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Abstract. Given an orientation preserving C2 expanding mapping g: S1^* S1 of a
circle we consider the family of closed invariant sets Kg(e) denned as those points
whose forward trajectory avoids the interval (0, e). We prove that topological entropy
of g\Kg(e) is a Cantor function of e. If we consider the map g(z) = zq then the
Hausdorff dimension of the corresponding Cantor set around a parameter e in the
space of parameters is equal to the Hausdorff dimension of Kg(e). In § 3 we establish
some relationships between the mappings g\Kg(e) and the theory of j3-transforma-
tions, and in the last section we consider DE-bifurcations related to the sets Kg(e).

0. Introduction
First we give the following:

Definition 1. Let g: S1 -* S1 be a C2 expanding map (i.e. such that there exists n > 1
for which |(/")'(*)l> 1 for every x e S1) which preserves orientation. Let 0< e < 1
and let (0, e) denote the open interval on S1 of length e whose left endpoint is one
of the fixed points for g. We choose an orientation and suppose that the whole
length of S1 is equal to 1. Now we define the set

Kg(E)=r)g-n(S\(Q,e)).

It is easy to see that Kg(e) is a closed, invariant set for g, that is, g(Kg(e))c Kg(e)
and furthermore g(Kg(e)) = Kg(e). However, we remark that the inclusion
g~\Kg(e))<= Kg{e) does not hold except for Kg(e) = 0 or S1.

Let {KA}AeA be a continuous family of mixing repellers for a real analytic family
{/A : S1 -» S'JxeA of real analytic mappings and let {<pA : S1 -> R}A£A be a real analytic
family of real analytic functions. Then as Ruelle [R] proved, the pressure function
A3A->P/A|KA(<PA|KA) is real analytic. For <pA = 0 this means that the topological
entropy is a real analytic function. Ruelle proved also that Hausdorff dimension of
these sets KA is real analytic. Our mappings {g|^g(e)}ee[o.i] need not be repellers,
in fact for certain e e [0,1] they are not locally maximal and in this case the
topological entropy is no longer analytic. We have:

THEOREM 1. The function [0,1] 3 e -* htop(g\Kg(e)) = h(e) is continuous. ThesetC(g)
of those parameters which have no neighbourhood on which our function is constant,
is homeomorphic to the Cantor set and has Lebesgue measure equal to zero.
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296 M. Urbanski

(We shall use also C+(g), the set of those points which have no right-side neighbour-
hood on which h is constant.)

Remark. In fact we will show that around any parameter from [0, l]\C(g) even the
sets Kg(e) are constant, not only the topological entropy. So the set C(g) can also
be defined as the set of parameters without any neighbourhood on which the function
e-» Kg(e) is constant. Moreover it is just the set of points for which Kg(e) is not
locally maximal.

COROLLARY 1. Ifg is of the form z^>zq, ?>2 , then the same holds for the function
E -* HD (Kg(e)), where HD(X) denotes Hausdorff dimension of the set X. Moreover

HD (Kg(e)) = htop(g | Kg(e))/log (q).

In the special case g(z) = z" we prove additionally one result about the local metric
structure of the Cantor set C(g). First we give:

Definition 2. Let ee C(g). We define the local Hausdorff dimension at the point
e as H(e) = limr^0 HD (B(e, r)n C(g)). This limit exists because the function
r-» HD (B(e, r) n C{g)) is decreasing.

Now we can formulate:

THEOREM 2. Ifg(z) = zq,q>\ andee C(g), then H(e) = HD(Kg(e)).

Remark. It will follow from the proof that theorem 1 is in fact a theorem about left
shift dynamics on the space of one-sided sequences of q symbols. zq is considered
in this theorem just to realise the lexicographical order geometrically.

1. Pressure, entropy and Hausdorff dimension
In the proofs of our theorems we shall use the following versions of theorems of
McCluskey & Manning and Lai-Sang Young.

THEOREM 3 ([McC-M], see also [B2], [R]). Let K be a mixing repeller ([R]) for a
C2 map f-.S^S1 (i.e. in particular f is expanding on K) and L<= K be a closed
invariant subset for f. Then there is a unique number OS(<1 such that
P/\L(—t log Df\L) = 0. This number is equal to the Hausdorff dimension of L.

THEOREM 4 ([Y]). If a C2 expanding map g-.S*-* Sl preserves an ergodic Borel
probability measure fj. with Lyapunov exponent x^., then ^ ( g ) = HD (/x)^, where
h^(g) is the measure-theoretic entropy ofg and HD(/A) is the dimension of the measure
H, i.e. HD 1

The proofs of these theorems are almost the same as in the original papers. To
prove the first theorem it is necessary to know that the map f\ K has a Markov
partition which consists of the intersections of K with some intervals.

From these theorems due to expansiveness we easily obtain the following:

COROLLARY 2. Assuming the same as in theorem 3 we get additionally that there is
an ( / | L)-invariant Borel ergodic measure fi so that HD (L) = /iM(/|

Now we shall consider the sets Kg{e) as in theorem 1. We prove the following:
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PROPOSITION 1. (i) The function [0,1] 3 e -* h(e) is left-side continuous.
(ii) The function [0,1] 9 e -* HD (Kg(e)) is a/so left-side continuous.

Proof. For every ee[0,1] consider the function of t given by (pc(t) =
P(-t log Dg | Xg(e)) on R. This is a decreasing family of functions when e increases.
It is also left-side upper semi-continuous.

Indeed, since g is expansive h^g is upper semi-continuous as a function of
measure. Thus for every fixed t, if e / e0 we have for equilibrium states //,,,, and
for /i*-any weak limit of {/tei,}

lim P(-t log Dg|Kg(e)) = lim (V,(g |K g (e)) + | -Hog Dg|Kg(e) a>M)

j -t\ogDg\Kg(e)dn

< P ( - t log Dg | Kg(e0)).

So the family of functions {ipe} is left-side continuous in the topology of pointwise
convergence. For t = 0 we get exactly proposition 1 (i). Using theorem 3 we get
proposition 1 (ii).

2. Proofs of theorems
Before we give the proof of theorem 1 we recall the well-known:

LEMMA 1. If a sequence {an}^=i with positive elements is given by a recurrence formula
an = Cian-i + c2an_2+ • • • + cfcan_fc, where k > 1 is a constant integer, cu ..., ck > 0 are
constant coefficients, then the following limit exists:

lim

and it is equal to the unique positive root of the equation

I = clx + c2x
2+- • - + ckx

k. (1)

Hint for the proof: Consider the action of the matrix

/ 0 1 0\
0

0

\ck

0

•

ck.

1 •

•
• 0

• c2

0

1

cj
Proof of theorem 1. If deg (g) = q a 2 then g is topologically conjugate to the map
S*^S\ z^>zq and to prove that our function is a Cantor one we can assume
g{z) = z". We define

Z = {e € [0,1]: g"(e) e (0, e) for some n > 1}.

(We make the convention 0 = 1 as points on the circle, [0,1] means the whole circle
and [0,0] = {0}.)

Let e € Z. Since g is continuous, there exist numbers el < e < e2 such that
for every 6 6 [et, e2], g"(0) e (0, e,). Now, if z € Kg(e2) then there exists a number
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m>Oso that gm(z)e(O, e2). If moreover gm(z)e(0,el) then z<£Kg(e,) and if
gm(z)e[e,, e2] then gm+n(z)e(0, e,). It means z£ Kg{ex) too. Hence we obtained
Kg(e2)<

= Kg(e,)c Xg(e2). In particular /t|[e,, e2] is constant. Thus we proved:

LEMMA 2. At every point of Z the function h is continuous and locally constant.

It will turn out that C(g) = S\Z. Now, let

Z, = {ee(0, l]:g"(e) = 0 for some n s0}.

By arguments analogous to those in the proof of lemma 2 for every e e Zx there
exists a number e < ej < 1 such that

Since the set Ur=o£" ( e ) is countable, it follows that HD|[e, e,] is a constant
function. In our case for every Borel ergodic g-invariant probability measure fi on
•S\ Xn(s) — log (?)» i-e- the Lyapunov exponent is independent of the measure. So
corollary 2 and theorem 4 imply that, for every 0 < 6 < 1, HD (Kg( 0)) = sup {HD (/*):
/it is a Borel ergodic g-invariant probability measure on Kg(0)} = sup {/iM/*M: |t is
a Borel • • •} = fc,,/log (q) where v is one of the measures with maximal entropy for
g\Kg(6). This means that

HD(Kg(d)) = htop(g\Kg(0))/logq.

Therefore the function h\[e, e,] is constant and using proposition 1 (i) we get the
following:

LEMMA 3. At every point of Zx the function h is continuous and locally right-side
constant.

Let 1^ = {0,\,... ,q-1}°° be a metric space with the standard metric p({an}™=u

{bn}™=1) = q~m where m = min {«: an # bn} -1, and let a denote the shift transforma-
tion of 1+

q. We define <p: S ^ [ 0 , l]/(0 = 1) = S1 as follows

*({*»}?-!)= Z ~n- (2)
n = iq

This function is continuous and it is at most 2-to-l at each point of S1. Moreover
the following diagram is commutative:

S1—'—* S1

Thus htop(g\Kg(e)) = htop(<r\<p~1(Kg(e))). The maximal number of elements of a
(1/q, n)-separated set for o-\(p~1(Kg(e))) is equal to the number Rn(e) of all
sequences of length n that one can extend to a sequence belonging to ^ ' ( ^ ( e ) ) ) .
Call the set of such sequences An{e). Then Bowen's theorem [BJ says that

/ ( ) li n(e)) (3)

because l/q is an expansive constant for cr.
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In view of lemmas 2 and 3 to prove continuity of the function h it is sufficient
to consider ee[0, l ] \ (ZuZ,) . Suppose first e#0 . These conditions imply that
<p~\e) is exactly one sequence. Hence one can write ^"'(e) = e1e2 Moreover
for every n > l

enq~1 + en+1q~2+- • • > slq~1 + e2q-2 + • • • = e. (4)

Now we shall calculate the asymptotic behaviour of Rn{e). For fc> 1, n > k let

<?M(6) = {{*/}"=ie Ai(e): Xj = e j , . . . xfc = e j ,
and for i = ek + 1 , . . . , q -1,

Qfc,n(£) = {{*/}"= i e ^ - . ( e ) : x, = £ , , . . . , xk_i = efc_,, xk = i}.

It is easy to see that

U i ( ) (5)

and all the sets in this union are pairwise disjoint. Moreover observe that the number
of elements of the set Qj>n(e) is equal to i?n_7(e) because the sequence
6 ! . . . Ej-xicij+x • • • ajn belongs to An(e) iff aj+l • • • ajn e An_j(e) . Therefore

I "£ Rn^(s)^Rn(e)si "l i?n_J(e) + Rn_fc(£). (6)

Let ak(e) and j8fc(e) denote the unique positive roots of the equations

l = I < } W x ' , 1=1 Cj(e)xJ + xk,

where c,(e) = q -j- e,. Observe that the numbers c,(e) are independent of fc There-
fore by lemma 1 and formula (3) we have

log ( l /a t (e))< h(e)£log (l/ft(e)). (7)

The sequence {aic(e)}j°=i is obviously decreasing and afc(e)>/3fc(e) for every fc> 1.
Let a(e) = limk̂ oo ctk(s). Since, for fca 1,0s cfc(e)<<j-l and, for fc large enough

(fca fco), ak(e) s a^Ce) < 1 the polynomials

FKe(x)=l cj(e)xi and GKe(x) = FKe(x) + xk,

restricted to the interval [0, a^(e)] converge uniformly to the common limit Fe(x) =
Zjli c,(e)xJ. Thus we obtain

and if j8 is the limit of an arbitrary converging subsequence {/3km}^=1 of the sequence
{)3k}?=1 then

F,(jB)=lim GK

Therefore )3 = a(e) since obviously Fe — 1 has exactly one positive root. Thus the
limit lim^oo j3k(e) exists, is equal to a(e) and moreover it is the unique positive
root of the following equation

l = F . ( x ) = I Cj(e)xJ. (8)
.7 = 1
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Thus by (7)
*(e) = -loga(e). (9)

Now we can prove the following facts about the structure of the set C{g).

LEMMA 4. (i) C+(g) = S1\(ZuZ1).
(ii) C(g) = cl(C+(g))-

(iii) For every e e C+(g) there exists a decreasing sequence {e("'}^=1 of non-periodic
points belonging to C+(g), greater than e and tending to e.

Proof. Lemmas 2 and 3 imply that C+(g) <= S\(Z u Zx). For e e S\(Z u Z,) we set

brKk = s1---en(q-Dk,

where for every finite sequence a,am denotes concatenation of m copies of sequence
a, m = l , 2 , . . . , o o .

Let k,, denote the number of symbols (q-l) following immediately after the
sequence et • • • en and let

It is easy to see that for n large enough e<n) is a non-periodic point greater than e.
Also it belongs to S ' \ (ZuZ,) and the sequence {e(n)}^=i is decreasing and tends
to e. Thus, using (8) and (9) we obtain that e and indeed all e(n) belong to C+(g).
This proves (i) and (iii).

Now, let e e C{g) and given r>0 pick xe(e-r, e). If xe C+{g) then the proof
of (ii) is finished. In the other case let y denote the maximal number such that
h\[x, y] = h(x). Thus by definition ye C+(g) andys e since ee C(g). Consequently
the proof of (ii) is finished.

We return to the proof of theorem 1. Fix O^eeS 1 \ (ZuZ, ) = C+(g) and choose
the sequence {e("'}^=1 as in lemma 4(iii). Since h is decreasing function and by
formula (9) the sequence {e("'}"=i is also decreasing. Therefore there is no>l so
that for n>n0, a(e<'l))<a(e<n°))< 1. In view of the definitions of c,(-) and e(n),
for n > n0 and x e [0, a^(e)],

Thus Fe<") converges uniformly to Fe on the interval [0, a^e ) ] . As in the proof of
formula (9) it implies that limn_<x, a(e(n)) = a(e) and consequently

\imh(e(n)) = h(e).
n-*oo

For e=0, Kg(e) = S1 and hence h(0) = logq. If we consider the sequence e<n> =
<p(0"x), n = 1, 2 , . . . where x is an arbitrary element from ^"'((O, l ] \ (Zu Z,)), then
also e(n)e[0, l ] u ( Z u Z , ) . Moreover e<n)\,0 and now it easily follows from (8)
and (9) that h(e{n)) / h(e). This completely proves continuity of the function h.

From the properties of h we see that the set C(g) is perfect. It is non-empty
because h(0) = log q^0= h{\). By lemma 2 and density of Z it has empty interior.
Thus this set is homeomorphic to the Cantor set.

To calculate its Lebesgue measure we must go back to the arbitrary C2 expanding
map g.S1-* S1. Then there exists (see [K]) a g-invariant Borel ergodic probability
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measure n equivalent to the Lebesgue measure A. Since g'1(S1\Kg(e))<^ Sl\Kg(e)
and \(Sl\Kg(e)) > e > 0 for e e (0,1], /x(S\Kg(e)) = 1. Thus for e # 0, A(Xg(e)) =
0. Let 0 # en -» 0. From the definition of Z it is easy to see that

C(g)<={0}u(j «,(*-),
n = l

and consequently A(C(g)) = 0. This completes the proof of theorem 1.

In the proof of lemma 3 we obtained the formula

HD (Kg(e)) = h(e)/log q if g(z) = z*.

This and theorem 1 prove corollary 1.
Observe that the function e-*HD(Kg(e)) is left-side continuous for every C2

expanding g by proposition l(ii).

Remark Continuity of the function h implies precisely the continuity of the family
{<Pe(Q)}ee[o,i-\ from the proof of proposition 1. Continuity of {(pe(t)} and more
generally of the pressure of any fixed Holder continuous function as a function of
e without the assumption that g(z) = zq is an open question. A positive answer
obviously implies the continuity of e -» HD {Kg(e)) for any expanding g.

Proof of theorem 2. Let eeC(g). Since C(g)nB(e, r)<= Kg(e-r), corollary 1
implies

H(e)<HD(Kg(e)). (10)

First we suppose that e e C+(g) and it is a non-periodic point for g. Since for every
r>0

n=0

it follows that

U g- ( [e , s + r))n Kg(e) = HD (Kg(e)). (11)
n=0

Denote by n(r) > 1 the minimal number such that g"(r)([e - r, e]) n (e - r, e) # 0 .
Observe that for i = 1 , . . . , n ( r ) - l , g ' ( (e-r , e])n(0, e) = 0 . Set e, = ( e - r , e ]n
g~"(r)(e). This intersection is non-empty and moreover e ^ e because e<gn ( r ) (e) .
Therefore

Thus by (11), HD (C(g)nB(e, r))>HD (Kg(e)) and consequently

H(e)>HD(Kg(e)) . (12)

Now the proof of theorem 2 follows from inequalities (10), (12), corollary 1 and
lemma 4(ii), (iii).

3. Connections with ^-transformations
In this section inspired by M. Misiurewicz we will give another way to obtain (8)
and (9) of § 2 using ^-transformations.
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Recall that we still work with the map z^>zq and hence the following diagram
is commutative:

S1—'-+S1

where 1 - denotes the subtraction from 1 in the additional notation. It immediately
implies that the following diagram is also commutative:

(*)

Moreover
l -X g (e) = {zeS 1 :0<g" (z )< l - e for every n>0}

= 5 1 \ U g - " ( ( i - e , D ) .

Let e e C+(g) (in fact this assumption will be necessary in the proof of proposition
2). There exist two sequences {a,-}" ,, {&,•}£, such that S'\(l - Kg(e)) = Uf=i (a., b>)
because the set 1 - Kg(e) is closed. If for every 12 1 we identify the endpoints a,
and bt in the space 1 — Kg(e), we obtain a space Se homeomorphic to the circle.
Denote by 77 the corresponding projection of 1 — Kg(e) onto Se.

Observe now that if {at, bt) # (1 - e, 1) (hence (a,, bt) n (1 - e, 1) = 0) then there
is j> 1 such that (gicij), g(fe,)) = (a,, b/).

Indeed g(dj), g(bi)eKg(s) and for xe(ait bt) there exists «>1 such that
g"(x) e (1-e , 1), so g(x) e l -Kg{e). Therefore for every x e Se\{77"(0) = TJ-(E)} we can
define

g{x) = ir(g(x)) where X£TT"'(X).

Moreover putting g(7r(0)) = 7r(g(0)) = TT(0) we get the map g:Se-*SE continuous
at every point except TT(0) = ir(e) and the following diagram is commutative

(•*)

Let / denote the unit interval [0,1]. There exists an orientation preserving continuous
function u:I->S such that «(0) = w(l) = TT(0) and M|(0, 1) is a homeomorphism
onto Se\v(0). We define the mapping ge:I^> I putting

u~log(e), i f x = l .
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Hence the following diagram is commutative except at the point 1

8.
/ * I

I"
Now we establish some properties of ge. The proof is easy, so we omit it.

PROPOSITION 2. Let ee C+(g), co = 0 and c, = M"1 ° ir{i/q) for i = I , . . . , i(e) where
i(e)/q is the greatest pre-image of 0 = I less than I - e. Then for every 0 s i < i(e) - 1 ,
ge(Cj) = O, limx/,c.+I gc(x) = l,ge|[c,, ci+1) i5 strictly increasing and continuous and
ge\[cnt), I) is flko strictly increasing and continuous.

Looking at the diagrams (*), (**), (***) we see that up to a countable set the map
u ^ o f l - o i - is well-defined, I -1 , onto, continuous and the following diagram is
commutative:

Kg(e)

Therefore we have

THEOREM 5. Denote by H(Kg(e))(H(gE)) the set of all g \ Kg(e)(ge)-invariant Borel
ergodic probability measures with positive entropy. Since such measures have no atoms,
if fi€H(g\Kg(e)) then the map
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is a metric isomorphism and consequently the map

is bijective.

COROLLARY 3. /itop(g|Xg(e))

Now we recall a theorem of Parry [P].

THEOREM 6. If a mapping/: J->J of an interval with or without each endpoint satisfies
the following conditions:

(i) U,S=i It = J, where It, i = 1,2,..., s are non-trivial disjoint intervals and f\ /,
is continuous and strictly monotone;

(ii) for every i,j = l,..., s, /( / ,) nf(Ij) * 0 ;
(iii) fis strongly transitive, i.e. for every non-empty open set U there exists an integer

m such that UZJ\U) = J;
then f is topologically conjugate to a transformation T(f) :J-*J such that for some
P> 1 and {a,)Uu T(f)(x) = a,±px, xel..

In view of proposition 2 the interval [0,1) is invariant for the map g and we will
check that the map ge = ge\ [0,1) satisfies the assumptions of this theorem. (Observe
here that we cannot use the function ge because in general ge([0, l ] ) c [0,1) and
thus (iii) of Parry's theorem cannot hold.)

To prove this condition for ge we first observe that the mapping g\l-Kg(e) is
strongly transitive because for every point xel — Kg(s) the 'tree' of pre-images
UJL0 (# 11 ~ Kg(e))~j(x) of this point is dense in 1 - Kg(e) and the space 1 - Kg(e)
is compact.

Since IT is a surjection, the commutativity of the diagram (**) implies that the
same holds for the mapping g:Se^Se. And since the diagram

[0,1) ^

- s .
obtained from (**) is commutative, the map u|[0,1) is univalent, M|(0, 1) is open,
the mapping ge :[0, l)-»[0,1) is also strongly transitive.

Moreover proposition 2 immediately implies that for ge the condition (i) holds.
It implies also, that for 0 < i == i(e) -1, ge([ct, ci+l)) = [0,1) which gives the condition
(ii).

By this proposition we now get that the map T(ge) obtained from Parry's theorem
must be of the form T(ge)(x) = /3x(mod 1).

It is well known that supH(7-(gi)) hflT(ge) = log p. From this and theorem 5,

htop(g\Kg(e)) = -logp-\ (13)

Now we must find a formula defining /3 in terms of the code of e with respect to
the partition given by the points 0/q,l/q,..., q/q. But first we will do it for the
point 1 - e. (Observe that since e e C+(g), for every m > 1, gm(e) ^ i/q, i = 0 , . . . ,
q — 1 and so the same holds for 1 - e.)
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And indeed in view of proposition 2 the code of 1 — e is the same as the code of 1
under T(ge) with respect to the partition [0,1//3), [1/jB, 2//3),... ,[([/3]-l)//3,

Putting, for x€ [0,1),

we have l=l7_oS(r ' (g . ) ( l ) ) /0 ' + 1 . But we observe that S(T>(g.)(l)) = ( l - e ) , + 1 .
This implies that 1//3 satisfies the following equation:

1=1 (l-e)jX
J.

We remark now that (1 — e)j = q — 1 — e, and so we get the equation

1= I (q-l-ej)xj.

This and (13) give (8) and (9).

P. Walters [WJ proved that for every ^-transformation there exists a unique measure
with maximal entropy. Therefore by theorem 5 the same holds for the maps g \ Kg(e).
Let fiE denote this unique measure on Kg(e). Using upper-semicontinuity of the
function /x -* /iM (g), theorem 1 implies that if e -» e0 then y.E -» fi^ and hence Xn. -* #M. •
Now from the formula HD (/ie) = h(e)/xM.e we get the following:

THEOREM 7. For every orientation preserving C2 mapping g:S1-*S* the function
e -* HD (fie) is continuous.

Remark Developing the ideas presented in this section we are able to investigate
more general invariant subsets than Kg(e). Namely let %n ( n > 1) be the class of
all invariant subsets arising by omitting at most n open disjoint intervals. In a later
paper we will prove in particular that topological entropy on the subsets in jKn is
continuous. JCn is considered here as a space with the Hausdorff metric.

4. DE-perturbations
In this section we prove a few results about DE-perturbations and use some facts
obtained in the previous sections.

Definition 3. We say that a C2 mapping g:Sl-*S1 is a one-sided DE-perturbation
obtained from an orientation preserving C2 expanding map g: S1 -» S1 if the follow-
ing conditions are satisfied:

(a) there exist numbers 0< a < (3 < 1 such that g(a) = a, g(/3) = /3 and for every
xe(0,|3) limbec (g"(x)) = a;

(b) there exists a number y : / 3 < y < l such that g|['y,0] = g|['y,0] and

(c) the length of g((/3, y)) is less than 1/2.

https://doi.org/10.1017/S0143385700003461 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003461


306 M. Urbariski

For definitions of related perturbations and their properties see for instance [Si],
, [W2].

THEOREM 8. If DE (g) denotes the set of all DE-perturbations obtained from an
orientation preserving C2 expanding mapping g:S1^S1 then the function DE (g) 3 g -»
HD (ft(g)), where il(g) is the set of non-wandering points for g, is continuous if we
consider the C1 topology on DE (g).

Since all the maps from DE (g) are topologically conjugate, the proof of this theorem
is similar to the proof of the analogous for horseshoes on surfaces (see [McC-M]),
use the function P(—t log Dg).

THEOREM 9. With the same assumptions as before, the function DE(g)3g-»
HD(/i(g)), where /t(g) is the unique g-invariant Borel probability measure with
maximal entropy, is continuous.

Proof. Let §„-*§, gn, geDE(g) and pn:S
1-*Sl establishes topological conjugacy

between gn and g. Then />„•(/*(#)) is a measure with maximal entropy for gn and
lim^oopn*(fi(§)) = n(g) in the weak topology on measures because limn^xpn = Id
in the C° topology. Moreover limn_0O^p.(/i(g)) = ̂ M(^) and the theorem follows
from theorem 4.

This theorem is also true if we replace measures with maximal entropy by equilibrium
states for an arbitrarily fixed Holder continuous function on S1.

PROPOSITION 3. If §„-* g in the C° topology in such a way that yn -* 0 then
lim infn ĉc HD (il(gn)) ^ HD (fi), where fi is the measure with maximal entropy for g.

Proof. If by fin we denote the measure with maximal entropy for the map g\Kg(en)
(see theorem 7) then

HD («(&)) > HD (Kg(yn)) 2 HD (/*„)
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because £!(§„) => Kg(yn). Thus using theorem 7 we get

lim inf HD (f t (gj) > HD (/x).
n-»oo

THEOREM 10. 7/"a one parameter, continuous (in the C° topology), family {gA}Ae[o,i)
of maps belonging to DE(g) satisfies the following conditions:

def

(a) lim^1/3(A) = limA^1 y(A) = y and for every A e[0,1) , y (A)<y ;
(b) yg Kg{y) or ye Kg(y) and it is not periodic;
(c) there exists a point i/»A € (/3(A), y(A)) such that limA^, (gA(<AA)) = g(y);
(d) l imA.1 inf{gi(z):z6[ j8(A))^A] = oo};

(e) a(x) is a constant function a.
Then l imA^ (HD (H(gA)) = HD (Kg(y)).
Proof. Let flA =ft(gA)\{a}. Since HA c [/3(A), 0] is a gA-invariant compact set,
condition (b) from definition 3 implies that IiA is a mixing repeller for gA. Thus by
corollary 2 there exists a gA-invariant Borel ergodic probability measure /AA on ftA

such that HD(flA) = h^Jx^- We choose a sequence {An}^=i such that limn_oo An = 1
and limn̂ .oo MAn

 = M in the weak topology. Moreover we can require that
lim supA^, HD (nA) = l i m ^ ^ HD (flAJ.

Now we shall prove that if HD (Kg(y)) > 0 then

,^A.]) = 0. (14)

Indeed, suppose to the contrary that for some increasing subsequence {nk}'£=,l and
5 > 0, M*([0(Tk), <ATJ) s 5, where rk

 dM \nk and fik
 d^f

 M r t . Now, condition (d) implies
that for fc = l , . . .

^ f e { g ; t ( ) [ ) ( j , ^ ] as

and from this

( T J ^ / ^ ,

since, as is easy to see,

*«<htop(grk\0.Tk) = log (degg).

But this is impossible because ilTk => Kg(y) by (a).
These considerations also show that if HD (Kg(y)) = 0 and equality (14) does

not hold then lim supA^i HD (ftA) = 0 and in this case the theorem is proved. Thus
we can assume that equality (14) is satisfied. We have also

lim/**„([&„, y]) = 0, (15)
n-»oo

because conditions (a), (b) and (c) imply for every fcsl that for n large enough
the sets

[**„, y], *:,!([**., y]), • • •, 8K([*I>K, y])

are pairwise disjoint.
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Now we can prove that /A is a g-invariant measure. Indeed, let <p: S1-* R be an
arbitrary continuous function. We have:

<p dfi = lim <p dfxK = lim <p ° gA *fycA

Js' " - " J s 1 n^ooJs1

= lim I (P° gAn ^MAB + <P°SK dfxK )
n^°°\J[^(An),r) J[%0] /

= lim I <P ° g\n dnxn +\ <P°g d/xXn I

= lim (<P°gx«-<P°g) d/xK + lim <p

= lim ( ip°gA n-«iP°g)^A n + lim <p°gd

gd[i

Since cp is a bounded function, the first term of the last expression converges to
zero by (14) and (15) and the second one converges to Jsi <p ° g d/x. This means that
H is a g-invariant measure. Equalities (14) and (15) prove also that supp (/x)c [y, 0]
and thus supp (/A)<= Kg(y).

By changing a bit the classical proof that the function /x -* /iM (/) is upper semi-
continuous for an expansive mapping / we can show that

M # ) - l i m SUP Kn(g*J where we put /*„ = nK.
n-*oo

Therefore, by theorem 4,

HD (Xg(y)) s /iF(g)/A-M(g) ̂  lim sup hJXt,n = lim HD (nAJ = lim sup HD (fiA).
" 0 0 A - l

This and the inequality lim infA_! HD (flA) > HD (Kg(-y)) which holds because for
every A e [0,1), HA <= Kg(y), prove our theorem.

This theorem permits us to estimate the Hausdorff dimension of the sets D,(g) by
HD (Kg(y)), and as was shown in the proof of theorem 1 this number for the map
g(z) = zq is given by an actual formula.

Finally I would like to thank Feliks Przytycki for many interesting discussions
about the subject of this paper.
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