 3.3 and
the Siegel–Walfisz bound [FI98b, Lemma 16.1] for small moduli uj , it suffices to show that for
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any j ≤ J1 and Y ∈ [X1/2−η, 2X1/2] and any |uj |2 � (logX)C
′′
with C ′′ large compared with C ′

we have

S′
j :=

∑
b∈B

∣∣∣∣ ∑
a∈(Y,Y (1+X−η)]

(a,b)=1
a≡a0 (4)

χj(b+ ia)

∣∣∣∣� X−ηY |B|
(logX)C

.

Note that the weight ξj((b+ ia)) has been removed by splitting a into finer-than-dyadic intervals
and using (3.2) to note that then b+ ia lives in a small box.

We write

S′
j =
∑
v|uj

∑
b∈B

(b,u1)=v

∣∣∣∣ ∑
a(Y,Y (1+X−η)]

(a,b)=1
a≡a0 (4)

χj(b+ ia)

∣∣∣∣.
For |v|> |uj |/(logX)C

′/2 we use the assumption (1.1) to get

� X−ηY |B|
(logX)C′

∑
v|uj

|v|>|u1|/(logX)C
′/2

1 =
X−ηY |B|
(logX)C′

∑
v|uj

|v|≤(logX)C
′/2

1� X−ηY |B|
(logX)C+C2

,

once C ′ is large compared with C1 and C. For |v| ≤ |uj |/(logX)C
′/2 we use Lemma 2.20 to get

S>�X−ηY
∑
v|uj

|v|≤|u1|/(logX)C
′/2

1

|u/v|1/3
∑
b∈B

(b,u1)=v

1� X−ηY |B|
(logX)C+C2

,

by taking C ′ large compared with C1 and C. To evaluate the main term we note that∑
a2+b2∼X
(a,b)=1

(b+ia,2)=1

2ω2(b) = (1 +O(X−η))
∑

a2+b2∼X
(a,b)=1

ω(b).

12. Proof of Theorem 1.10

This follows immediately from Theorem 3.3 with the zero-density estimate Lemma 2.14 once C ′

is sufficiently large, via similar arguments as in § 10.1.
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