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Abstract. A well known result of B. Osofsky asserts that if R is a left (or right)
perfect, left and right sel®njective ring then R is quasi-Frobenius. It was subse-
quently conjectured by Carl Faith that every left (or right) perfect, left sel®njective
ring is quasi-Frobenius. While several authors have proved the conjecture in the
a�rmative under some restricted chain conditions, the conjecture remains open even
if R is a semiprimary, local, left sel®njective ring with J�R�3 � 0: In this paper we
construct a local ring R with J�R�3 � 0 and characterize when R is artinian or self-
injective in terms of conditions on a bilinear mapping from a D-D-bimodule to D,
where D is isomorphic to R=J�R�. Our work shows that ®nding a counterexample to
the Faith conjecture depends on the existence of a D-D-bimodule over a division
ring D satisfying certain topological conditions.

1991 Mathematics Subject Classi®cation. 16D21, 16D50, 16L30, 16L60, 16P20.

A ring R is called quasi-Frobenius if it is left and right artinian and left and right
sel®njective, equivalently, if R has the ACC on right or left annihilators and is right
or left sel®njective. The Faith conjecture (see [4] or [5]) asserts that every left or right
perfect, right sel®njective ring R is quasi-Frobenius. Following ideas of Osofsky [10],
we construct a local ring R with J�R�3 � 0 and characterize when R is artinian or
sel®njective in terms of conditions on a bilinear mapping from a D-D-bimodule to a
division ring D � R=J�R�: We conclude by characterizing other properties of R in a
similar way.

Throughout this paper all rings are associative with unity, and all modules are
unital. If R is a ring we write J � J�R� for the Jacobson radical of R: The socle of a
module M is denoted by soc�M�: Annihilators of a subset X � R are written
l�X� � fa 2 R j aX � 0g and r�X� � fa 2 R j Xa � 0g: We write N �ess M (respec-
tively N �max M� to indicate that N is an essential (maximal) submodule of M: The
symbol D will always denote a division ring.

Generalities. If S is any ring and SVS; SWS and SPS are bimodules, a function
V�W! P, which we write multiplicatively as �v;w�7!vw; is called a bimap if

(1) �v� v1�w � vw� v1w and �sv�w � s�vw�,
(2) v�w� w1� � vw� vw1 and v�ws� � �vw�s,
(3) �vs�w � v�sw�
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hold for all v; v1 in V; all w; w1 in W; and all s in S: This is equivalent to the exis-
tence of a S-S-bimodule map V
S W! P: Our interest is in the case when S � D is
a division ring.

Definition. Let DVD and DPD be nonzero bimodules over a division ring D;
and suppose that a bimap V� V! P is given. Write

R � �D;V;P� � D� V� P

and de®ne a multiplication on R by

�d� v� p��d1 � v1 � p1� � d d1 � �d v1 � v d1� � �d p1 � v v1 � p d1�:
It is a routine veri®cation that R is an associative ring if and only if the product
V� V! P is a bimap. The ring R has a matrix representation as

R �
d v p
0 d v
0 0 d

24 35������d 2 D; v 2 V and p 2 P

8<:
9=;:

Note that we shall assume that V 6� 0 and P 6� 0 throughout this paper.
Our ®rst result collects several properties of this ring that will be used frequently

below. If X is a nonempty subset of V we write lV�X� � fv 2 V j vX � 0g and
rV�X� � fv 2 V j Xv � 0g:

Lemma 1. The ring R � �D;V;P� has the following properties.
(1) R is an associative ring.
(2) VP � PV � P2 � 0:
(3) R is local, J � V� P, J2 � V2 � P and J3 � 0:
(4) soc�RR� � l�J� � lV�V� � P �ess RR:
(5) xR � xD, for all x 2 soc�RR�:
(6) If XD � V, then X� P is a right ideal of R; and every right ideal T such that

P � T � J has this form.
(7) Every right D-subspace of soc�RR� is a right ideal of R.
(8) Let X and Y be right D-subspaces of soc�RR�: Then every D-linear transfor-

mation X! Y is R-linear.

Proof. (1) and (2) are routine veri®cations.
(3). The map �d� v� p�7!d is a ring morphism from R onto D with kernel

V� P; proving that R is local and J � V� P: The rest of (3) is easily checked.
(4). We have soc�RR� �ess RR because R is semiprimary by (3), and

soc�RR� � l�J� because R is semilocal. Now

l�J� � fd� v� p j dV � 0 and dP� vV � 0g:

Since V 6� 0 it follows that d � 0; whence vV � 0: Thus l�J� � lV�V� � P: The other
inclusion is clear.

(5). If x � v� p 2 soc�RR�, where vV � 0; then xR � fvd� pd j d 2 Dg � xD:
(6). It is routine that X� P is a right ideal. Given P � T � J; we have

T � T \ V� � � P by the modular law.
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(7). This is a direct calculation using soc�RR� � lV�V� � P from (4).
(8). If r � d� v� p then x r � x d, for all x 2 X [ Y, by (2) and (4). &

Note that Lemma 1(5) shows that a right ideal T � soc�RR� is simple if and only
if dimD�TD� � 1: The next result shows that if dim�PD� � 1 we can obtain the con-
verse to (6) and (7) of Lemma 1, and so characterize the right ideals of
R � �D;V;P�: Call a right ideal T � R proper if T 6� R:

Lemma 2. Let R � �D;V;P�, where dim�PD� � 1: Then the proper right ideals of
R are

fX� P j XD � Vg and fY j YD � soc�RR�g:

Proof. These are all right ideals by (6) and (7) of Lemma 1. If T 6� R is a right
ideal, then T � J because R is local. Since PR is simple, either P � T or P \ T � 0:
In the ®rst case, T � X� P for XD � V by Lemma 1(6). If P \ T � 0; we show that
T � soc�RR�: If t � v� p 2 T then, for v1 2 V; v v1 � �v� p�v1 2 P \ T � 0: Thus
v 2 lV�V�; and so t 2 lV�V� � P � soc�RR�: &

Note that, under the hypotheses of Lemma 2, the proper (two-sided) ideals of R
are fX� P j DXD � Vg and fY j DYD � �lV�V� \ rV�V�� � Pg.

Even without the hypothesis that dim�PD� � 1 we can characterize when
R � �D;V;P� is right artinian.

Proposition 1. The following conditions are equivalent for R � �D;V;P�.
(1) R is right artinian.
(2) R is right noetherian.
(3) dim�VD� <1 and dim�PD� <1:
(4) dim�RD� <1:

Proof. The implications (3))(4))(1))(2) are clear. If RR is noetherian and
X1 � X2 � � � � are subspaces of VD; then X1 � P � X2 � P � � � � : It follows from
Lemma 1(6) that dim�VD� <1:We have dim�PD� <1 because every D-subspace of
P is a right ideal (by Lemma 1(7)). &

The main theorem. In order to study the Faith conjecture, we must characterize
when R � �D;V;P� is right sel®njective. We begin by characterizing a weaker injec-
tivity condition. A ring R is called right mininjective if every R-morphism 
 from a
simple right ideal to RR is given by left multiplication 
 � c� by an element c of R;
equivalently [8, Lemma 1.1] if lr�k� � Rk whenever kR is a simple right ideal of R:
Clearly every right sel®njective ring is right mininjective. The next result will be used
several times.

Proposition 2. The following are equivalent for R � �D;V;P�.
(1) R is right mininjective.
(2) lV�V� � 0 and dim DP� � � 1:

Proof. (1))(2). If 0 6� p� 2 P and u 2 lV�V�, and if 
 : p�D! �u� p��D is given
by 
�p�d� � �u� p��d; then 
 is R-linear by Lemma 1(8). By (1), 
 � c� is left multi-
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plication by c 2 R and so u� p� � 
�p�� � cp� 2 P: Thus u � 0; whence lV�V� � 0:
If 0 6� p 2 P, then pR � pD is simple so that lr�p� � Rp by (1). Hence Lemma 1(4)
gives

Dp � Rp � lr�p� � l�J� � lV�V� � P � P:

Thus dim�DP� � 1:
(2))(1). Let 
 : KR ! RR be R-linear, where KR is a simple right ideal; we must

show that 
 � c� for c 2 R. We may assume that 
 6� 0. We have soc�RR� � P by (2),
and so K � P: It follows from Lemma 1(7) that dim�KD� � 1. Write K � p�D, where
p� 2 P: Since 
�K� is simple we have 
�K� � soc�RR� � P � Dp� by (2); say

�p�� � d� p�, where d� 2 D: Then, for all d 2 D;


�p� d� � 
�p�� d � �d�p�� d � d��p� d�:
This shows that 
 � d��; as required. &

It is worth noting that, since we are assuming that P 6� 0; (4) and (7) of Lemma
1 give

soc�RR� is simple as a right ideal if and only if lV�V� � 0 and dim�PD� � 1:

The condition that dim�PD� � 1 holds if R � �D;V;P� satis®es another important
weakened form of sel®njectivity. A ring R is called right simple-injective if every R-
linear map with simple image from a right ideal of R to R is given by left multi-
plication by an element of R: Clearly every right simple-injective ring is right mini-
njective. The next lemma will be used later and strengthens the condition in
Proposition 2.

Lemma 3. Suppose that the ring R � �D;V;P� is right simple-injective. Then

lV�V� � 0 and dim PD� � � 1 � dim DP� �:

Proof. Since R is right mininjective, lV�V� � 0 and dim DP� � � 1, by Proposition
2. Suppose that dim�PD� � 2 and let fp1; p2; � � �g be a D-basis of PD: De®ne
� : PD! PD by ��p1� � p2 and ��pi� � 0 for all i � 2: Then � is R-linear by Lemma
1(8) and so, since im��� � p2D is simple, � � a� for some a 2 R by hypothesis. If
a � d� v� p, then ��pi� � api � dpi, for each i; so that d � 0 because ��p2� � 0: But
then p2 � ��p1� � dp1 � 0; a contradiction. &

The condition in Lemma 3 does not characterize when R � �D;V;P� is right
simple-injective. This is part of our main result, a characterization of when
R � �D;V;P� is right sel®njective. Surprisingly, this is equivalent to simple-injectivity.
The following ``separation'' axiom will be referred to several times.

Condition S. If V � xD�MD; x 6� 0; there exists v� 2 Vsuch that v�x 6� 0 and
v�M � 0.

Observe that Condition S is equivalent to asking that, if x 2 Vÿ X, where
XD � V is any subspace, there exists v� 2 V such that v�x 6� 0 and v�X � 0:
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Theorem 1. Let R � �D;V;P�. The following are equivalent.
(1) R is right sel®njective.
(2) R is right simple-injective.
(3) lV�V� � 0; dim PD� � � 1 � dim DP� �; and Condition S holds.

Proof. (1))(2). This is clear.
(2))(3). By Lemma 3 it remains to prove Condition S. Fix 0 6� q 2 P and let

VD � xD�M, where x 6� 0 and M � VD: De®ne

� : V� P � xD�M� P! P by ��xd�m� p� � qd:

This is well de®ned because D is a division ring, and it is R-linear because

���xd�m� p��d1 � v1 � p1�� � ��xdd1 �md1 � �xdp1 �mv1 � pd1��
� q�dd1�
� qd�d1 � v1 � p1�
� ���xd�m� p�� �d1 � v1 � p1�:

Since ��V� P� � qD is simple, it follows from (2) that � � b� is left multiplication by
b 2 R: Write b � d� � v� � p�; so that q � ��x� � bx � d�x� v�x: Hence
v�x � q 6� 0 and d�x � 0: This means that d� � 0; and so v�m � bm � ��m� � 0, for
all m 2M; proving Condition S.

(3))(1). If T � R is a right ideal, let � : T! RR be R-linear; we must show that
� � a� for some a 2 R: This is clear if T � R or T � 0. Assume 0 � T � J. Since
soc�RR� � lV�V� � P � P is simple, by (3), it follows from Lemma 2 that

T � X� P

for some XD � V because T 6� 0: Since R is right mininjective by Proposition 2,
�jP � a� for some a 2 R:

Claim. If x 2 X then ��x� ÿ ax 2 P:

Proof. Write ��x� � d1 � v1 � p1: If v 2 V is arbitrary, we have xv 2 P and so

a�xv� � ��xv� � ��x�v � �d1 � v1 � p1�v � d1v� v1v:

As a�xv� and v1v are in P; it follows that d1v � 0 and a�xv� � v1v: Hence d1 � 0 and
axÿ v1 2 lV�V� � 0: Thus ��x� � ax� p1; proving the Claim.

Now de®ne � : T! R by � � �ÿ a � : It su�ces to show that � � b�; for some
b 2 R (because then � � �a� b�� ). We have P � ker��� because �jP � a�; and so
��T� � ��X� P� � ��X� � P by the Claim. If � � 0; take b � 0: If � 6� 0 then
��T� � P because dim�PD� � 1, and the fact that P � ker��� � X� P gives
ker��� � Y� P where Y � X \ ker���: Hence

X

Y
� X� P

Y� P
� T

ker��� � ��T� � P whence dimD�X
Y
� � 1:
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Hence, if we choose x 2 Xÿ Y; then X � xD� Y as D-spaces so that

T � xD� Y� P � xD� ker���:

Write VD � xD�M, for some subspace M � ker���: Then Condition S shows that
v� 2 V exists such that v�M � 0 and v�x 6� 0: Thus P � Dv�x because dim�DP� � 1.
Write ��x� � d�v�x, where d� 2 D: Hence

��xd� y� p� � ��xd� � ��x�d � �d�v�x�d � d�v��xd� y� p�

because v�y 2 v�Y � v�M � 0: Thus � � �d�v���; which completes the proof of (1). &

Question 1. If D is a division ring, and R � �D;V;P� is right mininjective and
satis®es Condition S, does it follow that R is right sel®njective?

In view of Proposition 2, this asks: if Condition S holds, lV�V� � 0; and
dim�DP� � 1; does it follow that dim�PD� � 1? Note that if this is true then R is
also left mininjective because Condition S implies that rV�V� � 0: Note further that
both lV�V� � 0 and dim�DP� � 1 hold if and only if RR is uniform (Proposition 8
below).

Theorem 1 provides a vector space condition that the Faith conjecture is false.

Theorem 2. Suppose that there exists a bimap V� V! P over a division ring D
such that.

(1) lV�V� � 0 and dim�DP� � 1 � dim PD� �:
(2) Condition S holds.
(3) dim�VD� � 1.

Then the Faith conjecture is false.

Proof. R � �D;V;P� is local with J3 � 0, by Lemma 1, and R is right self-
injective by Theorem 1. However, R is not right artinian by Proposition 1. &

Note that if (1) and (2) in Theorem 2 hold, the proof shows that R�D;V;P� is a
counterexample to the Faith conjecture if and only if dim�VD� � 1: In Theorem 3
below we give some matrix conditions that R�D;V;P� is a counterexample to the
conjecture.

Question 2. Is there a converse to Theorem 2?

Some examples. Thus the Faith conjecture is related to the existence of certain
bimaps, and the following two results reveal one aspect of the structure of these
bimaps. Recall that hom�VD;PD� is a D-D-bimodule via

�d���v� � d ��v�
��d��v� � ��dv�

�
for all � 2 hom�VD;PD�; d 2 D and v 2 V:

The next proposition isolates the conditions S and lV�V� � 0 occurring in
Theorem 1.
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Proposition 3. Let D be a division ring, let DVD and DPD be bimodules, and
assume that dim�DP� � 1 � dim�PD�: Given a bimap V� V! P de®ne

� : DVD! hom�VD;PD� by ��v� � v � for all v 2 V:

Then � is a D-D-bimodule homomorphism and
(1) � is one-to-one if and only if lV�V� � 0,
(2) � is onto if and only if Condition S holds.

Proof. It is routine to check that � is a bimodule homomorphism and so (1)
follows from the fact that ker��� � fu j uV � 0g � lV�V�:

To prove (2), assume ®rst that Condition S holds and let � 2 hom�VD;PD�: If
� � 0 then � � ��0�: If � 6� 0 use the fact that dim�PD� � 1 to write
V � xD� ker���: By Condition S let v� 2 V satisfy v�x 6� 0 and v� ker��� � 0: Fix
0 6� p� 2 P so that P � Dp�. Write v�x � d�p� and ��x� � d1p�, where d� and d1 are
in D: If v1 � d1d

ÿ1
� v�; then v1x � d1p� � ��x� while, for k 2 ker���;

v1k � d1d
ÿ1
� v�k � 0 � ��k�: Since V � xD� ker���; this shows that � � v1� � ��v1�:

Conversely, if V � xD�M and P � Dp�; de®ne � : VD! PD by ��xd�m� � p�d:
If � is onto, let � � v�� where v� 2 V: Then v�x � ��x� � p� 6� 0 and
v�M � ��M� � 0: This proves Condition S. &

Thus, if R � �D;V;P� is right sel®njective and fvi j i 2 Ig is a basis of VD; then

DVD � hom�VD;PD� � hom��i2IviD;PD� � �i2Ihom�viD;P�

so that, as dim�PD� � 1; we have j V j� 2jIj:
The set of all bimaps ' : V� V! P becomes a Z-bimodule using pointwise

operations, where Z denotes the integers. Proposition 3 reveals that there is a close
connection between the bimaps V� V! P and hom�VD;PD�: In fact there is a Z-
isomorphism.

Proposition 4. If ' : V� V! P is a bimap, de®ne '0 : V! hom�VD;PD� by
'0�v� � v � : Then '0 is D-D-linear, and ' 7!'0 is a Z-isomorphism

fbimaps ' : V� V! Pg ! fD-D-morphisms � : D VD! hom�VD;PD�g

with inverse � 7!�0, where �0�v;w� � ���v���w� for all v and w in V:

Proof. We omit the routine veri®cations. &

Now let V � D�I� be the direct sum of Ij j copies of D; and write v 2 V as
v � < vi >; thought of as a row vector. If A � �aij� is any I� I matrix over D; then

vA � < �iviaij > and AvT � < �jaijvj >

are both de®ned (but lie in the direct product DI�. Hence we may de®ne a product
V� V! D by

vw � vAwT � �i; jviaijwj:
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This satis®es the axioms for a bimap except possibly for �vd�w � v�dw�; and this
latter requirement holds if and only if each aij lies in the center of the division ring
D. In fact the condition �vd�w � v�dw� means �i; jvi�daij�wj � �i; jvi�aijd�wj, for all vi
and wj; which implies that daij � aijd: Furthermore, every bimap into D arises in this
way. Indeed, if fei j i 2 Ig is the standard basis of D�I� then aij � eiej is central in D
and vw � ��iviei���jejwj� � vAwT:

Example 1. Let I � f1; 2; � � �g and, given n � 1; let A be the I� I matrix where
the ®rst n rows are zero and the remaining rows are a copy of the I� I identity
matrix. Thus vw � vn�1w1 � vn�2w2 � � � � ; so that rV�V� � 0 while we have

lV�V� � f< u1; u2; � � � ; un; 0; 0; � � � >j ui 2 Vg has dimension n:

Example 2. Again let I � f1; 2; � � �g but now let A be the I� I matrix where the
even rows are zero and the odd rows are the rows of the I� I identity matrix in
order. Thus vw � v1w1 � v3w2 � v5w3 � � � � : In this case we have rV�V� � 0 but
lV�V� � f< 0; u2; 0; u4; 0; u6; � � � >j ui 2 Vg has in®nite dimension.

Example 3. Let V � Dn and let A be an n� n matrix from the center of D: Then
vw � vAwT is a bimap V� V! D as above, and the following are equivalent for
R � �D;V;D� :

(1) R is quasi-Frobenius,
(2) R is right sel®njective,
(3) R is right mininjective,
(4) A is invertible.

Indeed, it is clear that (1))(2))(3). It is a routine matter to verify that lV�V� � 0 if
and only if vA � 0 implies v � 0; that is if and only if A is invertible. Thus (3))(4)
by Proposition 2 because P � D here. Finally, R is artinian by Proposition 1 and so,
if A is invertible, (1) follows if we can prove (2). By Theorem 1, we need only verify
Condition S. Let V � x1D�MD and fx2; � � � ; xng be a basis of MD. Then
B � �xT1 ; � � � ; xTn � is an invertible matrix. Let v� � �1; 0; � � � ; 0�Bÿ1Aÿ1: Then

�1; 0; � � � ; 0� � v�AB � v��AxT1 ; � � � ;AxTn � � �v�x1; � � � ; v�xn�

so that v�x1 6� 0 and v�M � 0: Thus (4))(1).

More generally, we can identify matrix conditions needed to construct a
counterexample to the Faith conjecture. Let DV be any D-space with basis fei j i 2 Ig
where I is in®nite, and let RFMI�D� denote the ring of all row-®nite I� I matrices
over D: Given a bimodule structure DVD on V we obtain a ring homomorphism
� : D! RFMI�D� given for d 2 D by

��d� � ��ij�d��; where eid � �k2I�ik�d�ek:

Conversely, every bimodule structure DVD arises in this way from such a repre-
sentation �:

Given � we get a bimodule DVD so, if ffk j k 2 Kg is a basis of VD; we obtain the
``adjoint'' representation  : D! CFMK�D�, the column ®nite matrices, given for
d 2 D by

398 PERE ARA, W. K. NICHOLSON AND M. F. YOUSIF

https://doi.org/10.1017/S0017089500030081 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030081


 �d� � � ij�d��; where dfk � �l2Kfl lk�d�:

If A 2MI�K�D� is an arbitrary I� K matrix, we get a product V� V! D; written
�v;w�7!v � w; given by

v � w � �i;kviaikwk; where v � �iviei and w � �kfkwk: �1�

As before, this satis®es all the bimap axioms except possibly �vd�w � v�dw�: Since
ei � fk � aik we have

�eid� � fk � ei � �dfk� if and only if �j�ij�d�ajk � �maim mk�d�:

It follows that (1) de®nes a bimap on DVD if and only if

��d�A � A �d�; for all d 2 D: �2�

Theorem 3. Given a bimodule DVD; let fei j i 2 I g and f fk j k 2 Kg be bases of DV
and VD respectively, and assume that an I� K matrix A satis®es ��d�A � A �d�, for
all d 2 D, as above. Then the following are equivalent.

(i) R � �D;V;D� is a counterexample to the Faith conjecture.
(ii) The rows of A are a basis of the direct product DK:

Proof. In view of Theorem 2, it su�ces to prove the following statements.
(a) lV�V� � 0 if and only if the rows of A are independent.
(b) Condition S is satis®ed if and only if the rows of A span D�DK�:
Given v � �iviei in V write �v �< vi >2 D�I�: Observe that v � fk � �ivi�ei � fk� �

�iviaij; so that

< v � fk >� �vA: �3�

Hence if v 2 V, then v � V � 0 if and only if v � fk � 0, for all k 2 K; if and only if
�vA � 0: Now (a) follows because the rows of A are independent if and only if �vA � 0
implies �v � 0:

If Condition S holds and 0 6� �b �< bk >2 DK is given, let P 2 CFMK�D� be an
invertible matrix with �b as row 0: De®ne

< f 0k >�< fk > Pÿ1;

so that ff 0k j k 2 Kg is a basis of VD: By Condition S let v0 2 V satisfy

v0 � f 0k �
1 if k � 0;
0 if k 6� 0.

�
�4�

Then observe that

v0 � fk � v0 � ��lf
0
l plk� � �l�v0 � f 0l �plk � p0k � bk:

Hence (3) shows that �b � �v0A is a linear combination of the rows of A:
Finally, assume that the rows of A span D�DK�: If ff 0k j k 2 Kg is any basis of

VD it su�ces to ®nd v0 2 V such that (4) holds. If �e0 is row 0 of the K� K identity
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matrix, this asks for v0 2 V such that �e0 �< v0 � f 0k > : But there exists an invertible
matrix P 2 CFMK�D� such that < fk >�< f 0k > P: By hypothesis row 0 of P is a
linear combination of the rows of A; that is �e0P � �v0A, for some v0 2 V: But then (3)
gives

�e0P � �v0A �< v0 � fk >� < v0 � f 0k > P;

using the fact that < fk >�< f 0k > P: Since P is invertible, �e0 �< v0 � fk > as
required. &

One di�culty with applying Theorem 3 is that, for a bimodule DVD; we cannot
de®ne the map � in terms of A and  : In a concrete example we have to ®rst ®nd �
and  and then ask for the matrix A: However A need not exist in general, even in
the ®nite dimensional case. For example, let D � F be a commutative ®eld with
endomorphism � : F! F; and consider V � Fn, where the right structure VF is as
usual, and the left structure is de®ned by f � v � �� f �v: Then an invertible A exists
such that (2) is satis®ed if and only if �2 � 1F: This example illustrates that the
structure of A depends heavily on the particular bimodule structure, and not only on
the dimensions.

Other Properties of R � �D;V;P�. Many other properties of the ring
R � �D;V;P� can be characterized as in Theorem 1 in terms of vector space prop-
erties of V and P: Several of these are collected in this section.

A ring R is called right Kasch if every simple right R-module embeds in RR: The
ring R � �D;V;P� is local and so has only one simple module. Since P 6� 0 we have
soc�RR� 6� 0 (and soc RR� � 6� 0) by Lemma 1(4), whence we have the following result.

Proposition 5. R � �D;V;P� is right and left Kasch.

The next result follows from Lemma 1(4) and the fact that soc�RR� �ess RR:

Proposition 6. R � �D;V;P� has ®nite right uniform dimension if and only if
dim�PD� <1 and dim�lV�V�D� <1:

A ring R is called a left minannihilator ring if lr�K� � K, for all simple left ideals
K: These rings are closely related to the right mininjective rings (see [8]) and the
following result shows that if R � �D;V;P� is left minannihilator then it is right
mininjective.

Proposition 7. The following are equivalent for R � �D;V;P�.
(1) R is a left minannihilator ring.
(2) lV�V� � 0 � rV�V� and dim�DP� � 1:
(3) soc�RR� � soc�RR� is simple as a left R-module.

Proof. (1))(2). If 0 6� p 2 P, then r�p� � r�P� � J and so r�p� � J because R is
local. As Dp � Rp is simple, (1) gives

Dp � lr�p� � l�J� � soc�RR� � lV�V� � P:
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As P 6� 0; this gives lV�V� � 0 and dim�DP� � 1: Finally, if w 2 rV�V� and 0 6� p 2 P,
then w� p and p are in soc�RR� so that r�w� p� � J � r�p�: As before, (1) gives
D�w� p� � lr�w� p� � lr�p� � Dp: Since V� P is direct, this implies that w � 0;
whence rV�V� � 0:

(2))(3). Using Lemma 1(4), soc�RR� � rV�V� � P � P � lV�V� � P � soc�RR�.
This is left simple because dim�DP� � 1:

(3))(1). Write S � soc�RR� � soc�RR�: This the only simple left ideal by (3), so
that S � P and (1) follows from lr�S� � l�J� � soc�RR� � S: &

A ring R is said to satisfy the right C1-condition if every right ideal of R is
essential in a summand eR; e2 � e: The right C2-condition holds in R if every right
ideal of R that is isomorphic to a summand is itself a summand. A ring is called right
continuous if it satis®es both the right C1-condition and the right C2-condition.
Clearly every right sel®njective ring is right continuous.

Proposition 8. Let R � �D;V;P�:
(1) R always satis®es the left and right C2-conditions.
(2) The following are equivalent.

(a) R is right continuous.
(b) RR is uniform.
(c) soc�RR� is simple.
(d) lV�V� � 0 and dimD�PD� � 1:
(e) P � T for all right ideals T 6� 0:
(f) Every right ideal T 6� 0;R has the form T � X� P; where XD � VD:

Proof. Let T � eR; e2 � e: As R is local, either e � 0 (so that T � 0 is a
summand� or e � 1: In the last case, T � aR; where a 2 R and r�a� � 0: Thus
a =2 J and so T � R is a summand. This proves half of (1); the rest follows by
symmetry.

(a))(b). If T 6� 0 is a right ideal then T �ess RR by the C1-condition because R
is local.

(b))(c). This is clear since soc�RR� 6� 0 by our standing assumption that P 6� 0:
(c))(d). This follows from (4) and (7) of Lemma 1 because P 6� 0:
(d))(e). Suppose that T 6� 0 and P 6� T: Then T \ P � 0 because dimD�PD� � 1:

We may assume that T � J because R is local. Let t � v� p 2 T: If v1 2 V we have
t v1 � v v1 2 T \ P � 0; and so v 2 lV�V� � 0: Thus T � P; a contradiction.

(e))(f). This is clear from Lemma 1(6).
(f))(a). If T 6� 0 is a right ideal, then 0 6� P � T, by (f). It follows that RR is

uniform, so that T �ess RR: Hence R satis®es the C1-condition and so (a) follows
from (1). &

We now turn to a discussion of annihilators. Observe ®rst that the following
statements are valid.

IfXD � rV�Y�, whereY � V, wemay assume thatY � DY becauseX � rV�lVrV�Y��.
If DX � lV�Y�, whereY � V, wemay assume thatY � YD becauseX � lV�rVlV�Y��.

Lemma 4. Let R � �D;V;P�:
(1) If T � XD � P, where X � V, then l�T� � lV�X� � P:
(2) If L � DY� P, where Y � V, then r�L� � rV�Y� � P:
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Proof. We prove (1); (2) is similar. We have l�T� � J as T 6� 0: If v� p 2 l�T�,
then vx � �v� p�x � 0, for all x 2 X; that is v 2 lV�X�: Thus l�T� � lV�X� � P: Con-
versely, if v 2 lV�X� then �v� p��x� p1� � vx � 0, for all x� p1 in T, and so
lV�X� � P � l�T�: &

Lemma 5. Let R � �D;V;P� and suppose T 6� 0 and L 6� 0 are proper right and
left ideals of R respectively.

(1) T is a right annihilator in R if and only if T � rV�Y� � P, for some DY � V:
(2) L is a left annihilator in R if and only if L � lV�X� � P, for some XD � V:

Proof. Again we prove only (1), as (2) is analogous. If T � rV�Y� � P, then
T � r�Y� P�, by Lemma 4. Conversely, if T is a right annihilator, then T � rl�T�:
Now T 6� R means T � J and so P � l�T�: Hence l�T� � Y� P, for some DY � V,
by Lemma 1(6), so that T � rl�T� � r�Y� P� � rV�Y� � P, by Lemma 4. &

We say that V has ACC on left annihilators if it has ACC on subspaces of the
form lV�X�, where X � V; with similar terminology for the DCC and for right
annihilators.

Proposition 9. Let R � �D;V;P�: Then R has ACC (DCC) on right (left)
annihilators if and only if the same is true for V:

Proof. We give the argument for the ACC on right annihilators; the other three
cases are analogous. By Lemma 5, every ascending chain of right annihilators in R
has the form rV�Y1� � P � rV�Y2� � P � � � � : This gives rV�Y1� � rV�Y2� � � � � and
so, if V has the ACC, rV�Yn� � rV�Yn�1� � � � � for some n: Hence the chain in R
terminates. Conversely, if rV�Y1� � rV�Y2� � � � � in V; then r�Y1 � P� �
r�Y2 � P� � � � � by Lemma 4. If r�Yn � P� � r�Yn�1 � P� � � � � for some n; it follows
from Lemma 4 that rV�Yn� � rV�Yn�1� � � � � : &

Using Lemma 2, we can locate the right singular ideal Z�RR� in R � �D;V;P�:

Proposition 10. Let R � �D;V;P� and assume that dim�PD� � 1:
(1) Z�RR� � lVlV�V� � P � l�soc�RR�� �ess RR:
(2) soc�RR� � Z�RR�:
(3) Z�RR� � J if and only if lV�V� � rV�V� if and only if soc�RR� � soc�RR�:

Proof. For convenience writeU � lV�V�; so that soc�RR� � U� P, by Lemma 1(4).
(1). Always Z�RR� � l �soc�RR�� � lV�U� � P:We claim that lV�U� � P � Z�RR�:

Let y � v� p 2 lV�U� � P: Since v 2 lV�U� we have U � rV�v�; and so
soc�RR� � U� P � rV�v� � P � r�y�: Thus y 2 Z�RR� because soc�RR� �ess RR: This
proves the equalities in (1). Finally, U � lV�U� because U2 � 0: Hence
soc�RR� � lV�U� � P � l �soc�RR��; and (1) follows.

(2). Since U2 � 0 we have �soc�RR��2 � 0; so that soc�RR� � l �soc�RR�� and (2)
follows from (1).

(3). Since Z�RR� � lV�U� � P and J � V� P; we have Z�RR� � J if and only if
lV�U� � V if and only if VU � 0 if and only if U � rV�V�: The second equivalence
holds because soc�RR� � U� P and soc�RR� � rV�V� � P (by the right-left analogue
of Lemma 1(4)). &
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A ring R is called right principally injective (right P-injective) [7] if every R-linear
map from a principal right ideal of R to R is given by left multiplication by an ele-
ment of R, equivalently if lr�a� � Ra for all a 2 R: These rings are both right min-
injective and left minannihilator, a fact which is re¯ected in the following result.

Proposition 11. If R � �D;V;P�; then R is right P-injective if and only if it
satis®es the following three conditions:

(a) dim�DP� � 1,
(b) lV�V� � 0 � rV�V�,
(c) lV rV�v� � Dv for all v 2 V:

Proof. Assume ®rst that R is right P-injective. Then Proposition 2 implies (a)
and lV�V� � 0. To show that rV�V� � 0; suppose that 0 6� w 2 rV�V�: Then Vw � 0
so that Rw � Dw; and we have lr�w� � Rw � Dw � V, by P-injectivity. But if p 2 P,
then r�w� � J � r�p� and so p 2 lr�w�: This implies that P � V; a contradiction.
Hence rV�V� � 0; proving (b).

Claim. If 0 6� v 2 V and p 2 P; then R�v� p� � Dv� P:

Proof. Observe ®rst that Vv � P by (a) because v =2 rV�V�: Hence

R�v� p� � fdv� �dp� v1v� j d 2 D and v1 2 Vg � Dv� P;

proving the Claim.

To show that Dv � lV rV�v�; we may assume that v 6� 0: Then the Claim and
Lemma 4 give

r�v� � r�Rv� � r�Dv� P� � rV�v� � P:

Hence

lV rV�v� � P � lr�v� � Rv � Dv� P;

and (c) follows.
Conversely, assume (a), (b) and (c). If a 2 R we must show that lr�a� � Ra. This

is clear if a � 0 or if a =2 J (because R is local), and it also holds if a 2 P; (then
r�a� � J � V� P, so that lr�a� � lV�V� � P � P � Ra by (b)). Assume a 2 Jÿ P;
say a � v� p, where v 6� 0: Then Ra � Dv� P by the Claim (the proof uses only
dim�DP� � 1 and rV�V� � 0� and so Lemma 4 (twice) gives r�a� � rV�v� � P: Hence
lr�a� � lV rV�v� � P � Dv� P � Ra by (c). &

Example 4. As in Examples 1, 2 and 3 above, let D � D�I�, where
I � f1; 2; 3; � � �g: If A is the I� I identity matrix, the bimap is vw � v1w1�
v2w2 � � � �, where v �< vi > and w �< wi > : Then lV�V� � 0 � rV�V� is clear and
it is a routine matter to verify that lVrV�v� � Dv and rVlV�v� � vD, for all v 2 V:
Hence R � �D;V;D� is a right and left P-injective ring that is neither right nor left
artinian.
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