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THE ASYMPTOTIC RESPONSE OF A CALORIMETER

A. McNABB
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Abstract

An algorithm is given for calculating the asymptotic behaviour of the temperature of the
fluid in an adiabatic calorimeter, and used to derive the asymptote for a finite cylinder.

1. Introduction

This note is concerned with the temperature changes which occur in the fluid of
a calorimeter when a body at a different temperature is immersed in it. Even for
bodies of a simple shape, and assuming these to be homogeneous isotropic
conductors, with the fluid in the calorimeter well stirred and no heat loss from
the system, it is not always easy to calculate the theoretical behaviour. However,
we show that the asymptotic behaviour of the fluid temperature is more easily
obtained, and present formulae describing this for the case of a finite cylinder
by way of illustration.

Imagine a homogeneous isotropic conductor, at a uniform temperature T,
quickly immersed in the well-stirred fluid of a thermally insulated calorimeter
which was initially at a uniform temperature T,. The temperature response of
the conductor is assumed to be governed by the diffusion equation
aT
A
where § is the region occupied by the conducting body, and by the boundary
and initial conditions

T=T, inGatr=0 and T=9(s) ona§,

where 9 () is the calorimeter temperature at time ¢ and 9§ is the bounding
surface of §.

KVT = pC in G, (1)
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The system is imagined to be completely insulated thermally so that, at all
dmes ¢ > 0, the total energy content of the calorimeter, fluid and conductor is
constant. Let V,, p;, C; V,, p., C,; V,p, C denote the volumes, densities and
specific heats of the fluid, calorimeter and conducting body respectively. Then
this fixed total energy requirement ensures that

(Vi0,C; + Vop C)T(1) + oC [ [ [ T dr = (Vy0,C; + V,p.C.)T, + VpCT,
[<]

= (V;p0,C; + Vp,C, + VpC)T,, (2)

where T, is the final equilibrium temperature of the system. Equations (2) can
be used to calculate 7.
Suppose for the sake of being definite that T, > T, and we plot 9(¢) against
t. Then ¥ starts at 7, and decreases towards T, ultimately in a simple
exponential fashion. The integral ¢(¢) defined by
o () — T,
o(t) = T =T,

-]

dt 3)

tends to a limit ¢, as ¢ tends to infinity, and we show below how ¢_ may be
calculated.

2. Calculation of ¢,

Define the function
o T(x, t) — T,

= _— 4
8(x) fo e forx € 8, (4)
and note that equation (1) implies
pC > dT pC
—_— = — —— = — —_ T
(TO Too)vzo K o ot dt K (Too 0)’ (5)
so that
V20=—% forx € §. (6)

From equation (2), we also have
(Vip/C; + Vop CYT(1) — T,,) + pCféf(T ~ T,)dr =0,

and so

o T-T
f{fﬂ(x)d7=j; f’ng—o——idet

oG T
_ o e ve 7
Vfo T A= Ve )
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Now, on the boundary 38 of §, we have T = & for all t > 0, so that
foo(T(x, )—T,)dt =f (9 - T )dt forx €dg,
) 0

or
T,— T,
9(x) = —7_,:'_—7,04)00 for x € 96. (8)
Suppose u satisfies the Poisson equation,
Vu =-1 in§,with u=0 on?d§. €))
Then
T,
0(x)——u( )—-———4) forx € 8, (10)
—_ TO
and from equation (7) we see ¢, satisfies the equation
pcfffud'r— _ °°V¢ = Vo,
so that
_ T TO pC
e (i

Evidently, for a conductor of given shape defining a region §, we need to
calculate the mean value,

1=%/f£fud7, (12)

where u satisfies the system (9).

3. A general formula for /

Let G(x|x,) be the Green’s function satisfying
V3G = -8(x — xy) forx, x5 €8,

where 8 is the Dirac Delta function.
Then G can be written in the form

)=3 q>n(xo)z>n(X)

G(x|xg P

forxg, x € §,

where ¢, are a complete set of eigenfunctions with eigenvalues k2 of the
equations

V3, + kX¢,=0 in8, ¢,=0 onadg, (13)
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rormalized so that

S]] ntm i = 8,

(see Morse and Feshbach [1], Section 7.2). Then
u() = [ [ ] Glxteo) e
and

=—I;f£fu(x)d'r=%/ffffgt;fG(ﬂxo)d‘rod’r

(14)

4. An example

Consider the case where § is a cylinder of radius a and height 2A. For this
example we find, using cylindrical polar coordinates (r, z), that

V = 2wa’h,
= ~——\fz———.lo(c,—r-)cos(dm%),
VV J(C) a (15)
¢ d
2
ki = = + — 2 =k o

where C,, d, are the positive zeros of Jy(z) and cos(z), respectively (that is,
=(2m — Dx/2, m > 0). Thus

2
fff(Pn dr = (_1)'"+1__M_’
s @m - 1)CVV
and so
I1=28 . 16
lm2>0 d; C2k2 (16)

We may use the method of contour integration to evaluate partial sums over
either / or m (see Phillips [2], Section 50, for a description of this method). Thus
we find, on summing over /, that

_ & h(z)
1 2h2{ 2=. (o) } (17)
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where b,, = (m — 3)7 and z,, = ab,,/h, and, on summing over m, that
1 %, tanh(z,)
I=2a%{—--2> —=1, 18
{ 16 Igl 7, G} (%)

where z;, = C,h/a. Formula (17) is particularly appropriate when a > A and (18)
is more useful in the reverse situation when A > a.

S. Practical applications to calorimetry

Our function ¢, can be written in the form
1865
_ (9T, © 3
¢oo=_/(; ﬁdt-—-—j; T_—det, (19)

and so the expression ¢, can be regarded as a measure of the time the action
occurs. Equations (11), (12) and (19) give the formula

© g - T, T, — Ty oC
fo T,—de'“T,—TOT’ (20)

where I is the geometric factor defined by equation (12). If the integral on the
left is computed from the experimental results for I, then equation (20) may be
used to compute K/pC, the thermal diffusivity of the material of the immersed
conductor. Since equation (2) gives the specific heat pC, the thermal conductiv-
ity may be determined.
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