
J. Aust. Math. Soc. (First published online 2025), page 1 of 33∗

doi:10.1017/S1446788725101109
∗Provisional—final page numbers to be inserted when paper edition is published

EMBEDDABILITY OF HIGHER-RANK GRAPHS IN GROUPOIDS
AND THE STRUCTURE OF THEIR C∗-ALGEBRAS

NATHAN BROWNLOWE , ALEX KUMJIAN , DAVID PASK and
AIDAN SIMS

(Received 1 March 2024; accepted 8 April 2025)

Communicated by Dana P. Williams

This paper is dedicated to our friend and mentor Iain Raeburn, whose guidance had a profound impact
on us all. We’d love to say more, but he’d have been squirming enough already.

Abstract

We show that the C∗-algebra of a row-finite source-free k-graph is Rieffel–Morita equivalent to a
crossed product of an approximately finite-dimensional (AF) algebra by the fundamental group of the
k-graph. When the k-graph embeds in its fundamental groupoid, this AF algebra is a Fell algebra; and
simple-connectedness of a certain sub-1-graph characterises when this Fell algebra is Rieffel–Morita
equivalent to a commutative C∗-algebra. We provide a substantial suite of results for determining if a
given k-graph embeds in its fundamental groupoid, and provide a large class of examples, arising via
work of Cartwright et al. [‘Groups acting simply transitively on the vertices of a building of type Ã2 I’,
Geom. Dedicata 47 (1993), 143–166], Cartwright et al. ‘Groups acting simply transitively on the vertices
of a building of type Ã2 II’, Geom. Dedicata 47 (1993), 167–226] and Robertson and Steger [‘Affine
buildings, tiling systems and higher rank Cuntz–Krieger algebras’, J. reine angew. Math. 513 (1999),
115–144] from the theory of Ã2-groups, which do embed.
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1. Introduction

Since their introduction [26], higher-rank graphs, or k-graphs, have been a source of
interesting new higher-dimensional phenomena: in algebra [2, 13, 40], dynamics [22,
34, 43, 44], C∗-algebras [3, 12, 41], K-theory [16, 18, 35], topology [23, 28, 32, 33] and
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geometry [24, 38, 45]. However, many natural questions about their structure theory
remain difficult to unravel.

One such question, and the primary motivation for this paper, is: when can a k-graph
C∗-algebra be realised, modulo Rieffel–Morita equivalences, as a crossed product of
a commutative C∗-algebra? For 1-graphs, the answer is ‘always’: given a row-finite
source-free directed graph E, the middle two authors showed [25] that the C∗-algebra
of its universal cover F is Rieffel–Morita equivalent to a commutative approximately
finite-dimensional (AF) algebra, and there is an action of the fundamental group
π1(E, v) on C∗(F) whose crossed product is Rieffel–Morita equivalent to C∗(E). For
k-graphs, the answer is more nuanced and is related to two other intriguing structural
questions: when does a k-graph embed in its fundamental groupoid and when is the
boundary of its universal cover Hausdorff?

Our main C∗-algebraic theorem, Theorem 4.1, clarifies the relationships between
these questions: the C∗-algebra C∗(Λ) of any connected row-finite source-free k-graph
is a crossed product of an AF algebra C∗(Σ) by the fundamental group of Λ; if Λ
embeds in its fundamental groupoid, then the AF algebra C∗(Σ) is a Fell algebra;
and if, additionally, a naturally arising sub-1-graph of Σ is simply connected, then the
boundary of Σ is Hausdorff, and C∗(Σ) is Rieffel–Morita equivalent to a commutative
AF algebra. The point is that the first part of the program of [25] above goes through
smoothly for k-graphs: every connected k-graph Λ has a fundamental group π(Λ, v)
[32] and a universal cover Σ [33] that carries an action of π(Λ, v), and when Λ is
row-finite and source-free, the resulting crossed product is Rieffel–Morita equivalent
to C∗(Λ) [26]. Our main contribution is the analysis of C∗(Σ).

Motivated by this, we study the question of when a k-graph Λ embeds in its funda-
mental groupoid. Many k-graphs do not embed: we give three examples in Section 3.1;
and any k-graph containing a copy of one of these (of which there are many) also
fails to embed. So we focus on checkable sufficient conditions. We show that singly
connected k-graphs always embed (Proposition 3.9(ii)), and highlight a surprising
difference between k-graphs and 1-graphs: universal covers of k-graphs need not be
singly connected. We include a proof that 1-graphs always embed (Theorem 3.14).
We then show that many standard k-graph constructions preserve embeddability:
coverings (Proposition 3.13), affine pullbacks, Cartesian products, crossed-products
and skew-products (Corollary 3.15), and action graphs (Corollary 3.18). The workhorse
in this is Theorem 3.8, which exploits the universal properties of the fundamental
groupoid and fundamental group. In Proposition 3.25, we reduce the embeddability
of a connected k-graph to group-embeddability of the subsemigroup based at any
vertex. Using Dilian Yang’s work [47] on k-graphs and Yang–Baxter solutions, we
show that there are many embeddable k-graphs for all k (Lemma 3.22). We are far from
a complete answer to the embeddability question. Johnstone’s general results [21] char-
acterise groupoid-embeddability of categories, but the hypotheses seem uncheckable:
we gleaned no practical conditions—either necessary or sufficient—from Johnstone’s
work, beyond the neat result of Lawson and Vdovina [29, Theorem 11.14] presented in
Remark 3.24. One might hope for help from Ore’s theorem [15, Proposition II.3.11],

https://doi.org/10.1017/S1446788725101109 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788725101109


[3] Embeddability of higher-rank graphs 3

but by the factorisation property, no interesting k-graphs are Ore. Remarks 4.17 and
4.18 indicate how much we still do not know about embeddability.

Finally, as definitive general results about embeddability are still beyond reach, we
present a class of examples arising from the combinatorial objects used by Roberston
and Steger to construct higher-rank Cuntz–Krieger C∗-algebras in [38, 39], which first
inspired the middle two authors to develop the concept of a higher-rank graph. We
show in Theorem 5.17 and Proposition 5.20 that every Ã2-group ΓT yields 2-graphs
ΛT and ΣT , the latter being a cover of the former, and in Corollary 5.19 that ΛT
embeds in its fundamental groupoid—Proposition 3.13 then shows that ΣT embeds
as well. We also prove that ΣT is singly connected and deduce that its C∗-algebra is
type I0. The construction of ΛT is related to a number of existing constructions. It is
directly inspired by [38, pages 135–136]. As discussed in [8, 38], a thick Ã2-building
B carrying a vertex-transitive action of an Ã2-group ΓT arises from a finite projective
plane (P, L), a bijection between P and L, and a compatible triangle presentation T on
P, the points of the projective plane, arising from the local structure of the building
(see [8, Section 3]). The Ã2-group ΓT is generated by a set indexed by P subject to the
relations encoded in T . The Ã2-building B is constructed as an augmented Cayley
graph of ΓT with 2-simplices given by T . Our ΛT is isomorphic to the 2-graph
obtained from [26, Example 1.7(iv)] from the 0–1 matrices Mi of [38, page 135]
(see Remark 5.18). Geometric considerations suggest both that ΣT should be simply
connected, and therefore equal to the universal cover of ΛT , and that its topological
realisation should coincide with that of B, so it should have Hausdorff boundary;
we leave this for future work. Our construction is also related to the construction of
k-graphs from groups in [31], but cannot be recovered from it: the covering 2-graphs
in [31] are products of trees rather than Ã2-buildings.

2. Background and preliminary results

2.1. Higher-rank graphs. We write N for the additive monoid {0, 1, . . .}. We denote
the standard generators of Nk ⊂ Zk by ε1, . . . , εk, and we write ni for the i th coordinate
of n ∈ Nk. We write 1k or just 1 for (1, . . . , 1) ∈ Nk.

A k-graph is a small category Λ equipped with a functor d : Λ→ Nk satisfying
the factorisation property: whenever d(λ) = m + n, there exist unique μ, ν ∈ Λ such
that d(μ) = m, d(ν) = n and λ = μν. This implies that Λ is cancellative. We write
Λn := d−1(n) for n ∈ Nk. When d(λ) = n, we say λ has degree n. The factorisation
property implies that Λ0 is the set of identity morphisms, which we call vertices.
Elements of

⋃
iΛ

εi are called edges. For u, v ∈ Λ0, we write uΛ := r−1(u),Λv := s−1(v)
and uΛv := uΛ ∩ Λv.

NOTATION 2.1. For λ ∈ Λ and 0 ≤ m ≤ n ≤ d(λ), we write λ(m, n) for the unique
element of Λ such that λ ∈ Λmλ(m, n)Λd(λ)−n. We define λ(n) := λ(n, n) = s(λ(0, n)).

DEFINITION 2.2. The k-graph Λ is connected if the equivalence relation ∼ on Λ0

generated by {(u, v) | uΛv � ∅} is Λ0 × Λ0. A k-graph is strongly connected if uΛv � ∅
for all u, v ∈ Λ0.
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A morphism φ : Ω→ Λ between k-graphs is a functor such that dΛ(φ(λ)) = dΩ(λ)
for all λ ∈ Ω. A quasi-morphism from a k-graph (Ω, dΩ) to an �-graph (Λ, dΛ) is a pair
(φ, f ) consisting of a functor φ : Ω→ Λ and a homomorphism f : Nk → N� such that
dΛ ◦ φ = f ◦ dΩ. If Λ is a k-graph, then ΛN1 := {λ ∈ Λ : d(λ) ∈ N1} is a 1-graph and
the natural inclusion ΛN1 ↪→ Λ together with the map f : N→ Nk given by f (n) := n1
is a quasimorphism.

EXAMPLES 2.3.

(i) Let Bn be the directed graph with B0
n = {u} and B1

n = { f1, . . . , fn}. Its path
category B∗n is a 1-graph and coincides with the free semigroup F+n on n
generators.

(ii) Let Δk = {(m, n) ∈ Zk × Zk : m ≤ n}. Define r, s : Δk → ObjΔk by r(m, n) = m,
s(m, n) = n, and for m ≤ m ≤ p ∈ Zk, define (m, n)(n, p) = (m, p) and
d(m, n) = n − m. Then (Δk, d) is a k-graph where ObjΔk is identified with
{(m, m) : m ∈ Zk} ⊂ MorΔk.

(iii) Similarly, Ωk = {(m, n) ∈ Nk × Nk : m ≤ n} is a sub-k-graph of Δk.

EXAMPLE 2.4 (Skew-product graphs). Let Λ be a k-graph, G a group and c : Λ→ G a
1-cocycle (functor). Then the set G ×c Λ := {(g, λ) : g ∈ G, λ ∈ Λ}, under the structure
maps

s(g, λ) = (gc(λ), s(λ)), r(g, λ) = (g, r(λ)),
(g, λ) · (gc(λ), μ) = (g, λμ), d(g, λ) = d(λ)

is a k-graph called the skew-product graph [26, Definition 5.1]. Left translation by G
on the first coordinate of G ×c Λ is an action of G by k-graph automorphisms.

There are two equivalent conventions for skew-product graphs in the literature: the
other is [33, Definition 6.3] (see also [5, Definition 3.5]). In [33, Definition 6.3],

Λ ×c G := {(λ, g) : λ ∈ Λ, g ∈ G}

with structure maps

s(λ, g) = (s(λ), g), r(λ, g) = (r(λ), c(λ)g),
(λ, c(λ)g) · (μ, g) = (λμ, g), d(λ, g) = d(λ).

It is simple to check that φ(g, λ) = (λ, c(λ)−1g−1) yields an isomorphism
φ : G ×c Λ→ Λ ×c G.

EXAMPLE 2.5 (Monoidal 2-graphs). The following class of 2-graphs was introduced
in [26, Section 6] and later studied extensively by Yang et al. [14, 46, 47]. Fix
n1, n2 ≥ 1. Let [ni] = {1, . . . , ni} for i = 1, 2. Let θ : [n1] × [n2]→ [n2] × [n1] be a
bijection. The monoidal 2-graph F+θ is the unique 2-graph such that (F+θ )0 = {v},
(F+θ )ε1 = {e1, . . . , en2}, (F+θ )ε2 = { f1, . . . , fn2} and

ei fj = fj′ei′ whenever θ(i, j) = (j′, i′).
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REMARK 2.6. In their early papers, Yang et al. define F+θ in terms of a bijection
θ : [n1] × [n2]→ [n1] × [n2] rather than [n1] × [n2]→ [n2] × [n1].

An affine map f : N� → Nk is a map of the form f (n) = An + p for A ∈ M�,k(N) and
p ∈ N�. The next proposition unifies the pullback construction of [26, Definition 1.9]
(case p = 0) and the p-dual graph of [1, Definition 3.2] (case A = I).

PROPOSITION 2.7 (Affine pullbacks). Let (Λ, d) be a k-graph and let f : N� → Nk be
an affine map with f (0) = p ∈ Nk. Set f ∗(Λ) = {(λ, n) : d(λ) = f (n)} ⊆ Λ × N�. Then
f ∗(Λ) is an �-graph, with r(λ, n) = [λ(0, p), 0], s(λ, n) = [λ(d(λ) − p, d(λ)), 0],

(λ, m) ◦ (μ, n) = (λ(0, d(λ) − p)μ, m + n) if s(λ, m) = r(μ, n),

and d f ∗(Λ)(λ, n) = n. We have f ∗(Λ)0 = {(λ, 0) : λ ∈ Λp}.

PROOF. As in [26, Definition 1.9], the pullback A∗(Λ) of Λ by the homomorphism
A : N� → Nk is an �-graph. By [1, Proposition 3.2], its dual p(A∗(Λ)) is also an �-graph.
As sets,

p(A∗(Λ)) = {(λ, n) ∈ Λ × N� : dpΛ(λ) = An}
= {(λ, n) ∈ Λ × N� : d(λ) = f (n)} = f ∗Λ.

Direct calculations show that this identification intertwines the structure maps above
with those of p(A∗(Λ)). �

EXAMPLE 2.8 (Crossed-product graph). Let α : Z� → AutΛ be an action of Z� on a
k-graph Λ. Then the set Λ × N� with the structure maps

r(λ, m) = (r(λ), 0), s(λ, m) = (α−m(s(λ)), 0),

(λ, m)(μ, n) = (λαm(μ), m + n), d(λ, m) = (d(λ), m)

is a (k + �)-graph, called the crossed-product graph Λ ×α N� (see [17]).

2.2. Fundamental groupoids, fundamental groups and universal covers. Every
k-graph Λ has a fundamental groupoid, defined as follows (see [42, Section 19.1] or
[32, Section 3]).

DEFINITION 2.9. Let Λ be a k-graph. There exists a groupoid Π(Λ) and a functor
i : Λ→ Π(Λ) such that i(Λ0) = Π(Λ)0, with the following universal property: for every
functor F from Λ into a groupoid G, there exists a unique groupoid homomorphism
F̃ : Π(Λ)→ G such that F̃ ◦ i = F. The pair (Π(Λ), i) is unique up to canonical iso-
morphism, so we refer to any such groupoid Π(Λ) as the fundamental groupoid of Λ.

REMARK 2.10. The assignment Λ �→ Π(Λ) is a functor from k-graphs to groupoids.
The restriction of i : Λ→ Π(Λ) to Λ0 is injective with range Π(Λ)0 and thus we
identify Λ0 with Π(Λ)0. Note that Π(Λ) is denoted G(Λ) in [32], but this clashes with
the notation for path groupoids in Section 2.4 and [26].

Each component of a k-graph also has a fundamental group.

https://doi.org/10.1017/S1446788725101109 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788725101109


6 N. Brownlowe, A. Kumjian, D. Pask and A. Sims [6]

DEFINITION 2.11. Let Λ be a k-graph. The fundamental group π1(Λ, v) of Λ at v ∈ Λ0

is the isotropy group π1(Λ, v) := vΠ(Λ)v of Π(Λ) at v.

DEFINITION 2.12. For X � ∅, the pair groupoid of X is T(X) := X × X, the simple
transitive groupoid with unit space {(x, x) : x ∈ X} identified with X; it has structure
maps

r(x, y) := x, s(x, y) := y, (x, y)(y, z) := (x, z), (x, y)−1 := (y, x).

REMARK 2.13. Suppose that Λ is connected. Then for every u, v ∈ Λ0, π1(Λ, u) �
π1(Λ, v), but the isomorphism π1(Λ, u)→ π1(Λ, v) is noncanonical.

Let v ∈ Λ0. Then there exists a function w �→ γw from Λ0 to Π(Λ)v such that γv = v
and r(γw) = w for all w. Any such function γ determines a 1-cocycle κ = κγ : Λ→
π1(Λ, v), given by

κγ(λ) := γ−1
r(λ)i(λ)γs(λ) for λ ∈ Λ,

and an isomorphism φγ : Π(Λ)→ π1(Λ, v) × T(Λ0) (see [33, Corollary 6.5]) given for
g ∈ Π(Λ) by

φγ(g) := (γ−1
r(g)gγs(g), (r(g), s(g))).

Thus, we have (φγ ◦ i)(λ) = (κγ(λ), (r(λ), s(λ))) for all λ ∈ Λ.

The following definitions appear in [33]. We include them for completeness.

DEFINITION 2.14. Let Λ,Σ, Γ be k-graphs.

(i) A surjective k-graph morphism p : Σ→ Λ is a covering if for all v ∈ Σ0, p
restricts to bijections Σv→ Λp(v) and vΣ→ p(v)Λ.

(ii) A covering p : Σ→ Λ is said to be connected if Σ (and hence Λ) is connected.
(iii) If p : Σ→ Λ and q : Γ→ Λ are coverings, a morphism from (Σ, p) to (Γ, q) is a

k-graph morphism φ : Σ→ Γ such that q ◦ φ = p.
(iv) A covering p : Σ→ Λ is universal if it is connected in the sense of part

(ii), and for every connected covering q : Γ→ Λ, there is a unique morphism
φ : (Σ, p)→ (Γ, q) in the sense of part (iii).

EXAMPLE 2.15. Let Λ be a k-graph, G a group, c : Λ→ G a 1-cocycle and G ×c

Λ the skew product. There is a covering p : G ×c Λ→ Λ given by p(g, λ) = λ
[33, Proposition 6.3]. The quotient G\(G ×c Λ) by translation in G is a k-graph, and p
descends to an isomorphism p̃ : G\(G ×c Λ)→ Λ.

THEOREM 2.16 [6, Proposition A.19], [33, Theorem 2.7]. Every connected k-graph Λ
has a universal covering. A connected covering p : Σ→ Λ is universal if and only if
the induced homomorphism p∗ : π1(Σ, v)→ π1(Λ, p(w)) given by p∗([γ]) = [p(γ)] is
the trivial homomorphism for some, and hence every, v ∈ Σ0.
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2.3. Simply connected k-graphs.

DEFINITION 2.17. A k-graph Λ is simply connected if π1(Λ, v) is trivial for every
v ∈ Λ0.

THEOREM 2.18 [33, Corollaries 5.5 and 6.5]. Let Λ be a connected k-graph.

(i) A connected covering p : Σ→ Λ is universal if and only if Σ is simply connected.
(ii) Given v ∈ Λ0, there exists a cocycle η : Λ→ π1(Λ, v) for which the skew-product

covering p : π1(Λ, v) ×η Λ→ Λ of Example 2.15 is a universal covering.

We can characterise simply connected k-graphs using either fundamental groupoids
or 1-cocycles.

LEMMA 2.19. Let Λ be a connected k-graph. Then the following are equivalent:

(i) Λ is simply connected;
(ii) γ �→ (r(γ), s(γ)) is an isomorphism Π(Λ) � T(Λ0); and
(iii) for every group G, every 1-cocycle c : Λ→ G is a coboundary in the sense that

there is a function b : Λ0 → G such that b(r(λ))c(λ) = b(s(λ)).

PROOF. (i)⇒ (ii). If Λ is simply connected, then by definition, π1(Λ, v) is trivial for
all v, so Remark 2.13 gives item (ii).

(ii)⇒ (iii). Suppose that Π(Λ) = T(Λ0) and fix a 1-cocycle c : Λ→ G. By the
universal property of Π(Λ), there is a homomorphism c̃ : T(Λ0)→ G that extends c
(that is, c = c̃ ◦ i). Fix v ∈ Λ0. Define b : Λ0 → G by b(w) = c̃(v, w). For each λ ∈ Λ,

c(λ) = c̃(r(λ), s(λ)) = c̃((r(λ), v)(v, s(λ))) = b(r(λ))−1b(s(λ)),

giving b(r(λ))c(λ) = b(s(λ)).
(iii)⇒ (i). Suppose that every 1-cocycle on Λ is a coboundary. Fix v ∈ Λ0.

As in Remark 2.13, for each w ∈ Λ0 \ {v}, fix γw ∈ Π(Λ)w
v , put γv = v and define

κ : Λ→ π1(Λ, v) by κ(λ) = γ−1
r(λ)i(λ)γs(λ). Then κ is a 1-cocycle so there is a map

b : Λ0 → π(Λ, v) such that κ(λ) = b(r(λ))−1b(s(λ)) for all λ. By the universal property
of the fundamental groupoid, κ extends uniquely to a 1-cocycle κ̃ : Π(Λ)→ π1(Λ, v)
(that is, κ = κ̃ ◦ i). By uniqueness, it follows that for all γ ∈ Π(Λ), we have

γ−1
r(γ)γγs(γ) = κ̃(γ) = b(r(γ))−1b(s(γ)).

The first equation implies that the restriction of κ̃ to π1(Λ, v) is the identity map and
by the second equation, the restriction is trivial. Hence, π1(Λ, v) is trivial and so Λ is
simply connected. �

2.4. The path groupoid GΛ and the C∗-algebra C∗(Λ). Let Λ be a row-finite
source-free k-graph. The infinite path space Λ∞ of Λ is the space of k-graph
morphisms x : Ωk → Λ under the locally compact Hausdorff topology with basic
compact open sets Z(λ) := {x ∈ Λ∞ : λ = x(0, d(λ))}, indexed by λ ∈ Λ. For p ∈ Nk,
the shift map σp : Λ∞ → Λ∞ is defined by σpx(m, n) = x(m + p, n + p) for x ∈ Λ∞
and (m, n) ∈ Ωk; and p �→ σp is an action of Nk by local homeomorphisms.
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Elements x, y∈Λ∞ are shift equivalent, written x� y, ifσpx=σqy for some p, q∈Nk.
The path groupoid GΛ is the Deaconu–Renault groupoid of the action p �→ σp.

DEFINITION 2.20 [26, Definition 2.7]. The path groupoid is

GΛ := {(x, n, y) ∈ Λ∞ × Z × Λ∞ : σ�x = σmy, n = � − m},

with unit space G0
Λ
= {(x, 0, x) : x ∈ Λ∞} identified with Λ∞, with structure maps

r(x, n, y) = x, s(x, n, y) = y, (x, n, y)(y, �, z) = (x, n + �, z), (x, n, y)−1 = (y,−n, x),

and under the topology with basic open sets

Z(μ, ν) = {(μx, d(μ) − d(ν), νx) : x ∈ Z(s(μ))}

indexed by pairs (μ, ν) ∈ Λ × Λ such that s(μ) = s(ν).

The C∗-algebra of Λ is defined via generators and relations.

DEFINITION 2.21 [26, Definition 1.5]. A family of partial isometries {sλ : λ ∈ Λ} is a
Cuntz–Krieger Λ-family if:

(CK1) {sv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(CK2) sλμ = sλsμ for all λ, μ ∈ Λ such that s(λ) = r(μ);
(CK3) s∗λsλ = ss(λ) for all λ ∈ Λ; and
(CK4) for all v ∈ Λ0 and n ∈ Nk, we have sv =

∑
λ∈vΛn sλs∗λ.

We write C∗(Λ) for the universal C∗-algebra generated by a Cuntz–Krieger Λ-family
{sλ : λ ∈ Λ}.

The groupoid GΛ is étale [26, Proposition 2.8], and [26, Corollary 3.5(i)] says that
C∗(Λ) � C∗(GΛ).

3. Embedding results for higher-rank graphs

In this section, we develop tools for determining when a k-graphΛ embeds inΠ(Λ),
and describe classes of examples that do embed; we also present three examples—one
from [32], one due to Ben Steinberg and one that is new—that do not embed.

3.1. Nonembeddings. Even a fairly elementary monoidal 2-graph Λ need not
embed in Π(Λ).

EXAMPLE 3.1 [32, Example 7.1]. Let Λ be the 1-vertex 2-graph with Λε1 = {d, e} and
Λε2 = {a, b, c} such that

da = ad, db = be, dc = ae, ea = cd, eb = ce, ec = bd. (3-1)

Using the first four relations from (3-1) and that the map i : Λ→ Π(Λ) is a morphism,
we obtain

i(a) = i(d)i(a)i(d)−1 = i(d)i(e)−1i(c) = i(d)i(b)i(e)−1 = i(b),

so i(a) = i(b) in Π(Λ). The fifth equation in (3-1) gives i(d) = i(e), so equations two
and five give i(b) = i(c). Hence, i(a) = i(b) = i(c) and i(d) = i(e). The degree map
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descends to an isomorphism d̃ : Π(Λ)→ Z2; so the universal cover of Λ is isomorphic
to Z2 ×d Λ.

The next example, shown to us by Ben Steinberg, who attributes the idea to Mal’cev
[30, §2] (see also [29, Example 11.13]), is a monoidal 2-graph that does not embed even
though its edge-set does.

EXAMPLE 3.2 (Steinberg, private communication). Let Λ be the unique 1-vertex
2-graph with Λε1 = {e1, e2, e3, e4} and Λε2 = { f1, f2, f3, f4}, and such that

ea fb :=

⎧⎪⎪⎨⎪⎪⎩
fbea if (a, b) = (1, 4), (4, 1);
faeb otherwise.

(3-2)

Since i : Λ→ Π(Λ) is a functor, i(ea)−1i( fa) = i( fb)i(eb)−1 for (a, b) = (1, 2), (2, 3),
(3, 4), so

i(e1)−1i( f1) = i( f2)i(e2)−1 = i(e3)−1i( f3) = i( f4)i(e4)−1,

and then rearranging the outer terms gives

i( f1e4) = i( f1)i(e4) = i( f4)i(e1) = i( f4e1).

Uniqueness of factorisations in Λ shows that f1e4 � f4e1, so i is not injective.
We show that i is injective on Λε1 ∪ Λε2 . For this, define c : Λε1 ∪ Λε2 → Z

by c(ej) = c( fj) = j for j = 1, . . . , 4. Since c respects (3-2), it extends to a functor
c : Λ→ Z. By Definition 2.9, there is a functor c̃ : Π(Λ)→ Z such that c̃ ◦ i = c.
In particular, c̃(i(ej)) = j = c̃(i( fj)) for all j. Hence, (c̃ × d̃) ◦ i : (Λε1 ∪ Λε2 )→ Z2 is
injective. Thus, i is injective on Λε1 ∪ Λε2 .

EXAMPLE 3.3. For readers looking at this paper in monochrome, in the following
example we refer to solid edges as blue, dashed edges as red, and dot-dashed edges as
green. By [19, Theorems 4.4 and 4.5], there is a unique 3-graph Γwith the skeleton and
factorisation rules below (there are no 3-coloured paths, so the associativity condition
is vacuous).

By Proposition 3.12(ii) below, the 2-coloured sub-2-graphs of Γ are all embeddable:
the Z-valued cocycle on the blue–red graph carrying { fi : i ≤ 4} to 1 and all other
edges to 0 is essential (see Definition 3.10); the Z-valued cocycle on the red–green
graph carrying { f1} ∪ { f ′i : i ≥ 2} to 1 and all other edges to 0 is essential; and the
trivial cocycle on the blue–green graph is essential.
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However, Γ does not embed in Π(Γ): writing [x] for i(x) ∈ Π(Λ), we calculate:

[ f ′1][g1]−1 = [g3]−1[ f3] = [ f2][g2]−1 = [ f2][e2]−1[e2][g2]−1 = [e3]−1[ f4][g4]−1[e4]

= [e3]−1[ f4][e1][e1]−1[g4]−1[e4]

= [e3]−1[e3][ f1][g1]−1[e4]−1[e4] = [ f1][g1]−1.

So cancellation gives [ f ′1] = [ f1]. We then have [ f ′3] = [g3][ f1][g1]−1 = [g3][ f ′1]
[g1]−1 = [ f3] and [ f ′4] = [e3][ f ′1][e1]−1 = [e3][ f1][e1]−1 = [ f4], and then also
[ f ′2] = [e3]−1[ f ′4][e2] = [e3]−1[ f4][e2] = [ f2].

Motivated by these examples, we seek conditions under which i : Λ→ Π(Λ) is
injective.

3.2. Embedding singly connected higher-rank graphs.

DEFINITION 3.4. A k-graph Λ is singly connected if there is at most one path between
any two vertices; that is, for all u, v ∈ Λ0, we have |uΛv| ≤ 1.

Singly connected k-graphs need not be connected. The vertex set of a singly
connected k-graph is partially ordered by the relation ≤ given by u ≤ v if and only
if uΛv � ∅.

EXAMPLE 3.5. Write {ti : i = 1, . . . , n} for the generators of the free group Fn. Let
c : Bn → Fn be the 1-cocycle such that c( fi) = ti for all i. Then Fn ×c Bn is singly
connected.

There is a relationship between singly connected k-graphs and the simply connected
k-graphs of Section 2.3, though neither condition implies the other.

PROPOSITION 3.6. Let Λ be a connected k-graph and suppose that i : Λ→ Π(Λ) is
injective. If Λ is simply connected, then it is singly connected.

PROOF. Suppose that Λ is not singly connected. Then there exist distinct ele-
ments λ, μ ∈ Λ such that s(λ) = s(μ) and r(λ) = r(μ). Since i : Λ→ Π(Λ) is injec-
tive, i(λ) � i(μ) and thus i(λ)−1i(μ) ∈ π1(Λ, s(λ))\{s(λ)}. Hence, Λ is not simply
connected. �

The reverse implication fails, as the following example illustrates.

EXAMPLE 3.7. Let E be the directed graph with E0 = {u, v, w, x} and E1 = {e, f , g, h}
such that s(e) = u = s( f ), s(g) = w = s(h), r(e) = v = r(h) and r( f ) = x = r(g). Then
the 1-graph E∗ is a singly connected 1-graph that is not simply connected since
π1(E∗, u) � Z. Adding tails at both u and w as in [4, Lemma 1.2] yields a source-free
1-graph with the same property.

We use the next theorem, which exploits the universal property of the fundamental
groupoid from Section 2.2, to show that singly connected k-graphs embed in their
fundamental groupoids.
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THEOREM 3.8. Let Λ be a k-graph and let G be a groupoid. If there is an injective
functor F : Λ→ G, then i : Λ→ Π(Λ) is injective.

PROOF. The universal property of the fundamental groupoid yields a homomorphism
F̃ : Π(Λ)→ G such that F = F̃ ◦ i. Hence, if F is injective, then i is injective. �

PROPOSITION 3.9. Let Λ be a connected k-graph. Then:

(i) the canonical map ι : Λ→ T(Λ0) is injective if and only if Λ is singly connected;
(ii) if Λ is singly connected, then i : Λ→ Π(Λ) is injective.

PROOF. The first assertion follows by definition and the second follows from
Theorem 3.8. �

Theorem 3.8 also allows us to deduce embeddability from the existence of a suitable
1-cocycle.

DEFINITION 3.10. Let Λ be a k-graph, G a countable group and c : Λ→ G a
1-cocycle. We say that c is essential if the restriction of c to uΛv is injective for all
u, v ∈ Λ0.

EXAMPLE 3.11. The 1-cocycle c : Bn → Fn described in Example 3.5 is essential.

PROPOSITION 3.12. Let Λ be a connected k-graph and let v ∈ Λ0. Then the following
are equivalent:

(i) the 1-cocycle κ : Λ→ π1(Λ, v) given in Remark 2.13 is essential;
(ii) Λ admits an essential cocycle c : Λ→ G to a group G; and
(iii) i : Λ→ Π(Λ) is injective.

For any essential cocycle c : Λ→ G as in part (ii), G ×c Λ is singly connected.

PROOF. The implication (i) =⇒ (ii) is obvious.
For (ii) =⇒ (iii), suppose that c : Λ→ G is an essential cocycle into a group. Note

that G × T(Λ0) is a groupoid. Define j : Λ→ G × T(Λ0) by j(λ) := (c(λ), (r(λ), s(λ)));
then j is a functor. Since c is essential, j is injective, so i : Λ→ Π(Λ) is injective by
Theorem 3.8.

For (iii) =⇒ (i), suppose that i : Λ→ Π(Λ) is injective. Recall that by
Remark 2.13, (κ(λ), (r(λ), s(λ))) = (φγ ◦ i)(λ) for all λ ∈ Λ. Hence, κ is essential, since
φγ ◦ i is injective.

For the final statement, suppose that c : Λ→ G is essential, and that r(g, λ) = r(h, μ)
and s(g, λ) = s(h, μ) in G ×c Λ. Then

(g, r(λ)) = r(g, λ) = r(h, μ) = (h, r(μ)) and
(c(λ)g, s(λ)) = s(g, λ) = s(h, μ) = (c(μ)h, s(μ)).

So r(λ) = r(μ), s(λ) = s(μ), g = h and c(λ)g = c(μ)h. These last two equalities give
c(λ) = c(μ). Thus, j(λ) = j(μ) and hence λ = μ. Therefore, (g, λ) = (h, μ) and so G ×c Λ

is singly connected. �
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3.3. More general embedding results. In this section, we investigate embeddabil-
ity of k-graphs that are not singly connected. We start with one of the most useful
results in our toolkit, which relies on the universal property of the fundamental
groupoid given in Definition 2.9.

PROPOSITION 3.13 (Lifting embeddability). Let Λ,Σ be connected k-graphs and let
p : Σ→ Λ be a covering. Then iΛ : Λ→ Π(Λ) is injective if and only if iΣ : Σ→ Π(Σ)
is injective.

PROOF. Suppose that iΛ : Λ→ Π(Λ) is injective and that σ,σ′ ∈ Σ satisfy
iΣ(σ) = iΣ(σ′). In particular, s(σ) = s(σ′); let u := s(σ). By universality of Π(Σ), there
is a unique groupoid morphism p̃ : Π(Σ)→ Π(Λ) such that p̃ ◦ iΣ = iΛ ◦ p. Hence,

iΛ(p(σ)) = p̃(iΣ(σ)) = p̃(iΣ(σ′)) = iΛ(p(σ′)).

Injectivity of iΛ forces p(σ) = p(σ′). Since p is a covering, it is injective on s−1(u). So
σ = σ′, and hence iΣ : Σ→ Π(Σ) is injective.

For the reverse implication, suppose that iΛ : Λ→ Π(Λ) is not injective. Then
there are distinct λ, λ′ ∈ Λ such that iΛ(λ) = iΛ(λ′). We may assume without loss
of generality that Σ is the universal covering of Λ so that Σ is simply connected.
Since Σ is connected, r × s : Π(Σ)→ Σ0 × Σ0 is an isomorphism, so Π(Σ) � T(Σ0).
By Theorem 2.18(ii), given u ∈ Λ0, there is a cocycle η : Λ→ π1(Λ, u) such that
Σ � π1(Λ, u) ×η Λ and p is given by projection onto the second factor. It follows
that s(λ) = s(λ′), r(λ) = r(λ′) and η(λ) = η(λ′) (since η factors through iΛ and iΛ(λ) =
iΛ(λ′)). Identifying Σ with the skew-product as above, set σ = (1, λ),σ′ = (1, λ′) ∈ Σ,
so σ,σ′ are distinct. We have

s(σ) = s(1, λ) = (η(λ), s(λ)) = (η(λ′), s(λ′)) = s(1, λ′) = s(σ′)

and similarly, r(σ) = r(σ′). So (r × s)(iΣ(σ)) = (r × s)(iΣ(σ′)). Since r × s is injective
on iΣ, we deduce that iΣ : Σ→ Π(Σ) is not injective. �

Our later results say that embeddability is preserved by various constructions of
new k-graphs from old ones. So we need to know that some basic classes of k-graphs,
like 1-graphs, embed.

THEOREM 3.14. Let Λ be a 1-graph. Then iΛ : Λ→ Π(Λ) is injective.

PROOF. Write Λ =
⊔n

i=1Λi as a disjoint union of connected graphs. For i = 1, . . . , n,
let Σi be the universal cover of Λi. Since Σ =

⊔n
i=1 Σi is (the path category of) a disjoint

union of trees, there is at most one undirected path connecting any two distinct vertices.
It follows that Σ is singly connected and therefore embeddable by Proposition 3.9(ii).
Hence, iΛ : Λ→ Π(Λ) is injective. �

COROLLARY 3.15. Let Λ be a k-graph and suppose that iΛ : Λ→ Π(Λ) is injective.

(i) Let f : N� → Nk be an affine map. Then i : f ∗(Λ)→ Π( f ∗(Λ)) is injective.
(ii) If Γ is an �-graph and iΓ : Γ→ Π(Γ) is injective, then iΛ×Γ : Λ × Γ→ Π(Λ × Γ)

is injective.
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(iii) If c : Λ→ G is a 1-cocycle into a group, then iG×Λ : G ×c Λ→ Π(G ×c Λ) is
injective.

(iv) If α : N� → Aut(Λ) is an action, then there is an action α̃ : Z� → Aut(Π(Λ))
such that α̃n ◦ iΛ = iΛ ◦ αn for n ∈ N�. Both

iΛ × iN� : Λ ×α N� → Π(Λ) ×α Z� and iΛ×αN� : Λ ×α N� → Π(Λ ×α N�)

are injective. Moreover, iΛ × iN� induces an isomorphism Π(Λ ×α N�) �
Π(Λ) ×α Z�.

PROOF. (i) Define i × id : f ∗(Λ)→ Π(Λ) × Z� by (i × id)(λ, n) = (i(λ), n). Then i × id
is an injective functor into a groupoid, so the result follows from Theorem 3.8.

(ii) The map iΛ × iΓ : Λ × Γ→ Π(Λ) × Π(Γ) is an injective functor into a groupoid,
so the result follows from Theorem 3.8.

(iii) By universality of Π(Λ), there is a cocycle c̃ : Π(Λ)→ G such that c̃ ◦ iΛ = c.
The skew-product groupoid G ×c̃ Π(Λ) is equal as a set to G × Π(Λ), and idG ×iΛ :
G ×c Λ→ G ×c̃ Π(Λ) is a functor. Since iΛ is injective, so is idG ×iΛ, so the result
follows from Theorem 3.8.

(iv) Since the action α of N� on Λ is determined by � commuting automorphisms,
it extends to an action (also called α) of Z� on Λ. By functoriality, this extends to an
action α̃ : Z� → Aut(Π(Λ)) such that α̃n ◦ iΛ = iΛ ◦ αn for n ∈ N�. It is routine to check
that iΛ × iN� is a functor; it is injective because iΛ and iN� are injective. So Theorem 3.8
implies that iΛ×αN� is injective.

To see that iΛ × iN� induces an isomorphism Π(Λ ×α N�) � Π(Λ) ×α Z�, note
that the universal property of Π(Λ ×α N�) implies that iΛ × iN� induces a homo-
morphism ĩ : Π(Λ ×α N�)→ Π(Λ) ×α Z� such that ĩ ◦ iΛ×αN� = iΛ × iN� . We construct
an inverse. The restriction c1 := iΛ×αN� |Λ×{0} : Λ→ Π(Λ ×α N�) is a functor, as is
c2 := iΛ×αN� |Λ0×N� . The universal property of Π(Λ) implies that iΛ×αN� |Λ×{0} induces
a homomorphism c̃1 : Π(Λ)→ Π(Λ ×α N�); and iΛ×αN� |Λ0×N� extends to a homomor-
phism c̃2 : Λ0 × Z� → Π(Λ ×α N�). Routine calculations show that c̃1 × c̃2 : Π(Λ) ×α̃
Z
� → Π(Λ ×α N�) is a homomorphism inverse to ĩ. �

REMARK 3.16. Combining Theorem 3.14 and Corollary 3.15(iv), we see that
crossed-product graphs of 1-graphs always embed in their fundamental groupoids.

EXAMPLES 3.17. We present two examples of Corollary 3.15(i).

(i) Define f : N2 → N by f (a, b) = a + b. Let Λ = f ∗(Bn). Corollary 3.15 implies
that f ∗(Λ) embeds in its fundamental group since Theorem 3.14 impies that the
1-graph Bn does. Indeed, for θ : [n] × [n]→ [n] × [n] given by θ(i, j) = (i, j), we
have Λ � F+θ .

(ii) Let Λ be a 2-graph and define f : N2 → N2 by f (a, b) = (a, b) + 1. Then f ∗(Λ)
is the dual graph 1Λ described in [1, Definition 3.1]. So for the 2-graph
Λ = F+θ from example (i) above, f ∗(F+θ ) embeds in its fundamental group by
Corollary 3.15(i).
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COROLLARY 3.18 (Action graphs). Let Λ be a k-graph. Let Bn be the 1-graph
described in Example 2.3(i). Let μ �→ αμ be a functor from Bn to Aut(Λ). Let
Γ = Bn × Λ; define d : Γ→ Nk+1 by d(μ, λ) = (|μ|, d(λ)); define r, s : Γ→ Γ0 by
r(μ, λ) = (u,αμ(r(λ))) and s(μ, λ) = (u, s(λ)); and define composition in Γ by

(μ,αν(λ))(ν, ξ) = (μν, λξ). (3-3)

Then (Γ, d) is a (k + 1)-graph. If iΛ : Λ→ Π(Λ) is injective, then iΓ : Γ→ Π(Γ) is
injective.

PROOF. It is routine to check that (3-3) determines an associative composition. The
map d is clearly a functor and if d(μ, λ) = (a + b, m + n), then factorising μ = μaμb and
λ = λmλn with the appropriate degrees, the factorisation (μ, λ) = (μa,αμb (λm))(μb, λn)
is the unique factorisation of (μ, λ) into morphisms of degrees (a, m) and (b, n). So Γ
is a (k + 1)-graph.

Universality of Π(Λ) implies that each αμ extends to an automorphism of Π(Λ).
So α extends to an action of Π(Bn) � Fn on Π(Λ), with semidirect product groupoid
Π(Bn) �α̃ Π(Λ). Then iBn × iΛ is an embedding of Γ in Π(Bn) �α̃ Π(Λ). The result now
follows by Theorem 3.8. �

EXAMPLES 3.19.

(i) Fix m, n ≥ 2. Let Λ = Bm be the 1-graph described in Example 2.3(i). For each
f ∈ B1

n, let α f be a permutation of B1
m and extend this to a 1-cocycle Bn → Aut(Λ)

in the only possible way. By Theorem 3.18, these data give rise to a 2-graph
Γ that embeds in its fundamental group. Define θ : [n] × [m]→ [m] × [n] by
θ(i, j) = (j′, i) if and only if α fi ( fj) = fj′ . Then Γ is isomorphic to the 2-graph F+θ
of Example 2.5. In particular, F+θ embeds in its fundamental group.

EXAMPLE 3.20. Fix n ≥ 2 and a permutation σ ∈ Bij([n]), the group of all bijections
of the set [n]. Define θ : [n] × [n]→ [n] × [n] by θ(i, j) = (σ(i), j). This fits into the
situation of Example 3.19, so F+θ embeds in its fundamental group.

DEFINITION 3.21. Let X be a nonempty set. A map R : X2 → X2 is a (set-theoretic)
Yang–Baxter solution if

(R × idX)(idX × R)(R × idX) = (idX × R)(R × idX)(idX × R)

as maps on X3. For every permutation σ of X, there is a Yang–Baxter solution R
given by R(e, f ) = (σ( f ), e); such solutions are called permutation-type Yang–Baxter
solutions.

For the interplay between the Yang–Baxter equation and k-graphs, see [47].

LEMMA 3.22. Fix a finite set X and a Yang–Baxter solution R : X2 → X2 on X. Fix
k ≥ 2. Let Λ0

k,R = {v}. For i ≤ k, let Λεi
k,R = {i} × X. For (i, e) ∈ Λεi

k,R and (j, f ) ∈ Λεj

k,R
with i < j, set

(i, e)(j, f ) = (j, f ′)(i, e′) if R(e, f ) = ( f ′, e′).
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There is a unique k-graph Λk,R with these edges and factorisation rules. If R is a
permutation-type Yang–Baxter solution, then i : Λk,R → Π(Λk,R) is injective.

PROOF. The first statement follows from [47, Section 4.1]. For the second statement,
we proceed by induction. For k = 2, this follows from [47, Section 4.1]. Now suppose
inductively that Λk−1,R embeds in its fundamental groupoid. There is an automorphism
α of Λk−1,R such that α(i, e) = (i,σ(e)) for all i ≤ k − 1 and e ∈ X. For e ∈ B1

|X|, let
αe := α ∈ Aut(Λk−1,R). Corollary 3.18 yields a k-graph Γ = B|X| ×α Λk−1,R. Choose a
bijection φ : B1

|X| → Λ
ε1
k,R. Then there is an isomorphism Γ→ Λk,R that agrees with φ

on B1
|X| ⊆ Γ and takes each (i, e) ∈ Λεi

k−1,R ⊆ Γ to (i + 1, e) ∈ Λεi+1
k,R . Corollary 3.18 implies

that Γ embeds in its fundamental groupoid, so Λk,R does too. �

REMARK 3.23. For a long time, the literature on k-graphs lacked concrete examples
with k ≥ 3 not obtained from lower-rank graphs via the constructions of Corollary 3.15.
Yang’s important insight [47] remedied this situation: every Yang–Baxter solution
yields k-graphs for arbitrary k, typically not of the forms from Corollary 3.15. In
particular, Lemma 3.22 uses Yang’s construction to see that every finite permutation
σ yields a k-graph that embeds in its fundamental groupoid for each k ≥ 1. Taking
σ = id yields Cartesian-product k-graphs, but most other choices of σ yield k-graphs
that do not arise from the constructions of Corollary 3.15.

REMARK 3.24. Work of Lawson and Vdovina also yields many embeddable k-graphs.
A monoidal k-graph is rigid [29, page 37] if whenever e and f are edges of different
degrees, there are unique edges e′, e′′, f ′, f ′′ such that e′ f = f ′e and e f ′′ = f e′′.
Theorem 3.8 and [29, Theorem 11.14] combined imply that every rigid monoidal
k-graph Λ embeds in Π(Λ).

We finish the section by showing that a strongly connected k-graph Λ embeds in
Π(Λ) whenever the submonoid of endomorphisms at any vertex embeds in a group.

PROPOSITION 3.25. LetΛ be a strongly connected k-graph and H a group. Fix v ∈ Λ0.
If there exists an injective monoid homomorphism c : vΛv→ H, then i : Λ→ Π(Λ) is
injective.

PROOF. The universal property of Π(Λ) given in Definition 2.9 implies that
there is a homomorphism c̃ : i(v)Π(Λ)i(v)→ H such that c̃ ◦ i = c. Since Λ is
strongly connected and since Π(Λ) is a discrete groupoid, Π(Λ) is isomorphic
to T(Λ0) × i(v)Π(Λ)i(v). Post-composing this isomorphism with idT(Λ0) ×c̃ yields a
groupoid homomorphism q : Π(Λ)→ T(Λ0) × H. Suppose that q(i(μ)) = q(i(ν)). Fix
λ ∈ vΛr(μ) and τ ∈ s(μ)Λv. We have

((v, v), c(λμτ)) = ((v, v), c̃(i(λμτ))) = q(i(λμτ))

= q(i(λντ)) = ((v, v), c̃(i(λντ)))((v, v), c(λντ)).

Since c is injective, λμτ = λντ and so μ = ν. Thus, q ◦ i, and therefore i, is
injective. �
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EXAMPLE 3.26. Consider the 2-graph Λ below with relations a0e = f a1, a1e = f a0,
b f = eb.

Then Λ is strongly connected. None of our results before Proposition 3.25 apply
to show that Λ embeds in Π(Λ). Since ebai = b f ai = ba1−ie for each i, the monoid
uΛu ⊆ Λ has presentation

uΛu = 〈e, ba0, ba1 : ebai = ba1−ie, i = 0, 1〉,

so is isomorphic to the semidirect product F+2 ×α N for the action α that interchanges
{ba0, ba1}, the generators of F+2 . The action α extends uniquely to an action α̃ of
Z on F2, and uΛu � F+2 ×α N embeds in F2 ×α̃ Z. So Proposition 3.25 implies that
i : Λ→ Π(Λ) is injective.

4. C∗-algebraic results

Here, we generalise [25, Corollary 4.14], which says that the C∗-algebra of a
connected row-finite 1-graph is Rieffel–Morita equivalent to a crossed product of a
commutative C∗-algebra by the fundamental group of the graph. The situation is much
more complicated in higher dimensions.

Let Λ be a connected row-finite source-free k-graph. Fix v ∈ Λ0. By Theorem 2.18
(see [33, Corollary 6.5]), there is a cocycle η : Λ→ π1(Λ, v) such that the
skew-product π1(Λ, v) ×η Λ is isomorphic to the universal cover Σ of Λ. It then follows
from [26, Theorem 5.7] that C∗(Λ) is Rieffel–Morita equivalent to C∗(Σ) � π1(Λ, v).
Our main theorem describes the coefficient algebra C∗(Σ) of this crossed product.

THEOREM 4.1. Let Λ be a connected row-finite source-free k-graph and let
Σ = π1(Λ, v) ×η Λ be as above so that C∗(Λ) is Rieffel–Morita equivalent to
C∗(Σ) � π1(Λ, v).

(i) The C∗-algebra C∗(Σ) is AF.
(ii) If Λ embeds in its fundamental groupoid Π(Λ), then C∗(Σ) is type I0 and its

spectrum has a cover by zero-dimensional compact open Hausdorff subsets.
(iii) IfΛ embeds in its fundamental groupoidΠ(Λ) and ΣN1 is simply connected, then

C∗(Σ) is Rieffel–Morita equivalent to a commutative C∗-algebra.

We use the next two results to prove parts (i) and (ii) of Theorem 4.1.

PROPOSITION 4.2. Let Γ be a row-finite source-free k-graph. If Γ is simply connected,
then there is a map f : Γ0 → Zk such that d(λ) = f (s(λ)) − f (r(λ)) for all λ ∈ Γ.
Moreover, C∗(Γ) is AF.

PROOF. Since d : Γ→ Zk is a cocycle, Lemma 2.19 ensures the existence of f. Now,
[26, Lemma 5.4] implies that C∗(Γ) is AF. �
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EXAMPLE 4.3. Let Λ be the 2-graph of Example 3.1 (see [32, Example 7.1]).
Recall that Λ does not embed in its fundamental groupoid and the universal cover
Σ = Z2 ×d Λ is simply connected. We claim that C∗(Σ) is Rieffel–Morita equivalent
to the UHF algebra M6∞ (in fact, C∗(Σ) � M6∞ ⊗ K). For each n ∈ N, set vn := n1
and observe that as in the proof of [26, Lemma 5.4], An := C∗({sλ : s(λ) = vn}) �
K(�2(s−1(vn))). Moreover, for all n, An ⊂ An+1 and the multiplicity of the embedding
is 6 (since |vnΛvn+1| = 6). Since the sequence (vn)∞n=1 is cofinal in Z2,

C∗(Σ) � lim−−→An � lim−−→K(�2(s−1(vn))).

Hence, C∗(Σ) is Rieffel–Morita equivalent to the UHF algebra M6∞ as claimed.

PROPOSITION 4.4. Let Γ be a row-finite source-free k-graph. If Γ is singly connected,
then, for each v ∈ Γ0, the corner svC∗(Γ)sv is an abelian C∗-algebra isomorphic to
C(Z(v)). Moreover, C∗(Γ) is type I0 and Prim C∗(Γ) admits a cover by zero-dimensional
compact open Hausdorff sets.

PROOF. Fix x, y ∈ Γ∞ such that x(0) = y(0) and p, q ∈ Nk. We claim that if
σp(x) = σq(y), then p = q and x = y. To see this, suppose that σp(x) = σq(y).
Then σp(x)(0) = σq(y)(0). Let u := x(0) = y(0) and v := σp(x)(0) = σq(y)(0).
Then x(0, p), y(0, q) ∈ uΓv. Since Γ is singly connected, x(0, p) = y(0, q). Hence,
x = x(0, p)σp(x) = y(0, q)σq(y)(0) = y, and the claim holds.

Now, recall from [26] that Γ∞ = G0
Γ

and that for v ∈ Γ0,

GΓ|Z(v) := {γ ∈ GΓ : s(γ), r(γ) ∈ Z(v)},

sv = χZ(v) ⊂ C0(G0
Γ
) and svC∗(Γ)sv � C∗(GΓ|Z(v)). By the first paragraph,

GΓ|0Z(v) � Z(v). Hence, C∗(GΓ|Z(v)) � C(Z(v)). So for each v ∈ Γ0, the ideal Iv generated
by sv is Rieffel–Morita equivalent to the abelian C∗-algebra C(Z(v)). Since C∗(Γ) is
generated by the ideals Iv, C∗(Γ) is type I0.

By definition of the hull-kernel topology, the ideals Iv yield a cover of Prim(C∗(Γ))
by open sets Îv � Prim(Iv). Since each Iv is Rieffel–Morita equivalent to C(Z(v)),
each Prim(Iv) � Z(v) is a zero-dimensional compact open Hausdorff subspace of
Prim(C∗(Γ)). �

PROOF OF THEOREM 4.1(I) AND (II). Proposition 4.2 for Γ = Σ gives part (i). If
Λ→ Π(Λ) is injective, then so is Σ→ Π(Σ) by Proposition 3.13. Since Σ is simply
connected, Proposition 3.6 implies that Σ is singly connected; so Proposition 4.4 for
Γ = Σ gives part (ii). �

To prove Theorem 4.1(iii), we argue that the spectrum C∗(Σ)∧ is Hausdorff: then
Theorem 4.1(ii) shows that C∗(Σ) is Rieffel–Morita equivalent to a continuous-trace
C∗-algebra with totally disconnected spectrum, and the Dixmier–Douady theorem
shows that C∗(Σ) is Rieffel–Morita equivalent to C0(C∗(Σ)∧). We argue that
C0(C∗(Σ)∧) � ΣN1/GΣN1 and use the additional hypothesis that ΣN1 is simply connected
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to prove Theorem 4.1(iii). We do not know whether this additional hypothesis is
automatic; certainly, even for 1-graphs, being singly connected does not guarantee that
the associated C∗-algebra has Hausdorff spectrum.

EXAMPLE 4.5. Let E be the directed graph (pictured below) such that:

• E0 = {un, vn : n ∈ Z} ∪ {wn,i : n ∈ Z and i ≥ 0}; and
• E1 = {en, fn, gn, hn : n ∈ Z} ∪ {kn,i : n ∈ Z and i ≥ 0},

and such that for n ∈ Z and i ≥ 0,

r(en) = s(en−1) = r(gn) = un, r( fn) = s( fn−1) = r(hn) = vn,
s(gn) = s(hn) = r(kn,0) = wn,0, s(kn,i) = r(kn,i+1) = wn,i+1.

. . .

. . .

u−1

v−1

u0

v0

u1

v1

u2

v2

. . .

. . .

w−1,0 w−1,1 w−1,2
. . .

w0,0 w0,1 w0,2
. . .

w1,0 w1,1 w1,2
. . .

w2,0 w2,1 w2,2
. . .

e−1

f−1

e0

f0

e1

f1

g−1

h−1

k−1,0 k−1,1

g0

h0

k0,0 k0,1

g1

h1

k1,0 k1,1

g2

h2
k2,0 k2,1

This graph E is singly connected. Define x, y ∈ E∞ by x = e0e1e2 · · · and
y = f0 f1 f2 · · ·. Then [x] � [y] in G(0)

E /GE. We claim that they cannot be separated
by disjoint open sets. To see this, for n ∈ Z, let zn = kn,0kn,1kn,2 · · · . We show that
[zn]→ [x] and zn → [y] as n→ ∞. By symmetry, we just have to show that [zn]→ [x].
For this, just note that [zn] = [e0e1 · · · en−1gnzn] and we have limn→∞ e0e1 · · · en−1gnzn =

e0e1e2 · · · = x.
We have C∗(E) � C∗(GE) by [27, Proposition 4.1]. Since C∗(E) is type I0, its

spectrum is homeomorphic, by [11, Corollary 4.2], to the orbit space G(0)
E /GE of GE,

which we just saw is not Hausdorff. Note that E is not simply connected (for example,
e0g1h−1

1 f −1
0 h0g−1

0 ∈ Π(E∗)u0
u0 \ {u0}).

Example 4.5 suggests a Hausdorffness criterion (Lemma 4.7). As this criterion is
not easy to check, in Theorem 4.8, we specialise to singly connected k-graphs and
recast it in terms of the following relation on vertices, which permeates analyses of
ideals of k-graph C∗-algebras [36].

NOTATION 4.6. For Γ a k-graph, we define a relation ≤ on Γ0 by v ≤ w if and only if
vΓw � ∅.
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LEMMA 4.7. Let Γ be a row-finite source-free k-graph and let GΓ be its k-graph
groupoid. The orbit space Γ∞/GΓ is Hausdorff if and only if for every pair of infinite
paths x, y ∈ Γ∞ such that [x] � [y], there exists N ∈ Nk such that the vertices x(N) on
x and y(N) on y have no common upper bound with respect to ≤, in the sense that
s(μ) � s(ν) for all μ ∈ x(N)Γ and ν ∈ y(N)Γ.

PROOF. We have [x] = [y] if and only if σm(x) = σn(y) for some m, n. So it suffices
to fix x, y such that σm(x) � σn(y) for all m, n, and show that [x] and [y] can be
separated if and only if there exists N as in the statement. Suppose that there
is no such N. For each N ∈ Nk, choose μN ∈ x(N)Γ and νN ∈ y(N)Γ with s(μN) =
s(νN), and zN ∈ s(μN)Γ∞. Then x(0, N)μNzN → x and y(0, N)νNzN → y. Since each
[x(0, N)μNzN] = [zN] = [y(0, N)νNzN], this forces [zN]→ [x] and [zN]→ [y]. Now
suppose that there exists N as in the statement. Then q(Z(x(0, N))) and q(Z(y(0, N)))
are disjoint open neighbourhoods of [x] and [y] in Γ∞/GΓ. �

Recall that a filter for a partially ordered set (X,�) is a nonempty subset F ⊆ X such
that:

(a) for all u, v ∈ F, there exists w ∈ F such that u, v � w;
(b) if v ∈ F and u � v, then u ∈ F.

A filter F for � is called an ultrafilter if:

(c) F is not properly contained in any other filter F′ for (X,�).

If Γ is singly connected, then ≤ is a partial order on Γ0. We show that elements of
Γ∞/GΓ correspond with ultrafilters for (Γ0,≤) and use this to characterise Hausdorff-
ness of Γ∞/GΓ.

THEOREM 4.8. Let Γ be a singly connected row-finite source-free k-graph. Then the
ultrafilters for (Γ0,≤) are exactly the sets [x]0 := {r(y) : y ∈ [x]} indexed by elements
x ∈ Γ∞. Moreover, Γ∞/GΓ is Hausdorff if and only if for every pair U, V of distinct
ultrafilters of (Γ0,≤), there is a pair u ∈ U and v ∈ V with no common upper bound
with respect to ≤.

PROOF. For the first statement, first fix x ∈ Γ∞. If v1, v2 ∈ [x]0, then v1 = r(ασm(x))
and v2 = r(βσn(x)) for some α, β, m, n, and then w = r(σm+n(x)) ∈ [x]0 satisfies
viΓw � ∅ by definition; so [x]0 satisfies part (a). If w ∈ [x]0 and v ∈ Γ0 satisfy
v ≤ w, say α ∈ vΓw, then since w ∈ [x]0, we have w = r(βσn(x)) for some β, n and
so v = r(αβσn(x)) ∈ [x]0; so [x]0 satisfies part (b). Suppose that F is a filter for
(Γ0,≤) containing [x]0. Fix v ∈ F; we must show that v ∈ [x]0. Since v, x(0) ∈ F, there
exists w ∈ F with v ≤ w and x(0) ≤ w, and by part (b), if w ∈ [x]0, then v ∈ [x]0; so
we just have to show that w ∈ [x]0. Fix α ∈ x(0)Γw. Then r(σd(α)(x)) ∈ [x]0 ⊆ F. So
there exists w′ ∈ F such that r(σd(α)(x)), w ≤ w′; say ρ ∈ r(σd(α)(x))Γw′ and τ ∈ wΓw′.
So ατ and x(0, d(α))ρ both belong to x(0)Γw′. Since Γ is singly connected, this
forces ατ = x(0, d(α))ρ, so the factorisation property forces x(0, d(α)) = α; hence,
w = s(α) = s(x(0, d(α))) ∈ [x]0.
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Now, fix an ultrafilter F for (Γ0,≤). Enumerate F = (v1, v2, . . .), put w1 = v1 and
inductively use part (a) to choose wi+1 ∈ F such that vi+1, wi ≤ wi+1. So (wi)i is an
increasing sequence such that every v ∈ F satisfies v ≤ wi for some i. For each i, use
that wi ≤ wi+1 to fix αi ∈ wiΓwi+1, let ρi := α1 · · ·αi and choose yi ∈ Z(ρi) ⊆ Γ∞. Since
(yi)i belongs to the compact set Z(v1), it has a convergent subsequence yil → y ∈ Z(v1).
We claim that F = [y]0. By part (c), it suffices to show that F ⊆ [y]0. So fix v ∈ F.
Then v = vm ≤ wm for some m ∈ N. Choose l so that il ≥ m. For l′ ≥ l, we have
yil′ ∈ Z(ρil′ ) ⊆ Z(ρil ). Hence, y ∈ Z(ρil ). So wil = s(ρil ) = r(σd(ρil )(y)) ∈ [y]0. By choice
of (wj)j and l, we have v ≤ wm ≤ wil . So part (b) gives v ∈ [y]0. This proves the first
statement.

For the second statement, by Lemma 4.7, it suffices to show that for all x, y ∈ Γ∞
with [x] � [y], there exists N such that s(x(N)Γ) ∩ s(y(N)Γ) = ∅ if and only if, for all
pairs U � V of ultrafilters of (Γ0,≤), there exist u ∈ U and v ∈ V with no common
upper bound with respect to ≤.

First, suppose that for every pair x, y ∈ Γ∞, there exists N such that s(ρ) � s(τ) for
every ρ ∈ x(N)Γ and τ ∈ y(N)Γ. Fix ultrafilters U � V , and fix x, y ∈ Γ∞ with U = [x]0

and V = [y]0. Fix N such that s(ρ) � s(τ) for every ρ ∈ x(N)Γ and τ ∈ y(N)Γ. Then
u = x(N) ∈ U and v = y(N) ∈ V have no common upper bound. Now, suppose that for
every pair U � V of ultrafilters, there exist u ∈ U and v ∈ V with no common upper
bound. Fix x, y ∈ Γ∞ with U = [x]0 and V = [y]0. Fix u ∈ U and v ∈ V with no common
upper bound. Fix x′ ∈ [x] and y′ ∈ [y] with r(x′) = u and r(y′) = v, and m, m′ and
n, n′ such that σm(x) = σm′(x′) and σn(y) = σn′(y′). Fix N ≥ m, n. Then uΓx(N) � ∅
and vΓy(N) � ∅. Since u, v have no common upper bound, nor do x(N) and y(N); so
s(ρ) � s(τ) for all ρ ∈ x(N)Γ and τ ∈ y(N)Γ. �

REMARK 4.9. Lemma 4.7 gels with [25, Proposition 4.3]: if E is a simply connected
row-finite source-free directed graph, then E∞/GE is Hausdorff. We prove the contra-
positive. Suppose that E∞/GE is not Hausdorff. Since E is a 1-graph, i : E∗ → Π(E∗)
is injective. Corollary 4.7 gives x, y ∈ E∞ such that σm(x) � σn(y) for all m, n, and,
for all N ≥ 0, ρN ∈ x(N)E∗ and τN ∈ y(N)E∗ such that s(ρN) = s(τN) =: wN . We first
claim that there exists N0 such that x(n) � y(m) for all m, n ≥ N0. To see this, suppose
that there are increasing sequences (ni), (mi) such that x(ni) = y(mi) for all i. Since
E is singly connected, x(ni, ni+1) = y(mi, mi+1) for all i; so σn0 (x) = σn0 (y), which is
a contradiction. So by replacing x, y with σN0 (x) and σN0 (y), we may assume that
x(m) � y(n) for all m, n.

Hence, each wN is on exactly one of x, y; without loss of generality, w0 is not on
x. Let α = x(0, |ρ0|) and β = y(0, |τ0|). Then ρ−1

0 αρ|ρ0 |τ
−1
|τ0 |β

−1τ0 ∈ (Π(E))w0
w0 . We show

that ρ−1
0 αρ|ρ0 |τ

−1
|τ0 |β

−1τ0 � w0. Since r(ρ|ρ0 |) = x(|ρ0|) � y(|τ0|) = r(τ|τ0 |) in reduced form
[20, Proposition 4.9], ρ|ρ0 |τ

−1
|τ0 | = eγλ−1, where e ∈ E1 is the first edge of ρ|ρ0 |. Similarly,

since w0 = s(τ0) � x(|ρ0|) = s(α) in reduced form, ρ−1
0 α = ζ−1η f , where f is the last

edge of α and ζ, η ∈ E∗. So in reduced form, ρ−1
0 αρ|ρ0 |τ

−1
|τ0 | = ζ

−1η f eγλ−1. In particular,
the word f e appears in the reduced form of ρ−1

0 αρ|ρ0 |τ
−1
|τ0 |β

−1τ0, so this is a nontrivial
element of (Π(E))w0

w0 . Hence, E is not simply connected.

https://doi.org/10.1017/S1446788725101109 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788725101109


[21] Embeddability of higher-rank graphs 21

REMARK 4.10. The argument of the preceding remark does not go through for
k-graphs because there is no canonical reduced form for elements of the fundamental
groupoid of a k-graph.

For 1-graphs E∗, we can use Remark 4.9 to check Hausdorffness of E∞/GE �
C∗(E∗)∧. So it helps to relate Hausdorffness of the orbit space of a k-graph to that
of a natural sub-1-graph

PROPOSITION 4.11. Let Γ be a row-finite source-free k-graph. Suppose that Γ is simply
connected. Then Γ∞/GΓ is Hausdorff if and only if (ΓN1)∞/GΓN1 is Hausdorff.

To prove this, we show that Γ∞/GΓ is homeomorphic to a clopen subset of
(ΓN1)∞/GΓN1 .

LEMMA 4.12. Let Γ be a row-finite source-free k-graph. Suppose that Γ is simply
connected. Let f : Γ0 → Zk be a function such that d(λ) = f (s(λ)) − f (r(λ)) for all
λ ∈ Γ as in Proposition 4.2. Let E be the directed graph such that E0 = f −1(Z1) and
E1 = E0Γ1. Let j : E∞ → Γ∞ be the map such that j(x) is the unique infinite path such
that j(x)(0, n · 1) = x1x2 · · · xn for all n ∈ N (see [26, Remark 2.2]). Then j descends to
a homeomorphism j̃ : E∞/GE → Γ∞/GΓ.

PROOF. The map j restricts to a homeomorphism vE∞ → vΓ∞ for each v ∈ E0, so is
continuous.

We claim that if x, y ∈ E∞, then j(x) ∼GΓ j(y) if and only if x ∼GE y. To see this, fix
x, y ∈ E∞. Then j(x) ∼GΓ j(y) if and only if there exist m, n ∈ Nk such that σm(j(x)) =
σn(j(y)). Since f (r(σm(j(x)))) = f (r(x)) + m for all m ∈ Nk and similarly for y, and
since f (r(x)), f (r(y)) ∈ Z1, we deduce that j(x) ∼GΓ j(y) if and only if there exist m, n ∈
N

k such that σm(j(x)) = σn(j(y)) and m − n ∈ Z1. Since m − n ∈ Z1 if and only if there
exists p ∈ Nk such that m + p, n + p ∈ N1, we deduce that j(x) ∼GΓ j(y) if and only if
σa1(j(x)) = σb1(j(y)) for some a, b ∈ N; that is, if and only if σa(x) = σb(y) for some
a, b ∈ N. Hence, j(x) ∼GΓ j(y) if and only if x ∼GE y. It follows that j descends to a
continuous function j̃ : E∞/GE → Γ∞/GΓ.

Fix p : Γ0 → Nk satisfying f (v) + p(v) ∈ Z1 for all v. For x ∈ Γ∞ and j ∈ N, let
x̃j := σp(r(x))((j − 1)1, j1) ∈ E1 and define h(x) := x̃1x̃2 · · · x̃n · · · ∈ E∞. As x �→ p(r(x))
is locally constant, h is continuous. Since σp(x)(x) ∼GΓ x for all x, the claim above
shows that x ∼GΓ y if and only if h(x) ∼GE h(y), so h descends to a continuous
function h̃ : Γ∞/GΓ → E∞/GE. It is routine to check that h̃ and j̃ are mutually inverse:
h ◦ j = idE∞ and [j ◦ h(x)] = [σp(x)(x)] = [x] for all x ∈ Γ∞. In particular, j descends to
a homeomorphism as claimed. �

PROOF OF PROPOSITION 4.11. Resume the notation of Lemma 4.12. It suffices for us
to show that (ΓN1)∞/GΓN1 is Hausdorff if and only if E∞/GE is Hausdorff.

For p ∈ Zk, let Vp := f −1(p + Z1) ⊆ Γ0 (so V0 is V in Lemma 4.12). If p − q � Z1,
then VpΓ

N1Vq = ∅. So if x ∈ VpΓ
N1 and y ∈ VqΓ

N1, then σa1(x) � σb1(y) for all a, b ∈ N
and hence, [x]G

ΓN1 � [y]G
ΓN1 . Hence, the sets

{
Vp(ΓN1)∞ : p ∈ Zk−1 × {0}} have mutually
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disjoint open images in (ΓN1)∞/GΓN1 . So it suffices to show that each of these images
is Hausdorff.

Let q : (ΓN1)∞ → (ΓN1)∞/GΓN1 be the quotient map. By assumption, E∞/GE =

q(V0(ΓN1)∞) is Hausdorff, so it suffices to fix p ∈ Zk−1 \ {0} and show that
(q(VpΓ

N1)∞) � (q(V0Γ
N1)∞).

Since Vp = Vp+a1 for all a ∈ N, we may assume that p ≥ 0. Fix n ∈ Nk such
that p + n ∈ Z1. Then σp : V0Γ

∞ → VpΓ
∞ and σn : VpΓ

∞ → Vp+nΓ
∞ = V0Γ

∞ are
continuous. Using [26, Remark 2.2], we can identify VpΓ

∞ with Vp(ΓN1)∞ and V0Γ
∞

with V0(ΓN1)∞, and these identifications are compatible with the shift maps.
If x ∼G

ΓN1 y, then σp(x) ∼G
ΓN1 σ

p(y) and similarly for n, so σp and σn descend
to continuous maps σ̃p : q(V0Γ

N1)∞ → q(VpΓ
N1)∞ and σ̃n : q(VpΓ

N1)∞ → q(V0Γ
N1)∞.

Since x ∼G
ΓN1 σ

p+n(x) = σp(σn(x)), we see that σ̃p ◦ σ̃n is the identity map on
q(VpΓ

N1)∞ and, similarly, σ̃p ◦ σ̃n is the identity map on q(V0Γ
N1)∞. So σ̃p and σ̃n

are mutually inverse and hence homeomorphisms. �

COROLLARY 4.13. Let Γ be a row-finite source-free k-graph. Suppose that both Γ and
the sub-1-graph ΓN1 are simply connected. Then Γ∞/GΓ is Hausdorff.

PROOF. Proposition 4.2 gives f : Γ0 → Zk such that d(λ) = f (s(λ)) − f (r(λ)) for all
λ ∈ Γ. Let E be the directed graph such that E0 = f −1(Z1) and E1 = E0Γ1. Lemma 4.12
gives Γ∞/GΓ � E∞/GE. Since E∗ is a sub-1-graph of the simply connected graph ΓN1,
it is simply connected. Hence, E∞/GE is Hausdorff by [25, Lemma 4.2] (see Remark
4.9) and thus, Γ∞/GΓ is Hausdorff. �

EXAMPLE 4.14. Surprisingly, simple connectedness of Γ and of ΓN1 are independent
conditions. For the monoidal 2-graph Λ of [32, Example 7.1] (Example 3.1), we have
an isomorphism Π(Λ) � Z2 that intertwines i : Λ→ Π(Λ) with d : Λ→ N2 ⊆ Z2.
So Γ := Z2 ×d Λ � π(Λ) ×i Λ is simply connected. However, ΓN1 is the graph with
vertices {vm : m ∈ Z2} and six parallel edges from vm+1 to vm for each m ∈ Z2,
so is not simply connected. In the other direction, let Δ1 be the 1-graph with
vertices Z and edges en with s(en) = n + 1 and r(en) = n, and define l : N2 → N by
l(m, n) = m + n. Then the 2-graph Γ := l∗(Ω1) has fundamental group Z generated by
(e0, (1, 0))(e0, (0, 1))−1, so is not simply connected, but ΓN1 is a disjoint union of copies
of Ω1, so is simply connected.

REMARK 4.15. In the context of Corollary 4.13, simple connectedness of ΓN1 is
equivalent to that of E∗ as in Lemma 4.12. Also, as in the proof of Proposition 4.11,
the orbit space (ΓN1)∞/GΓN1 is a topological disjoint union of copies of E∞/GE indexed
Z

k/Z1.

PROOF OF THEOREM 4.1(III). As in the proof of part (ii), sinceΛ→ Π(Λ) is injective,
Σ is singly connected, and C∗(Σ) is type I0. The proof of Proposition 4.4 shows that
GΣ has trivial isotropy. Hence, the spectrum of C∗(Σ) is homeomorphic to the orbit
space Σ∞/GΣ [11, Corollary 4.2]. Now, since ΣN1 is simply connected, Corollary 4.13
implies that Σ∞/GΣ is Hausdorff. So C∗(Σ) is a continuous-trace C∗-algebra. Since
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X := Σ∞/GΣ is zero-dimensional, Ȟ3(X,Z) = {0}, and hence the Dixmier–Douady
invariant δ(C∗(Σ)) ∈ Ȟ3(X,Z) is trivial. So by the Dixmier–Douady theorem
[37, Corollary 5.58], C∗(Σ) is Rieffel–Morita equivalent to C(Σ∞/GΣ). �

REMARK 4.16. A related realisation of C∗-algebras of k-graphs (and more general cat-
egories) as crossed products of abelian algebras by partial actions of their fundamental
groups appears in [7, Theorem 4.17]. Interestingly, embeddability also crops up there
for different reasons.

REMARK 4.17. It seems hard to nail down the relationships between the key hypothe-
ses in this section: simple connectedness of Γ and of ΓN1, and embedding of Γ in Π(Γ).

For example, the following two assertions both seem reasonable: that if Γ is simply
connected, then the 1-dual 1Γ obtained from Proposition 2.7 for f : n �→ n + 1 is
also simply connected; and that 1Γ always embeds in Π(1Γ) (after all, 1Γ � λ �→
(r(λ), d(λ), s(λ)) is injective on

⋃
n≤1 Γ

n, and this map descends toΠ(Γ), so the skeleton
and factorisation rules are preserved inΠ(Γ)). However, at most one of these assertions
is true in general: consider the skew-product Γ := Z2 ×d Λ of Example 3.1; we show
that if 1Γ is simply connected, then it does not embed in Π(1Γ).

Since 1Γ is canonically isomorphic to the skew-product Z2 ×d (1Λ), if 1Γ is simply
connected, then Z2 ×d (1Λ) is simply connected, forcing π1(Λ, v) � Z2. However,
inspection of the skeleton of 1Λ shows that eeec and eedec are distinct blue cycles
based at the vertex ec ∈ 1Λ, so generate a sub-semigroup of 1Λ isomorphic to F+2 ,
which cannot embed in Z2.

REMARK 4.18. The preceding remark is exemplary of a number of seemingly
elementary questions that we have been unable to resolve.

(i) If Γ is simply connected and embeds in Π(Γ), is Γ∞/GΓ Hausdorff?
(ii) If both Γ and ΓN1 are simply connected, does Γ necessarily embed in Π(Γ)?
(iii) Which, if either, of the two assertions mentioned in Remark 4.17 is correct?
(iv) Does 1Γ always embed in Π(1Γ)?

5. Ã2-groups

In this section, we construct coverings ΣT → ΛT of 2-graphs corresponding to
Ã2-groups ΓT . These groups arise from free, vertex-transitive actions on buildings.
We show that ΣT and ΛT both embed in their fundamental groupoids, and that ΣT is
always singly connected so that its C∗-algebra is of Type I0.

The Ã2-groups are built from finite projective planes. A finite projective plane (P, L)
of order q consists of finite sets P of points and L of lines with |P| = |L| = q2 + q + 1,
and a relation ∈ from P to L—if p ∈ l, we say p lies on l and that l contains p—such
that any two points lie on exactly one common line, any two lines contain exactly one
common point and there exist four distinct points of which no single line contains more
than two. Each line necessarily contains exactly q points and each point necessarily lies
on exactly q lines.
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We begin with a brief introduction of the groups we wish to study and by collecting
some structural results that we need for our construction.

5.1. Ã2-group basics. Following [8, Section 2], given a finite projective plane (P, L)
and a bijection λ : P→ L, we define a triella compatible with λ to be a set T ⊂ P ×
P × P such that:

(T1) given x, y ∈ P, there exists z ∈ P such that (x, y, z) ∈ T if and only if y ∈ λ(x);
(T2) (x, y, z) ∈ T ⇒ (y, z, x) ∈ T ;
(T3) for any x, y ∈ P, there is at most one z ∈ P such that (x, y, z) ∈ T .

DEFINITION 5.1. Given a finite projective plane (P, L), a bijection λ : P→ L and a
triella T compatible with λ as above, we define the associated Ã2-group by

Γ = ΓT := 〈ax, x ∈ P | axayaz = 1 for each (x, y, z) ∈ T 〉.

REMARKS 5.2.

(i) The associated Ã2-building is an oriented simplicial 2-complex constructed from
the Cayley graph of ΓT : the vertices or 0-simplices are identified with ΓT ,
the 1-simplices are identified with pairs (w, wax) where w ∈ ΓT and x ∈ P. The
2-simplices are identified with triples (w, wax, waxay) where w ∈ ΓT , x ∈ P and
y ∈ λ(x). The free and transitive action of ΓT on 0-simplices by left multiplication
extends to a free action on the building.

(ii) In [24, 45], Vdovina et al. start with similar data to produce an object they call a
polyhedron satisfying rules that have the flavour of a triella. We discovered this
point of view late in our investigation and plan to look into it more deeply in
future work.

EXAMPLE 5.3. Many examples are considered in [9]. The following illustrative
example with q = 2 was first described in [9, Section 4]:

ΓA.1 = 〈a0, . . . , a6 : a[i]7 a[i+1]7 a[i+3]7 = 1〉 where [i]7 = (i mod 7).

We describe elements of ΓT as products of generators and their inverses. The
following standard terminology for finitely generated groups helps us discuss such
expressions.

DEFINITION 5.4. Let ΓT be an Ã2-group with generators {ax : x ∈ P}. By a word in
ΓT , we mean a string of the form g1g2 · · · gk such that each gi ∈ {ax, a−1

x : x ∈ P}. The
word g1 · · · gk represents the element w ∈ ΓT if the product

∏k
i=1 gi in ΓT is equal to w.

We typically indicate the group law by juxtaposition, so we write w = g1 · · · gk when
the word g1 · · · gk represents w. Context dictates whether a string g1 · · · gk is being
regarded as a word or as a product.

It is helpful to express elements of ΓT in a standard form.
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PROPOSITION 5.5. Let ΓT be an Ã2-group with generators {ax : x ∈ P}. Let w ∈ ΓT .
Then there are unique integers m, n ≥ 0 and unique elements x1, . . . , xm, y1, . . . , yn ∈ P
such that

w = ax1 · · · axm a−1
y1
· · · a−1

yn
, and (5-1)

(a) xi+1 � λ(xi) for 1 ≤ i < m; (b) yj � λ(yj+1) for 1 ≤ j < n; and
(c) xm � y1 if m, n ≥ 1.

For the same m, n, there are also unique t1, . . . , tn, s1, . . . , sm ∈ P such that

w = a−1
t1 · · · a

−1
tn as1 · · · asm , and (5-2)

(a)′si+1 � λ(si) for 1 ≤ i < m; (b)′tj � λ(tj+1) for 1 ≤ j < n; and
(c)′t� � s1 if m, n ≥ 1.

We call the expressions above the right normal form and left normal form of w,
respectively. Both have minimal length amongst words in the generators and their
inverses that represent w. Moreover, every minimal-length word in the generators and
their inverses that represents w contains m generators and n generator-inverses.

PROOF. See [8, Proposition 3.2] and [10, Lemma 6.2]. �

COROLLARY 5.6. Let ΓT be an Ã2-group with generators {ax : x ∈ P}. For all x, y ∈ P
such that x � y, there exist unique s, t ∈ P with s � t such that a−1

x ay = asa−1
t .

Proposition 5.5 allows us to define a degree functor for a 2-graph structure on ΓT
in terms of the number of generators and their inverses in a minimal representative of
an element.

DEFINITION 5.7. Let ΓT be an Ã2-group. Define δ : ΓT → N2 by δ(w) = (m, n) if its
right normal form is as in (5-1) (equivalently, its left normal form is as in (5-2)). We
define the length of w to be |δ(w)| = m + n. We call δ the shape function.

REMARK 5.8. The shape function δ is not additive. For example, in the Ã2-group
ΓA.1 = 〈a0, . . . , a6 : a[i]7 a[i+1]7 a[i+3]7 = 1〉,

δ(a1a2) = δ(a−1
4 ) = (0, 1) � (2, 0) = δ(a1) + δ(a2).

The shape function δ gives rise to a natural notion of a reduced word.

DEFINITION 5.9. A word g1 · · · gk in ΓT is said to be reduced if it has minimal length
among words that represent the same element of ΓT . That is, g1 · · · gk is reduced if
|δ(g1 · · · gk)| = k.
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REMARKS 5.10.

(i) The final statement of Proposition 5.5 shows that words in right normal form or
left normal form are reduced words.

(ii) Not all words that have no ‘obvious cancellations’ are reduced: the word
w1 = a0a4

−1a6 in ΓA.1 = 〈a0, . . . , a6 : a[i]7 a[i+1]7 a[i+3]7 = 1〉 is not reduced since

a0a4
−1a6 = a0a1a2a6 = a0a1a0

−1 = a3
−1a0

−1.

(iii) Every subword of a reduced word is reduced.
(iv) If w = g1 · · · gk is reduced and for some i, gi = ax and gi+1 = a−1

y for some
x, y ∈ P with x � y, then by Corollary 5.6, there exist unique s, t ∈ P with s � t
such that axay

−1 = as
−1at. The word obtained from w by replacing gigi+1 = axa−1

y

with as
−1at is also reduced.

EXAMPLE 5.11. Consider ΓT := ΓA.1 = 〈a0, . . . , a6 : a[i]7 a[i+1]7 a[i+3]7 = 1〉 from Exam-
ple 5.3. For w = a0a−1

2 a−1
5 ∈ ΓT , we have δ(w) = (1, 2); the reduced expressions for w

and the corresponding segment of the reversed Cayley graph of ΓT (the Cayley graph
of Γop

T ) are illustrated below.

w = a0a−1
2 a−1

6

w = a−1
5 a1a−1

6

w = a−1
5 a−1

0 a4
•

• •

••

•w

e

a4a6

a1 a0a2

a0 a5

a3

a4

To obtain 2-graphs from Ã2 groups, we relate the shape function δ to the group law.

LEMMA 5.12 (Unique factorisation). Let ΓT be an Ã2-group and suppose that
m, n ∈ N2 and w ∈ ΓT satisfy δ(w) = m + n. Then there exist unique h, k ∈ ΓT such that
δ(h) = m, δ(k) = n and w = hk. More generally, if ni ∈ N2 satisfy δ(w) = n1 + · · · + nk,
then there exist unique hi ∈ ΓT such that each δ(hi) = ni and w = h1 · · · hk.

Given w, h, k ∈ ΓT such that δ(whk) = δ(w) + δ(h) + δ(k), we have δ(wh) = δ(w) +
δ(h) and δ(hk) = δ(h) + δ(k).

PROOF. This follows from repeated applications of Corollary 5.6. �

NOTATION 5.13. If δ(w) = (m, n) ≥ 1, then Lemma 5.12 yields unique a, b, c, d ∈ ΓT
such that

w = bd = ca, δ(a) = δ(b) = 1 and δ(d) = δ(c) = δ(w) − 1.

We adopt the notation s(w) = a, r(w) = b, c(w) = c, d(w) = d. Note that if δ(w) = 1,
then r(w) = s(w) and b(w) = c(w) = 1.
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We provide a criterion for determining when a concatenation of three reduced words
is reduced.

PROPOSITION 5.14. Let ΓT be an Ã2-group and fix w0, w1, w2 ∈ ΓT . Suppose that
δ(w0w1) = δ(w0) + δ(w1), δ(w1w2) = δ(w1) + δ(w2) and δ(w1) ≥ 1. Then

δ(w0w1w2) = δ(w0) + δ(w1) + δ(w2).

PROOF. We induct on |δ(w2)|. Suppose that |δ(w2)| = 1, so δ(w2) ∈ {(1, 0), (0, 1)}. If
δ(w2) = (1, 0), then w2 = ax for some x ∈ P, so w0w1w2 = w0w1ax. By Proposition 5.5,
if δ(w0w1) = (m, n), then in left normal form, w0w1 = a−1

s1
· · · a−1

sn
at1 · · · atm and

w1 = a−1
p1
· · · a−1

pk
aq1 · · · aq� . Lemma 5.12 gives q� = tm (as δ(w0w1) = δ(w0) + δ(w1))

and x � λ(q�) (as δ(w1w2) = δ(w1) + δ(w2)). Hence,

w0w1w2 = a−1
s1
· · · a−1

sn
at1 · · · atm ax

is the left normal form of w0w1w2 and so

δ(w0w1w2) = (m + 1, n) = (m, n) + (1, 0) = δ(w0w1) + δ(w2) = δ(w0) + δ(w1) + δ(w2).

If δ(w2) = (0, 1), arguing similarly with right normal forms gives δ(w0w1w2) = δ(w0) +
δ(w1) + δ(w2).

Now suppose that the result holds for |δ(w2)| = n ≥ 1, suppose that |δ(w2)| = n + 1.
Then there exist unique h, k ∈ ΓT such that w2 = hk, δ(w2) = δ(h) + δ(k) and |δ(k)| = 1.
Since

δ(w1hk) = δ(w1w2) = δ(w1) + δ(w2) = δ(w1) + δ(h) + δ(k),

Lemma 5.12 gives δ(w1h) = δ(w1) + δ(h). Since |δ(h)| = n, the induction hypothesis
gives δ(w0(w1h)) = δ(w0) + δ(w1) + δ(h) = δ(w0) + δ(w1h). Moreover,

δ((w1h)k) = δ(w1w2) = δ(w1) + δ(w2) = δ(w1) + δ(h) + δ(k) = δ(w1h) + δ(k).

Therefore, since δ(w1h) ≥ 1 and |δ(k)| = 1, it follows that

δ(w0w1w2) = δ(w0(w1h)k) = δ(w0) + δ(w1h) + δ(k) = δ(w0) + δ(w1) + δ(h) + δ(k)

= δ(w0) + δ(w1) + δ(w2). �

The following extends the above criterion to an arbitrary concatenation of reduced
words.

COROLLARY 5.15. Fix w0, w1, . . . , wn ∈ ΓT . Suppose that δ(wiwi+1) = δ(wi) + δ(wi+1)
for all 0 ≤ i < n and δ(wi) ≥ 1 for all 0 < i < n. Then

δ(w0w1 · · ·wn−1wn) = δ(w0) + δ(w1) + · · · + δ(wn−1) + δ(wn).

PROOF. We induct on n. This is trivial for n = 1. Fix n ≥ 1, suppose the result holds
for all k ≤ n, and fix w0, w1, . . . , wn, wn+1 ∈ ΓT with δ(wiwi+1) = δ(wi) + δ(wi+1) for all
i = 0, 1, . . . , n and δ(wi) ≥ 1 for all i = 1, . . . , n. Then
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δ(w0w1 · · ·wn) = δ(w0) + δ(w1) + · · · + δ(wn) = δ(w0w1 · · ·wn−1) + δ(wn),

and since δ(wnwn+1) = δ(wn) + δ(wn+1),

δ(w0w1 · · ·wnwn+1) = δ(w0w1 · · ·wn−1) + δ(wn) + δ(wn+1)

= δ(w0) + δ(w1) + · · · + δ(wn) + δ(wn+1)

by Proposition 5.14. Thus, the result holds by induction. �

5.2. The 2-graph associated to an Ã2-group. Given an Ã2-group ΓT , we now
construct a 2-graph ΛT using the relation between the multiplicative structure of its
reduced words and the shape function discussed in the previous section.

DEFINITION 5.16. Fix an Ã2-group ΓT . We define

ΛT = {w ∈ ΓT : δ(w) ≥ 1} and Λ0
T = {u ∈ ΓT : δ(u) = 1}.

We define r, s : ΛT → Λ0
T as in Notation 5.13 and d : ΛT → N2 by d(λ) = δ(λ) − 1.

For λ, μ ∈ ΛT such that s(λ) = r(μ), we define λ ◦ μ as follows: write λ = c(λ)s(λ) and
μ = r(μ)b(μ) as in Notation 5.13; we define

λ ◦ μ := c(λ)s(λ)b(μ). (5-3)

Our definition of λ ◦ μ in (5-3) emphasises the overlap of λ = c(λ)s(λ) and
μ = r(μ)c(μ) in the element s(λ) = r(μ) of δ−1(1) ⊆ ΓT . We can also express it to
emphasise its compatibility with the maps b and c: for λ, μ ∈ ΛT as above with
s(λ) = r(μ),

λ ◦ μ = c(λ)s(λ)b(μ) = r(λ)b(λ)b(μ) and λ ◦ μ = c(λ)r(μ)b(μ) = c(λ)c(μ)s(μ).
(5-4)

Our main result in this subsection is that Definition 5.16 defines a 2-graph.

THEOREM 5.17. With definitions and notation as above, (ΛT , d) is a 2-graph and the
maps b, c : ΛT → ΓT of Notation 5.13 are 1-cocycles.

PROOF. Associativity of multiplication in ΓT ensures that ΛT is a category under
◦. To see that d : ΛT → N2 is a functor, fix λ, μ ∈ ΛT with s(λ) = r(μ). We have
λ ◦ μ = c(λ)s(λ)b(μ), where δ(s(λ))) = 1. So the first part of Lemma 5.12 gives

δ(c(λ)s(λ)) = d(λ) + 1 = δ(c(λ)) + δ(s(λ))

δ(s(λ)b(μ)) = d(μ) + 1 = δ(s(λ)) + δ(b(μ)).

Hence, by Proposition 5.14 and since δ(s(λ)) = 1 by definition,

d(λ ◦ μ) = δ(c(λ)s(λ)b(μ)) − 1 = δ(c(λ)) + δ(s(λ)) + δ(b(μ)) − 1 = d(λ) + d(μ).

It remains to show that (ΛT , d) satisfies the factorisation property. Suppose
that d(λ) = (m1 + m2, n1 + n2). Then δ(λ) = (m1 + m2, n1 + n2) + 1. Hence, by
Lemma 5.12, there exist unique g, h, k such that λ = ghk, δ(g) = (m1, n1), δ(h) = 1
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and δ(k) = (m2, n2). Thus, λ = μ ◦ ν, where μ = gh, ν = hk, d(μ) = (m1, n1) and
d(ν) = (m2, n2), and this is the unique such factorisation.

Fix λ, μ ∈ ΛT with s(λ) = r(μ). Equation (5-4) and the definition of c give
c(λ ◦ μ)s(λ ◦ μ) = λ ◦ μ = c(λ)c(μ)s(μ) and r(λ ◦ μ)b(λ ◦ μ) = λ ◦ μ = r(λ)b(λ)b(μ).
We already saw that s(λ ◦ μ) = s(μ) and r(λ ◦ μ) = r(λ), so cancellativity in ΓT gives
c(λ)c(μ) = c(λ ◦ μ) and b(λ)b(μ) = b(λ ◦ μ). �

REMARK 5.18. Resume the notation of [38, Section 7]. Let M1, M2 be the matrices
[38, page 135] obtained from the Cayley graph BT of ΓT regarded as a building
as in [8]. Then ΛT is isomorphic to the 2-graph ΛM1,M2 obtained from the Mi as
in [26, Example 1.7(iv)]. Indeed, as ΓT acts transitively on vertices of BT , we can
identify the alphabet A = Γ/I [38, page 135] with type-rotating isometries i : t →BT
such that i((0, 0)) = eΓT . By Proposition 5.5, i �→ i((1, 1)) is a bijection between
such isometries and δ−1(1) = Λ0

T . Likewise, for w1, w2 ∈ Λ0
T , the set w1Λ

εi
Tw2 is in

bijection with type-rotating isometries i : pεi →BT such that i((0, 0)) = eΓT , t(1) = w1
and t(1 + εi)t(εi)−1 = w2; that is, diagrams as in [38, Figure 9]. So the adjacency
matrices of ΛT are the Mi. Since M1, M2 satisfy (H0)–(H3) [38, Proposition 7.9
and Theorem 7.10], M1M2 is a 0, 1-matrix, so [19, Theorems 4.4 and 4.5] gives
ΛT � ΛM1,M2 .

COROLLARY 5.19. With notation as above, the cocycle c : ΛT → ΓT of Theorem 5.17
is essential and the canonical map i : ΛT → Π(ΛT ) is injective.

PROOF. Since λ = c(λ)s(λ) for all λ ∈ ΛT , c × s is injective. Hence, c is essential as in
Definition 3.10, and the result follows from Proposition 3.12. �

5.3. The covering 2-graph ΣT . In this section, we construct a covering 2-graph ΣT
for ΛT .

We define ΣT ⊆ ΓT × ΓT as follows. Let

ΣT := {(x, y) ∈ ΓT × ΓT : 1 ≤ δ(x−1y)} and Σ0
T := {(x, y) ∈ ΓT × ΓT : 1 = δ(x−1y)}

with d(x, y) := δ(x−1y) − 1 for all (x, y) ∈ ΣT . By Lemma 5.12, for each (x, y) ∈ ΣT ,
there exist unique zx,y, wx,y ∈ ΓT such that

δ(x−1zx,y) = δ(w−1
x,yy) = 1 and δ(x−1y) = δ(x−1zx,y) + δ(z−1

x,yy) = δ(x−1wx,y) + δ(w−1
x,yy).
(5-5)

We define r(x, y) := (x, zx,y) and s(x, y) := (wx,y, y). If (u, v) ∈ ΣT satisfies
s(x, y) = r(u, v), we define (x, y)(u, v) := (x, v). We show that ΣT � ΓT ×c ΛT (see
Definition 2.4).

PROPOSITION 5.20. With the above structure, ΣT is a 2-graph. Let c : ΛT → ΓT be
the cocycle of Theorem 5.17. There is an isomorphism φ : ΣT → ΓT ×c ΛT such that
φ(x, y) = (x, x−1y) for all (x, y) ∈ ΣT . The inverse satisfies φ−1(x, λ) = (x, xλ). There is
a free action of ΓT on ΣT given by g · (x, y) := (gx, gy), and φ is equivariant for this
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action and the left action of ΓT on ΓT ×c ΛT by translation in the first coordinate. In
particular, φ descends to an isomorphism φ̃ : ΓT \ΣT → ΛT such that φ̃([x, y]) = x−1y.

PROOF. We prove that ψ : ΓT ×c ΛT → ΣT defined by ψ(x, λ) = (x, xλ) for
(x, λ) ∈ ΓT ×c ΛT is an isomorphism, and deduce that φ = ψ−1 has the desired
properties. To see that ψ is a functor, fix (x, λ) ∈ ΓT ×c ΛT . Then d(x, λ) = d(λ) =
d(x, xλ) = d(ψ(x, λ)). Recall that c(λ)s(λ) = λ = r(λ)b(λ), s(x, λ) = (xc(λ), s(λ)) and
s(x, xλ) = (xc(λ), xλ) since w = xc(λ) satisfies δ(w−1xλ) = δ(s(λ)) = 1 and

δ(x−1xλ) = δ(λ) = δ(c(λ)) + δ(s(λ)) = δ(x−1w) + δ(w−1xλ).

Hence,

ψ(s(x, λ)) = ψ(xc(λ), s(λ)) = (xc(λ), xc(λ)s(λ)) = (xc(λ), xλ) = s(x, xλ) = s(ψ(x, λ)).

A similar computation shows that ψ(r(x, λ)) = (x, xr(λ)) = r(ψ(x, λ)).
Given composable elements (x, λ), (xc(λ), μ) ∈ ΓT ×c ΛT , the above argument

shows that ψ(x, λ),ψ(xc(λ), μ) are composable in ΣT . We have

ψ((x, λ)(xc(λ), μ)) = ψ(x, λ ◦ μ) = (x, x(λ ◦ μ))

= (x, xc(λ)μ) = (x, xλ)(xc(λ), xc(λ)μ) = ψ(x, λ)ψ(xc(λ), μ).

Hence, ψ is an isomorphism and thus ΣT is a 2-graph. That φ is equivariant follows
from its definition and the last assertion follows from [26, Remark 5.6]. �

PROPOSITION 5.21. Let (x, z), (w, y) ∈ Σ0
T . Then (x, z)ΣT (w, y) � ∅ if and only if

δ(x−1w) + 1 = δ(x−1y) = δ(z−1y) + 1,

and then (x, z)ΣT (w, y) = {(x, y)}. In particular, ΣT is singly connected and C∗(ΣT ) is
type I0.

PROOF. If σ ∈ (x, z)ΣT (w, y), then r(σ) = (x, z) and s(σ) = (w, y), so σ = (x, y),
w = wx,y and z = zx,y by (5-5). In particular, (x, z)ΣT (w, y) is either empty or equal
to {(x, y)}.

If δ(x−1y) ≥ 1, then (x, y) ∈ ΣT if and only if s(x, y) = (w, y) and r(x, y) = (x, z).
Moreover, s(x, y) = (w, y) if and only if w = wx,y, that is (see (5-5)),

δ(x−1y) = δ(x−1w) + δ(w−1y) = δ(x−1w) + 1

and r(x, y) = (x, z) if and only if z = zx,y, that is,

δ(x−1y) = δ(x−1z) + δ(z−1y) = δ(z−1y) + 1.

The final assertion follows from the first paragraph of the proof and
Proposition 4.4. �

REMARK 5.22. That ΣT is singly connected also follows from the facts that
ΣT � ΓT ×c ΛT (by Proposition 5.20), c is essential and ΓT ×c ΛT is singly connected
(by Corollary 5.19).
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