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Abstract

The steady flow of an incompressible viscous non-Newtonian electrically conducting fluid
and heat transfer due to the rotation of an infinite disk are studied considering the Hall
effect. The effects of an externally applied uniform magnetic field, the Hall current, and the
non-Newtonian fluid characteristics on the velocity and temperature distributions as well
as the heat transfer are considered. Numerical solutions of the nonlinear equations which
govern the magnetohydrodynamics (MHD) and energy transfer are obtained over the entire
range of the physical parameters.

1. Introduction

The pioneering study of fluid flow due to an infinite rotating disk was carried out by
von Karman in 1921 [21]. He gave a formulation of the problem and then introduced
his famous transformations which reduced the governing partial differential equations
to ordinary differential equations. Cochran [8] obtained asymptotic solutions for the
steady hydrodynamic problem formulated by von Karman. Benton [7] improved
Cochran's solutions and solved the unsteady problem. The hydromagnetic flow of a
Newtonian conducting fluid above a rotating disk with and without the Hall effect has
been considered by many authors [1,4,6,10,11]. In all of the above studies the fluid is
assumed to be Newtonian. The steady flow of a non-Newtonian fluid due to a rotating
disk with uniform suction was considered by Mithal [15]. The solutions obtained were
valid for small values of the parameter which describes the non-Newtonian behaviour.
Srivastava [18] extended the problem to the case where the flow is between two infinite
disks; one of which is rotating and the other of which is at rest. The hydromagnetic
flow of a conducting non-Newtonian fluid due to the uniform rotation of an infinite
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disk in the presence of a uniform magnetic field was studied by Andersson and de
Korte [3] who assumed that Hall currents were negligible.

The problem of heat transfer from a rotating disk maintained at a constant temper-
ature was first considered by Millsaps and Pohlhausen [14] for a variety of Prandtl
numbers in the steady state. Sparrow and Gregg [17] studied the steady-state heat
transfer from a rotating disk maintained at a constant temperature to fluids at any
Prandtl number. Later, many authors studied the heat transfer near a rotating disk
considering different thermal conditions [5, 12, 13, 16, 20].

In the present work, the steady MHD laminar flow and heat transfer of a viscous,
electrically conducting, incompressible and non- Newtonian Reiner-Rivlin fluid due
to the uniform rotation of a disk of infinite extent is studied taking the Hall effect into
consideration. An external uniform magnetic field is directed perpendicular to the disk
and the induced magnetic field is neglected by assuming that the magnetic Reynolds
number Rem <£ 1 [9, 19]. The temperature of the disk is impulsively changed and
then maintained at a constant value. The governing nonlinear differential equations
are solved numerically using finite differences. The effects of the applied uniform
magnetic field, the Hall current, and the characteristics of the non-Newtonian fluid on
the unsteady flow and heat transfer are presented and discussed.

2. Basic equations

Let the disk lie in the plane z = 0 and the space z > 0 be equipped by a viscous,
incompressible, conducting and non-Newtonian Reiner-Rivlin fluid. The disk is
rotating with a constant angular velocity a> about the line r = 0 and an external
uniform magnetic field is applied perpendicular to the plane of the disk which has a
constant magnetic flux density Bo. The magnetic Reynolds number is assumed to be
very small, so that the Hall effect cannot be neglected [9, 19]. The fluid motion is
governed by [4,6, 15]
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where u, v, w are velocity components in the directions of increasing r,<j>,z respec-
tively, p is the density of the fluid, a is the electrical conductivity of the fluid,
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m(= aftBo) is the Hall parameter which can take positive or negative values and )3 is
the Hall factor [4, 6]. Positive values of m mean that Bo is upwards and the electrons
of the conducting fluid gyrate in the same sense as the rotating disk. For negative
values of m, Bo is downwards and the electrons gyrate in an opposite sense to the
disk. The constitutive equation for the non- Newtonian Reiner-Rivlin fluid is given
by [15, 18]

x\ = 2lxe)+2iice
i
ke)-ph), e>=0, (2.5)

where p denotes the pressure, xj is the stress tensor, ej is the rate of strain tensor,
/x is the coefficient of viscosity and /xc = a(c + J^ £Z e)e'j)l^ ' s t n e coefficient of
cross viscosity. Here c is a constant and a is a sufficiently small constant. The
Reiner-Rivlin model is a simple model which can provide some insight into predicting
the flow characteristics and heat transfer performance for viscoelastic fluid above a
rotating disk. The first term in the right-hand side of (2.5) represents the viscous
property of the fluid and the third term represents the elastic property of the fluid. We
introduce the von Karman transformations [21],

u = rwF, u = rwG, w = *JcovH, z = y/v/a)£, p — p^ = —pvcoP,

where £ is a non-dimensional distance measured along the axis of rotation, F, G, H
and P are non-dimensional functions of £, and v is the kinematic viscosity of the
fluid, v = ix/p. We define the magnetic interaction number y by y = oB\lpa> which
represents the ratio between the magnetic force to the fluid inertia force. With these
definitions, (2.1)-(2.5) take the form

H' + 2F = 0, (2.6)

F" -HF'-F2+G2- y ( F ~ w l G ) _ H(F* + 3G'2 + 2FF") = 0, (2.7)
1 + m2 2

G" - HG' - 2FG - , + K(F'G' - FG") = 0, (2.8)
1 + m2

H" - HH' - -KH'H" + P' = 0, (2.9)

where the prime denotes differentiation with respect to £ and K is the parameter that
describes the non-Newtonian behaviour, K = IXCCO//M. The boundary conditions for
the velocity problem are given by

F(0) = 0, G(0) = 1, H(0) = 0, (2.10a)

F(oo) = 0, G(oo) = 1, />(oo) = 0. (2.10b)

Equation (2.10a) indicates the no-slip condition of a viscous flow applied at the
surface of the disk. Far from the surface of the disk, all fluid velocities must vanish
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aside the induced axial component as indicated in (2.10b). The above system of
(2.6M28) with the prescribed boundary conditions given by (2.10) are sufficient to
solve for the three components of the flow velocity. Equation (2.9) can be used to
solve for the pressure distribution if required.

Due to the difference in temperature between the wall and the ambient fluid, heat
transfer takes place. The energy equation, neglecting the dissipation terms, takes the
form [17]

) K ^ = O - ( 2 U )

The boundary conditions for the energy problem are that the temperature, by
continuity considerations, equals Tw at the surface of the disk. At large distances from
the disk, T tends to 7^, where 7^, is the temperature of the ambient fluid.

In terms of the non-dimensional variable 6 = (T — roo)/(7u, — T^) and using the
von Karman transformations, (2.11) takes the form

0" - P r HO' = 0, (2.12)

where Pr is the Prandtl number given by Pr = cp(i/k. The initial and boundary
conditions are expressed in terms of 9 as

0(0) = 1, 6>(oo) = 0. (2.13)

The heat transfer from the disk surface to the fluid is computed by application of an
Fourier's law

q = -k(dT/dz)w.

Introducing the transformed variables, the expression for q becomes

q = -k(Tw - T

By rephrasing the heat transfer results in terms of a Nusselt number denned as Nu =
q^/v/co/k(Tw - Too), the last equation becomes

Nu = -0'(O).

The system of non-linear equations (2.6)-(2.8) and (2.12) is solved numerically
under the conditions given by (2.10) and (2.13) using a marching technique and by
applying the Crank-Nicolson implicit method [2]. The resulting system of difference
equations has to be solved in the infinite domain 0 < £ < oo. A finite domain in

https://doi.org/10.1017/S144618110001381X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110001381X


[5] Non-Newtonian fluid flow and heat transfer due to a rotating disk 241

the £-direction can be used instead with £ chosen large enough to ensure that the
solutions are not affected by imposing the asymptotic conditions at a finite distance.
The independence of the results from the length of the finite domain and the grid
density was ensured and successfully checked by various trial and error numerical
experimentations. Computations are carried out for ^ = 10 which is found adequate
for the ranges of the parameters studied here. It should be pointed out that the steady-
state solutions reported by Aboul-Hassan and Attia [1] may be reproduced by setting
K = 0 in the present results. Also, the results obtained here coincide with the steady-
state results approached in [6] for the case of zero suction. These comparisons lend
confidence to the correctness of the solutions presented in this paper.

FIGURE 1. The steady-state profile of G for various values of K (• K = 0, + K = 0.5, • K = 1, o K = 2)
and for (a) y = 0, (b) y = 1, m = 0, (c) y = 1, m = -0.5 and (d) y = 1, m = 0.5.
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FIGURE 2. The steady-state profile of F for various values of K (• £ = 0, + K = 0.5, * K = 1, • K = 2)
and for (a) y = 0, (b) y = 1, m = 0, (c) y = 1, m = -0.5and(d)y = 1,/n = 0.5.

3. Results and discussion

The Hall parameter m appears in the magnetic force terms and its contribution is
proportional to (F — mG)/(l + m2) or (G + mF)/{\ + m1). For small values of
m, the effect of m on the numerator is stronger than its effect on the denominator.
A small positive value of m decreases the magnetic damping on F and increases the
magnetic damping on G, thus increases F and decreases both G and H (as follows
from the continuity equation). A small negative value of m decreases F and increases
both G and H. For large positive values of m, the factor (F — mG) may turn out to
be negative and the magnetic field has a propelling effect on F, which may exceed
its hydrodynamic value and thus the value of H is below its hydrodynamic value.
For such large values of m the effect on G is due mainly to the factor 1/(1 + m2)
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FIGURE 3. The steady-state profile of H for various values of K (• K = 0, + K = 0.5, * AT = 1,
• K = 2) and for (a) y = 0, (b) x = 1, m - 0, (c) y = 1, m = -0.5 and (d) / = 1, m = 0.5.

which becomes very small and produces an increase in G. For large negative values
of m the argument is reversed. The magnetic damping on F is reduced due to the
decrease in 1/(1 + m2). Thus F increases but is still less than its hydrodynamic value,
and consequently H decreases but is more than its hydrodynamic value. The factor
(G + mF) may become negative and this pushes G above its hydrodynamic value,
and thus the magnetic field has a propelling effect on G. For very large positive or
negative values of m the magnetic force term decreases considerably and the limit
m = +oo or — oo corresponds to the hydrodynamic limit.

Figure 1 presents the value of the azimuthal velocity component G as a function
off for various values of the parameters K, y and m. Increasing the parameter K
increases G for all values of y and m. Comparing Figures 1 (a) and (b) indicates that
increasing y decreases G for all values of K and its effect becomes more pronounced
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FIGURE 4. The steady-state profile of 9 for various values of K (• K = 0, + K = 0.5, • K = 1, a K = 2)
and for (a) y = 0, (b) y = 1, m = 0, (c) y = 1, m - -0.5 and (d) y = 1, m = 0.5.

for higher values of K. Figures 1 (c) and (d) indicate that, as discussed before, a
negative value of m increases G while a positive value of m decreases it for all values
of AT.

Figure 2 presents the value of the radial velocity component F as a function of £ for
various values of the parameters K, y and m. Figure 2 (a) shows that the effect of K on
F depends on £. Increasing K decreases F for small values of f and then increases it
as £ increases. This accounts for a crossover in the F-£ charts for various values of K.
Also, the effect of K on F is more apparent for small values of £. Figure 2 (b) indicates
interesting effects for the magnetic field in reversing the direction of F for large values
of K and in the suppression of the crossover in the F-£ charts with K. Negative values
of m reverse the direction of F for all values of K as shown in Figure 2 (c). For the
Newtonian case (K = 0), the velocity component F reverses direction beyond some
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(a)

FIGURE 5. Variation of //«, for various values of m and K (• K = 0, + K = 0.5, * K = 1) and for
(a)y =0.5and(b)y = 1.

TABLE 1. The effect of the parameters m and K on F'(0).

F'(0)

*: = o
K =0.5
K = l
£ = 2

m = 0
0.3093
0.0702

-0.1109
-0.3124

m = -0.5
0.1452

-0.0465
0.1801

-0.3172

m =0.5
0.4953
0.2466
0.0545

-0.1622

distance £ from the surface of the disk, while it reverses direction for all values of £ in
the non-Newtonian case (K > 0). On the other hand, positive values of m, as shown
in Figure 2 (d), reverse the direction of F only for larger values of K (K = 2 ) and
small f. Also in this case, the crossover in the F-f charts with K appears.

Figure 3 indicates the effect of the parameters K, y and m on the profile of the
axial velocity component H. Increasing K decreases the axial flow towards the disk
(or increases H) for all values of y and m. Figure 3 (b) indicates another interesting
effect of the magnetic field in reversing the direction of H for large values of K. It is
clear from Figures 3 (a) and (b) that increasing y decreases the axial flow towards the
disk due to the damping effect of the magnetic field. Negative m reverses the direction
of H for all £ and K > 0 as presented in Figure 3 (c). For the Newtonian case
(K = 0), an intersection with the £-axis happens and H reverses direction beyond
some £. Figure 3 (d) shows that positive values of m lead to a reversal in the direction
of H for larger values of K with the presence of overshooting in H with £.

Figure 4 presents the profile of 6 for various values of the parameters k, y and m and
for Pr = 0.7. The figure shows that increasing K increases 9 for all values of y and
m as a result of the influence of K in decreasing the axial flow towards the disk which
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FIGURE 6. Variation of Nu for various values of m and K (• K = 0, + K = 0.5, • K = 1) and for
(a)y =0 .5 and (b) y = 1.

TABLE 2. The effect of the parameters m and K on G'(0).

-G'(0)
A: = O
K = 0.5
A: = l
A: = 2

OT = 0

1.0691
1.0251
0.9436
0.7692

m = -0.5
0.9132
0.8531
0.7706
0.6221

m = 0.5
1.0626
1.0339
0.9628
0.7955

avoids bringing the fluid at near-ambient temperature to the neighbourhood of the disk
surface and consequently increases 6. The effect of K on 0 is more pronounced for
the magnetic case (y = 1) due to the effect of the magnetic field on damping H. It
is apparent from Figures 4 (c) and (d) that, for y = 1, negative m increases 0 while
positive m decreases 0 which corresponds to the effect of the Hall parameter on the
axial velocity H as discussed before.

Figures 5 and 6 present, respectively, the variation of the axial velocity at infinity
Hoo and the Nusselt number Nu with the Hall parameter m for various values of the
parameters K and y and for Pr = 0.7. For small values of y, increasing K increases
Hoo for all values of m as shown in Figure 5 (a). The peak value of H^ occurs at a
small and negative value of m which does not depend on K. Also it is clear from the
figure that //<» reverses its direction for small values of m, positive or negative, and
large values of K. For large values of y (y = 1), the variation of //«, with m depends
on K. Increasing y reverses the direction of //<» for all values of K. For larger values
of K, an interesting effect of the Hall parameter in reversing the direction of //„, many
times is observed in Figure 5 (b). However, for small and moderate values of K, the
peak value of //«, occurs at small and negative m which depends on K. Comparing
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Figures 5 (a) and (b) shows that increasing y increases Hx for small m while its effect
is neglected for large m. Figure 6 shows that increasing K decreases Nu for all values
of y and m. A comparison between Figures 6 (a) and (b), indicates that increasing y
decreases Nu for small values of m and that its influence can be neglected for large
positive or negative values of m.

Tables 1 and 2 present, respectively, the variation of F'(0) and the magnitude of
G'(0) for various values of the parameters m and K. The casern = K = 0 corresponds
to the Newtonian case in the absence of the Hall effect. Increasing K decreases both
F'(0) and G'(0) for all values of m. Higher values of K may result in the reversal of
the sign of F'(0) depending on m. Increasing m decreases the magnitude of G'(0) for
all K. Negative m decreases the magnitude of F'(0) for small K but increases it for
higher K. On the other hand, positive m increases the magnitude of F'(0) for small
K and decreases it for higher values of K.

4. Conclusions

In this paper the steady MHD flow of a non-Newtonian fluid due to the uniform
rotation of an infinite disk was studied considering the Hall effect. The effects of the
uniform magnetic field, the Hall current and the non-Newtonian fluid characteristics
on the velocity and temperature distributions were considered. In the absence of the
magnetic field, it is found that the effect of K on the radial flow depends on £ which
accounts for a crossover of the F-f charts with K. The magnetic field prevents the
occurrence of this crossover and leads to a reversal of the direction of the radial and
axial flows for larger values of K and all £. Negative values of the Hall parameter
reverse the direction of the radial and axial flow for all f for the non-Newtonian case
(K > 0) and for some £ for the Newtonian case (K =0) . On the other hand, for large
values of K, positive values of the Hall parameter reverse the radial flow direction for
some £ and the axial flow direction for all £. Changing the Hall parameter reverses
the direction of the axial velocity at infinity for any value of K, while such a reversal
occurs many times for large values of K. Small values of the Hall parameter have a
great effect on controlling the heat transfer from the surface of the disk for all values
of the parameter K. It is of interest to see the reversal of the sign of F'(0) for some
values of the parameters m and K.
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