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Abstract

We show that the C*-algebra of a row-finite source-free k-graph is Rieffel-Morita equivalent to a
crossed product of an approximately finite-dimensional (AF) algebra by the fundamental group of the
k-graph. When the k-graph embeds in its fundamental groupoid, this AF algebra is a Fell algebra; and
simple-connectedness of a certain sub-1-graph characterises when this Fell algebra is Rieffel-Morita
equivalent to a commutative C*-algebra. We provide a substantial suite of results for determining if a
given k-graph embeds in its fundamental groupoid, and provide a large class of examples, arising via
work of Cartwright ef al. [‘Groups acting simply transitively on the vertices of a building of type A, I’,
Geom. Dedicata 47 (1993), 143—-166], Cartwright et al. ‘Groups acting simply transitively on the vertices
of a building of type A, II', Geom. Dedicata 47 (1993), 167-226] and Robertson and Steger [‘Affine
buildings, tiling systems and higher rank Cuntz—Krieger algebras’, J. reine angew. Math. 513 (1999),
115-144] from the theory of A,-groups, which do embed.
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1. Introduction

Since their introduction [26], higher-rank graphs, or k-graphs, have been a source of
interesting new higher-dimensional phenomena: in algebra [2, 13, 40], dynamics [22,
34,43, 44], C*-algebras [3, 12, 41], K-theory [16, 18, 35], topology [23, 28, 32, 33] and
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geometry [24, 38, 45]. However, many natural questions about their structure theory
remain difficult to unravel.

One such question, and the primary motivation for this paper, is: when can a k-graph
C*-algebra be realised, modulo Rieffel-Morita equivalences, as a crossed product of
a commutative C*-algebra? For 1-graphs, the answer is ‘always’: given a row-finite
source-free directed graph E, the middle two authors showed [25] that the C*-algebra
of its universal cover F is Rieffel-Morita equivalent to a commutative approximately
finite-dimensional (AF) algebra, and there is an action of the fundamental group
m(E,v) on C*(F) whose crossed product is Rieffel-Morita equivalent to C*(E). For
k-graphs, the answer is more nuanced and is related to two other intriguing structural
questions: when does a k-graph embed in its fundamental groupoid and when is the
boundary of its universal cover Hausdorff?

Our main C*-algebraic theorem, Theorem 4.1, clarifies the relationships between
these questions: the C*-algebra C*(A) of any connected row-finite source-free k-graph
is a crossed product of an AF algebra C*(X) by the fundamental group of A; if A
embeds in its fundamental groupoid, then the AF algebra C*(X) is a Fell algebra;
and if, additionally, a naturally arising sub-1-graph of X is simply connected, then the
boundary of X is Hausdorff, and C*(X) is Rieffel-Morita equivalent to a commutative
AF algebra. The point is that the first part of the program of [25] above goes through
smoothly for k-graphs: every connected k-graph A has a fundamental group m(A, v)
[32] and a universal cover X [33] that carries an action of 7(A,v), and when A is
row-finite and source-free, the resulting crossed product is Rieffel-Morita equivalent
to C*(A) [26]. Our main contribution is the analysis of C*(Z).

Motivated by this, we study the question of when a k-graph A embeds in its funda-
mental groupoid. Many k-graphs do not embed: we give three examples in Section 3.1;
and any k-graph containing a copy of one of these (of which there are many) also
fails to embed. So we focus on checkable sufficient conditions. We show that singly
connected k-graphs always embed (Proposition 3.9(ii)), and highlight a surprising
difference between k-graphs and 1-graphs: universal covers of k-graphs need not be
singly connected. We include a proof that 1-graphs always embed (Theorem 3.14).
We then show that many standard k-graph constructions preserve embeddability:
coverings (Proposition 3.13), affine pullbacks, Cartesian products, crossed-products
and skew-products (Corollary 3.15), and action graphs (Corollary 3.18). The workhorse
in this is Theorem 3.8, which exploits the universal properties of the fundamental
groupoid and fundamental group. In Proposition 3.25, we reduce the embeddability
of a connected k-graph to group-embeddability of the subsemigroup based at any
vertex. Using Dilian Yang’s work [47] on k-graphs and Yang—Baxter solutions, we
show that there are many embeddable k-graphs for all k (Lemma 3.22). We are far from
a complete answer to the embeddability question. Johnstone’s general results [21] char-
acterise groupoid-embeddability of categories, but the hypotheses seem uncheckable:
we gleaned no practical conditions—either necessary or sufficient—from Johnstone’s
work, beyond the neat result of Lawson and Vdovina [29, Theorem 11.14] presented in
Remark 3.24. One might hope for help from Ore’s theorem [15, Proposition 11.3.11],

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101109

[3] Embeddability of higher-rank graphs 3

but by the factorisation property, no interesting k-graphs are Ore. Remarks 4.17 and
4.18 indicate how much we still do not know about embeddability.

Finally, as definitive general results about embeddability are still beyond reach, we
present a class of examples arising from the combinatorial objects used by Roberston
and Steger to construct higher-rank Cuntz—Krieger C*-algebras in [38, 39], which first
inspired the middle two authors to develop the concept of a higher-rank graph. We
show in Theorem 5.17 and Proposition 5.20 that every A,-group I's- yields 2-graphs
As and X4, the latter being a cover of the former, and in Corollary 5.19 that As
embeds in its fundamental groupoid—Proposition 3.13 then shows that £+ embeds
as well. We also prove that X4 is singly connected and deduce that its C*-algebra is
type Iyp. The construction of A is related to a number of existing constructions. It is
directly inspired by [38, pages 135-136]. As discussed in [8, 38], a thick A,-building
2B carrying a vertex-transitive action of an A,-group I's- arises from a finite projective
plane (P, L), a bijection between P and L, and a compatible triangle presentation 7 on
P, the points of the projective plane, arising from the local structure of the building
(see [8, Section 3]). The A,-group I's is generated by a set indexed by P subject to the
relations encoded in 7. The A,-building 2 is constructed as an augmented Cayley
graph of I'+ with 2-simplices given by 7. Our Ag is isomorphic to the 2-graph
obtained from [26, Example 1.7(iv)] from the O—1 matrices M; of [38, page 135]
(see Remark 5.18). Geometric considerations suggest both that 4 should be simply
connected, and therefore equal to the universal cover of Ag, and that its topological
realisation should coincide with that of 8, so it should have Hausdorff boundary;
we leave this for future work. Our construction is also related to the construction of
k-graphs from groups in [31], but cannot be recovered from it: the covering 2-graphs
in [31] are products of trees rather than A,-buildings.

2. Background and preliminary results

2.1. Higher-rank graphs. We write N for the additive monoid {0, 1, .. .}. We denote
the standard generators of Nk ¢ 7k by €1, ..., &, and we write n; for the i th coordinate
of n € N¥, We write 1; or just 1 for (1,...,1) € N¥,

A k-graph is a small category A equipped with a functor d : A — N* satisfying
the factorisation property: whenever d(1) = m + n, there exist unique u,v € A such
that d(u) = m, d(v) =n and A = uv. This implies that A is cancellative. We write
A" :=d~'(n) for n € N¥. When d(1) = n, we say A has degree n. The factorisation
property implies that A° is the set of identity morphisms, which we call vertices.
Elements of | J; A% are called edges. For u,v € A°, we write uA := r~'(u), Av := s71(v)
and uAv 1= uA N Av.

NOTATION 2.1. For 1 € A and 0 <m < n < d(1), we write A(m,n) for the unique
element of A such that A € A”A(m, n)A“P~", We define A(n) := A(n, n) = s(A(0, n)).

DEFINITION 2.2. The k-graph A is connected if the equivalence relation ~ on A°
generated by {(u,v) | uAv # 0} is A° x A°. A k-graph is strongly connected if uAv # 0
for all u,v € A°.
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A morphism ¢ : Q — A between k-graphs is a functor such that da(¢(1)) = do()
for all 1 € Q. A quasi-morphism from a k-graph (€2, dg) to an {-graph (A, dp) is a pair
(¢, f) consisting of a functor ¢ : @ — A and a homomorphism f : N — N’ such that
dyo¢ = fodq. If A is a k-graph, then AM! := {1 € A : d(1) € N1} is a 1-graph and
the natural inclusion A™! < A together with the map f : N — N given by f(n) := nl
is a quasimorphism.

EXAMPLES 2.3.

(i)  Let B, be the directed graph with BY = {u} and B! = {fi,..., f,}. Its path
category B} is a l-graph and coincides with the free semigroup F on n
generators.

(i) Let Ay = {(m,n) € Z¥ x Z* : m < n}. Define r,s : Ay — Obj A, by r(m,n) = m,
s(m,n)=n, and for m<m<peZF define (m n)n p)=(m,p) and
d(m,n) = n—m. Then (A, d) is a k-graph where ObjA; is identified with
{(m,m) : m € Z¥} ¢ Mor Ay;.

(iii) Similarly, Q; = {(m,n) € N* x N¥ : m < n} is a sub-k-graph of Ay.

EXAMPLE 2.4 (Skew-product graphs). Let A be a k-graph, Gagroupandc: A - Ga
1-cocycle (functor). Then the set G X, A :={(g, 1) : g € G, A € A}, under the structure
maps
5(g, ) = (gc(), s(A),  r(g, D) = (g, (D),
(8, - (ge(D), 1) = (8, ), d(g, D) =d)
is a k-graph called the skew-product graph [26, Definition 5.1]. Left translation by G
on the first coordinate of G X, A is an action of G by k-graph automorphisms.

There are two equivalent conventions for skew-product graphs in the literature: the
other is [33, Definition 6.3] (see also [5, Definition 3.5]). In [33, Definition 6.3],

AX.G:={1,8) : 1€\, ge G}
with structure maps

5(4,8) = (s(D),8), 1,8 = ),c()yg),
(4, c(Dg) - (1, 8) = (A, 8),  d(4,8) =d(A).

It is simple to check that ¢(g, 1) = (1,c(1)7'g™!) yields an isomorphism
d:GX. A —> AX G.

EXAMPLE 2.5 (Monoidal 2-graphs). The following class of 2-graphs was introduced
in [26, Section 6] and later studied extensively by Yang et al. [14, 46, 47]. Fix
ni,ny > 1. Let [n;] ={1,...,n;} for i =1,2. Let 0: [n1] X [n] — [n2] X [n1] be a
bijection. The monoidal 2-graph F} is the unique 2-graph such that (F})" = {v},
Er=Her,....ent, F)* ={fi,..., fu,} and

eif; = frer  whenever 0(i,j) = (j/, 7).
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REMARK 2.6. In their early papers, Yang et al. define F; in terms of a bijection
0 : [n1] X [n2] = [n1] X [n2] rather than [n] X [n2] — [12] X [n1].

An affine map f : N* — N¥ is a map of the form f(n) = An + p for A € M, ;(N) and
p € N. The next proposition unifies the pullback construction of [26, Definition 1.9]
(case p = 0) and the p-dual graph of [1, Definition 3.2] (case A = I).

PROPOSITION 2.7 (Affine pullbacks). Let (A, d) be a k-graph and let f : N* — N be
an affine map with f(0) = p € N¥. Set f*(A) = {(A,n) : d(1) = f(n)} € A x N’. Then
F*(A) is an E-graph, with r(4,n) = [A(0, p), 0], s(4, n) = [A(d(A) — p,d(D)), 0],
(/L m) o (l'la n) = (/1(09 d(/l) - P),U, m+ n) lfS(/l, m) = r(lla n)’
and dy«n) (A, n) = n. We have FA(A)° ={(2,0) : 2 € AP).
PROOF. As in [26, Definition 1.9], the pullback A*(A) of A by the homomorphism
A : NY — NFis an £-graph. By [1, Proposition 3.2], its dual p(A*(A)) is also an £-graph.
As sets,
PA*(N) = {(A,n) € A XN : dpp(d) = A}
={(A,n) e AXN' :d(1) = f(n)} = f*A.

Direct calculations show that this identification intertwines the structure maps above
with those of p(A*(A)). |

EXAMPLE 2.8 (Crossed-product graph). Let a : Z — Aut A be an action of Z¢ on a
k-graph A. Then the set A x N with the structure maps

r(d,m) = (r(4),0), s(4,m) = (@"(s(1)), 0),
A, m)(u,n) = (Aa™(w),m+n), d1,m)=(d),m)
is a (k + €)-graph, called the crossed-product graph A x, N’ (see [17]).

2.2. Fundamental groupoids, fundamental groups and universal covers. Every
k-graph A has a fundamental groupoid, defined as follows (see [42, Section 19.1] or
[32, Section 3]).

DEFINITION 2.9. Let A be a k-graph. There exists a groupoid II(A) and a functor
i : A — TI(A) such that i(A%) = IT1(A)°, with the following universal property: for every
functor F from A into a groupoid G, there exists a unique groupoid homomorphism
F : TI(A) — @G such that Foi=F. The pair (II(A), i) is unique up to canonical iso-
morphism, so we refer to any such groupoid II(A) as the fundamental groupoid of A.

REMARK 2.10. The assignment A +— II(A) is a functor from k-graphs to groupoids.
The restriction of i : A — II(A) to A° is injective with range TI(A)? and thus we
identify A? with TI(A)°. Note that IT(A) is denoted G(A) in [32], but this clashes with
the notation for path groupoids in Section 2.4 and [26].

Each component of a k-graph also has a fundamental group.
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DEFINITION 2.11. Let A be a k-graph. The fundamental group mi(A,v) of A atv € A°
is the isotropy group 71 (A, v) := vII(A)v of II(A) at v.

DEFINITION 2.12. For X # 0, the pair groupoid of X is T(X) := X X X, the simple
transitive groupoid with unit space {(x,x) : x € X} identified with X; it has structure
maps

reey) = sy =y @0 =®), @y = 0.

REMARK 2.13. Suppose that A is connected. Then for every u,v € A%, m(A,u) =
(A, v), but the isomorphism m; (A, u) — m1(A, v) is noncanonical.

Let v € A°. Then there exists a function w — v, from A° to TI(A)v such that y, = v
and r(y,,) = w for all w. Any such function y determines a 1-cocycle k =k, : A —
w1 (A, v), given by

Kky(d) 1= ¥, )iy, for € A,

and an isomorphism ¢,, : [I(A) — (A, v) X T(A°) (see [33, Corollary 6.5]) given for
g € I(A) by

$y(8) 1= (Vg 8¥s(0) (1(2), 5(2))).
Thus, we have (¢, o I)(1) = (k, (1), (r(1), s(1))) for all 4 € A.

The following definitions appear in [33]. We include them for completeness.

DEFINITION 2.14. Let A, X, T be k-graphs.

(i) A surjective k-graph morphism p:X — A is a covering if for all ve X0, p
restricts to bijections v — Ap(v) and vX — p(v)A.

(i) A covering p : ¥ — A is said to be connected if X (and hence A) is connected.

(i) Ifp:X— Aandgq:T — A are coverings, a morphism from (X, p) to (I', g) is a
k-graph morphism ¢ : £ — I' such that g o ¢ = p.

(iv) A covering p:X — A is universal if it is connected in the sense of part
(i1), and for every connected covering g : I' = A, there is a unique morphism
¢ : (X, p) = (I, g) in the sense of part (iii).

EXAMPLE 2.15. Let A be a k-graph, G a group, ¢ : A — G a 1-cocycle and G X,
A the skew product. There is a covering p: GX.A — A given by p(g,4) =41
[33, Proposition 6.3]. The quotient G\(G X, A) by translation in G is a k-graph, and p
descends to an isomorphism p : G\(G X. A) — A.

THEOREM 2.16 [6, Proposition A.19], [33, Theorem 2.7]. Every connected k-graph A
has a universal covering. A connected covering p : X — A is universal if and only if
the induced homomorphism p, : 71(Z,v) = m(A, p(w)) given by p.([v]) = [p(y)] is
the trivial homomorphism for some, and hence every, v € X°.
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2.3. Simply connected k-graphs.

DEFINITION 2.17. A k-graph A is simply connected if m (A, v) is trivial for every
veAL.

THEOREM 2.18 [33, Corollaries 5.5 and 6.5]. Let A be a connected k-graph.

(1) A connected covering p : £ — A is universal if and only if X is simply connected.
(i) Givenv e A, there exists a cocycle : A — m1(A, V) for which the skew-product
covering p : wi(A,v) X, A — A of Example 2.15 is a universal covering.

We can characterise simply connected k-graphs using either fundamental groupoids
or 1-cocycles.

LEMMA 2.19. Let A be a connected k-graph. Then the following are equivalent:

(1) A is simply connected;

() v (r(y), s(y)) is an isomorphism TI(A) = T(A); and

(iii) for every group G, every 1-cocycle c : A — G is a coboundary in the sense that
there is a function b : A° — G such that b(r())c(d) = b(s(2)).

PROOF. (i) = (ii). If A is simply connected, then by definition, 71(A, v) is trivial for
all v, so Remark 2.13 gives item (ii).

(i) = (iii). Suppose that TI(A) = T(A®) and fix a I-cocycle c: A — G. By the
universal property of IT1(A), there is a homomorphism ¢ : T(A’) — G that extends ¢
(thatis, ¢ = ¢ 0 i). Fix v € A". Define b : A° — G by b(w) = &(v,w). For each A € A,

c(d) = Er(A), (D) = E(r(), V)(v, s())) = b(r(A) ™' b(s(A),

giving b(r(4))c(A) = b(s(4)).

(iii) = (i). Suppose that every 1-cocycle on A is a coboundary. Fix v € A°.
As in Remark 2.13, for each w e A%\ {v}, fix v, € II(A)), put v, =v and define
k: AN — m(A,v) by k(1) = yr‘(lﬂ)i(/l)ys(l). Then « is a 1-cocycle so there is a map
b : A° — n(A,v) such that k(1) = b(r(1))"'b(s(1)) for all A. By the universal property
of the fundamental groupoid, « extends uniquely to a 1-cocycle & : II(A) — m1(A,v)
(that is, k = k o 7). By uniqueness, it follows that for all y € I1(A), we have

Vi) VYsen = K(y) = b(r(y) ' b(s()).

The first equation implies that the restriction of k to 71(A, v) is the identity map and
by the second equation, the restriction is trivial. Hence, (A, v) is trivial and so A is
simply connected. o

2.4. The path groupoid G, and the C*-algebra C*(A). Let A be a row-finite
source-free k-graph. The infinite path space A® of A is the space of k-graph
morphisms x : ; — A under the locally compact Hausdorff topology with basic
compact open sets Z(1) := {x € A® : 1 = x(0,d(2))}, indexed by A € A. For p € N,
the shift map o : A* — A~ is defined by o”x(m,n) = x(m + p,n + p) for x € A*
and (m,n) € ; and p — o is an action of N* by local homeomorphisms.
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Elements x, y € A® are shift equivalent, written x = y, if ”x = o1y for some p, g € N¥.
The path groupoid G, is the Deaconu—Renault groupoid of the action p — o”.

DEFINITION 2.20 [26, Definition 2.7]. The path groupoid is
Gr = {(t,n,y) e A°XZXA® : olx = 0™y, n = { —m),
with unit space gg = {(x,0,x) : x € A*} identified with A*, with structure maps
roony) =x suny) =y, (Ln)0,62)=En+62), 6y =, -nx),
and under the topology with basic open sets
Z(u,v) = {(ux, d(u) — d(v), vx) : x € Z(s(u))}
indexed by pairs (u, v) € A X A such that s(u) = s(v).
The C*-algebra of A is defined via generators and relations.
DEFINITION 2.21 [26, Definition 1.5]. A family of partial isometries {s, : 1 € A} is a
Cuntz—Krieger N-family if:

(CK1) {s,:ve A is a collection of mutually orthogonal projections;
(CK2) 54, = sas, for all 4, 4 € A such that s(1) = r(u);

(CK3) s'sq = sy forall 1 € A; and

(CK4) forallve A®and n € N¥, we have s, = 3 jcopn S 87

We write C*(A) for the universal C*-algebra generated by a Cuntz—Krieger A-family
{s: A€ A}

The groupoid G, is étale [26, Proposition 2.8], and [26, Corollary 3.5(i)] says that
C*(A) = C*(GA)-
3. Embedding results for higher-rank graphs

In this section, we develop tools for determining when a k-graph A embeds in IT(A),
and describe classes of examples that do embed; we also present three examples—one
from [32], one due to Ben Steinberg and one that is new—that do not embed.

3.1. Nonembeddings. Even a fairly elementary monoidal 2-graph A need not
embed in IT(A).

EXAMPLE 3.1 [32, Example 7.1]. Let A be the 1-vertex 2-graph with A®" = {d, e} and
A®? = {a, b, ¢} such that

da=ad, db=be, dc=ae, ea=cd, eb=ce, ec=Dbd. (3-1)

Using the first four relations from (3-1) and that the map i : A — TI(A) is a morphism,
we obtain

i(a) = i(di(a)id)™" = i(d)ie) " i(c) = i(d)ib)i(e)™" = i(b),

so i(a) = i(b) in II(A). The fifth equation in (3-1) gives i(d) = i(e), so equations two
and five give i(b) = i(c). Hence, i(a) = i(b) = i(c) and i(d) = i(e). The degree map
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descends to an isomorphism d : TI(A) — Z?; so the universal cover of A is isomorphic
to Z2 Xq A.

The next example, shown to us by Ben Steinberg, who attributes the idea to Mal’cev
[30, §2] (see also [29, Example 11.13]), is a monoidal 2-graph that does not embed even
though its edge-set does.

EXAMPLE 3.2 (Steinberg, private communication). Let A be the unique 1-vertex
2-graph with A®' = {ey, e;, e3, e4} and A*> = {f1, f>, f3, f4}, and such that

{fbea if (a,b) = (1,4), (4, 1);
eufp =

3-2
faep otherwise. (3-2)

Since i: A — II(A) is a functor, i(e,)~'i(f,) = i(f)i(ep)™" for (a,b) = (1,2),(2,3),
3,4), so

ilen)™i(fi) = i(f2)i(er)™ = i(es) ™ i(f3) = i(fa)iCea) ™",

and then rearranging the outer terms gives

i(fies) = i(f1)i(es) = i(fa)i(e1) = i(faer).

Uniqueness of factorisations in A shows that fies # fiey, so i is not injective.

We show that i is injective on A® U A®>. For this, define ¢: A% UA®” - Z
by c(ej)) = c(f;)) =j for j=1,...,4. Since c respects (3-2), it extends to a functor
c: A — Z. By Definition 2.9, there is a functor ¢ : I[I(A) — Z such that ¢oi =c.
In particular, ¢(i(e;)) = j = ¢(i(f;)) for all j. Hence, (C X d)oi: (A% UA®) - 7% is
injective. Thus, i is injective on A®' U A®2.

EXAMPLE 3.3. For readers looking at this paper in monochrome, in the following
example we refer to solid edges as blue, dashed edges as red, and dot-dashed edges as
green. By [19, Theorems 4.4 and 4.5], there is a unique 3-graph I" with the skeleton and
factorisation rules below (there are no 3-coloured paths, so the associativity condition
is vacuous).

esfi = faei esf] = fiei (i=1,2
€49i = g4€; (1=1,2)
f3g2 = g3fe  fi92 = g3f3
figi=g3f1  fag1 = g3f1

By Proposition 3.12(ii) below, the 2-coloured sub-2-graphs of I" are all embeddable:
the Z-valued cocycle on the blue-red graph carrying {f; : i <4} to 1 and all other
edges to 0 is essential (see Definition 3.10); the Z-valued cocycle on the red—green
graph carrying {fi} U {f/ :i>2} to 1 and all other edges to O is essential; and the
trivial cocycle on the blue—green graph is essential.
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However, I" does not embed in II(I'): writing [x] for i(x) € I1(A), we calculate:

[l = [g17' 1A = [Allg2]7" = [Allea] M eallgal™ = [e3]17' [ fallga] ' [eal
= [es]™' [faller]ler] ' [g4] " [es]
= [es] ' [es]fillg1] ' [eal ' [eal = [fillgi]™".

So cancellation gives [f]=[f;]. We then have [f;]=[g31[fillg:]™" = [g31[f]]
[g1]' =[f] and [f]]=[esllf]lle]™" = [esllfiller] = [fs], and then also
5] = [es] ' [f;1e2] = [e3] ' [fallea] = [f2]-

Motivated by these examples, we seek conditions under which i : A — TI(A) is
injective.

3.2. Embedding singly connected higher-rank graphs.

DEFINITION 3.4. A k-graph A is singly connected if there is at most one path between
any two vertices; that is, for all u,v € A%, we have luAv| < 1.

Singly connected k-graphs need not be connected. The vertex set of a singly
connected k-graph is partially ordered by the relation < given by u < v if and only
if uAv # 0.

EXAMPLE 3.5. Write {t; : i = 1,...,n} for the generators of the free group F,. Let
c: B, = F, be the 1-cocycle such that c(f;) =¢; for all i. Then F, X. B, is singly
connected.

There is a relationship between singly connected k-graphs and the simply connected
k-graphs of Section 2.3, though neither condition implies the other.

PROPOSITION 3.6. Let A be a connected k-graph and suppose that i : A — TI(A) is
injective. If A is simply connected, then it is singly connected.

PROOF. Suppose that A is not singly connected. Then there exist distinct ele-
ments A,u € A such that s(1) = s(u) and (1) = r(u). Since i : A — I[I(A) is injec-
tive, i(A) # i(u) and thus i(1)~'i(u) € m (A, s(1)\{s(1)}. Hence, A is not simply
connected. O

The reverse implication fails, as the following example illustrates.

EXAMPLE 3.7. Let E be the directed graph with E° = {u,v,w, x} and E! = {e, f, g, h}
such that s(e) = u = s(f), s(g) =w = s(h), r(e) =v = r(h) and r(f) = x = r(g). Then
the 1-graph E* is a singly connected 1-graph that is not simply connected since
m(E*,u) = Z. Adding tails at both u and w as in [4, Lemma 1.2] yields a source-free
1-graph with the same property.

We use the next theorem, which exploits the universal property of the fundamental
groupoid from Section 2.2, to show that singly connected k-graphs embed in their
fundamental groupoids.
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THEOREM 3.8. Let A be a k-graph and let G be a groupoid. If there is an injective
functor F : A — G, then i : A — TI(A) is injective.

PROOF. The universal property of the fundamental groupoid yields a homomorphism
F : TI(A) — G such that F' = F o i. Hence, if F is injective, then i is injective. O

PROPOSITION 3.9. Let A be a connected k-graph. Then:

(i)  the canonical map t : A — T(AP) is injective if and only if A is singly connected;
(1) if A is singly connected, then i : A — TI(A) is injective.

PROOF. The first assertion follows by definition and the second follows from
Theorem 3.8. ]

Theorem 3.8 also allows us to deduce embeddability from the existence of a suitable
1-cocycle.

DEFINITION 3.10. Let A be a k-graph, G a countable group and c: A - G a
I-cocycle. We say that c is essential if the restriction of ¢ to uAv is injective for all
u,v e A,

EXAMPLE 3.11. The 1-cocycle ¢ : B, — F, described in Example 3.5 is essential.

PROPOSITION 3.12. Let A be a connected k-graph and let v € A°. Then the following
are equivalent:

(1)  the 1-cocycle k : A — m(A, V) given in Remark 2.13 is essential;
(i1) A admits an essential cocycle ¢ : A — G to a group G; and
(i) i: A —TII(A) is injective.

For any essential cocycle c : A — G as in part (ii), G X. A is singly connected.

PROOF. The implication (i) = (ii) is obvious.

For (il) = (iii), suppose that ¢ : A — G is an essential cocycle into a group. Note
that G x T(AY) is a groupoid. Define j : A — G x T(A) by j(1) := (c(), (r(), s(1)));
then j is a functor. Since c is essential, j is injective, so i : A — II(A) is injective by
Theorem 3.8.

For (iii) = (i), suppose that i: A — II(A) is injective. Recall that by
Remark 2.13, («(4), (r(1), s(1))) = (¢, o i)(A) for all A € A. Hence, « is essential, since
¢, o iis injective.

For the final statement, suppose that ¢ : A — G is essential, and that (g, 1) = r(h, u)
and s(g, 1) = s(h,u) in G X, A. Then

(&, r(V) = r(g, ) = r(h,p) = (h,r(u)) and
(c(Dg, s(D) = s(g, D) = s(h, 1) = (c(h, s(u)).

So () = r(u), s(1) = s(w), g =h and c(1)g = c(u)h. These last two equalities give
¢(d) = c(u). Thus, j(1) = j(u) and hence A = u. Therefore, (g, 1) = (h, 1) and so G X, A
is singly connected. o
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3.3. More general embedding results. In this section, we investigate embeddabil-
ity of k-graphs that are not singly connected. We start with one of the most useful
results in our toolkit, which relies on the universal property of the fundamental
groupoid given in Definition 2.9.

PROPOSITION 3.13 (Lifting embeddability). Let A, X be connected k-graphs and let
p X — Abeacovering. Thenip : A — II(A) is injective if and only if iy : ¥ — II(Z)
is injective.

PROOF. Suppose that iy : A — II(A) is injective and that 0,0’ € X satisfy
is(0) = ix(0”). In particular, s(o) = s(0”'); let u := s(o-). By universality of [1(Z), there
is a unique groupoid morphism p : II(X) — II(A) such that p o is = i o p. Hence,

iA(p(0) = pliz(0)) = pliz(c) = in(p(o)).

Injectivity of i, forces p(o) = p(c”’). Since p is a covering, it is injective on s~ (). So
o =o', and hence iy : £ — TI(X) is injective.

For the reverse implication, suppose that iy : A — II(A) is not injective. Then
there are distinct A, 4" € A such that ix(1) = in(1"). We may assume without loss
of generality that X is the universal covering of A so that X is simply connected.
Since X is connected, r X s : II(Z) — X% x 2% is an isomorphism, so II(X) = T(Z°).
By Theorem 2.18(ii), given u € A°, there is a cocycle 1 : A — 7 (A, u) such that
X =m(A,u) X, A and p is given by projection onto the second factor. It follows
that s(1) = s(1"), r(4) = r(A") and (1) = n(d") (since n factors through iy and iy (1) =
ia(1")). Identifying ¥ with the skew-product as above, set o = (1,2),0”" = (1,1") € Z,
so o, o~ are distinct. We have

s(o) = s(1, 1) = (), s(1) = (), () = s(1, ') = s(c”)

and similarly, 7(c) = r(c”). So (r X s)(ix(07)) = (r X 5)(ig(c”)). Since r X s is injective
on iy, we deduce that iy : £ — TI(Z) is not injective. O

Our later results say that embeddability is preserved by various constructions of
new k-graphs from old ones. So we need to know that some basic classes of k-graphs,
like 1-graphs, embed.

THEOREM 3.14. Let A be a 1-graph. Then iy : A — TI(A) is injective.

PROOF. Write A = | |, A; as a disjoint union of connected graphs. Fori =1,...,n,
let Z; be the universal cover of A;. Since £ = | |7, Z; is (the path category of) a disjoint
union of trees, there is at most one undirected path connecting any two distinct vertices.
It follows that X is singly connected and therefore embeddable by Proposition 3.9(ii).
Hence, iy : A — II(A) is injective. O

COROLLARY 3.15. Let A be a k-graph and suppose that is : A — II(A) is injective.

(i) Let f: N’ = N¥ be an affine map. Then i : f*(A) — II(f*(A)) is injective.
(i) IfTUisan €-graph andir : T — II(D) is injective, then ipnxr : A XT — II(A XT)
is injective.
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(i) Ifc: A — G is a 1-cocycle into a group, then igxp : G X. A — II(G X, A) is
injective.

(iv) If @ : NY — Aut(A) is an action, then there is an action @ : Z — Aut(TII(A))
such that @, o iy =iy o @, forn € N, Both

in X et A X NE S TIA) X Z° and  igs e+ A X0 NE — TI(A %, NY)

are injective. Moreover, ix X iy induces an isomorphism TI(A X, N?) =
II(A) x4 ZE.

PROOF. (i) Define i x id : f*(A) — II(A) x Z by (i x id)(1, n) = (i(1), n). Then i x id
is an injective functor into a groupoid, so the result follows from Theorem 3.8.

(i1) The map ip X ir : A X I' = TI(A) X II(T') is an injective functor into a groupoid,
so the result follows from Theorem 3.8.

(iii) By universality of TI(A), there is a cocycle ¢ : TI(A) — G such that ¢ o iy = c.
The skew-product groupoid G Xz II(A) is equal as a set to G X II(A), and idg Xiy :
G X, A — G Xz II(A) is a functor. Since i, is injective, so is idg Xia, so the result
follows from Theorem 3.8.

(iv) Since the action @ of N on A is determined by £ commuting automorphisms,
it extends to an action (also called @) of Z‘ on A. By functoriality, this extends to an
action @ : Z¢ — Aut(TI(A)) such that @, o iy = ix o a, for n € N¢. It is routine to check
that i, X iy is a functor; it is injective because iy and iy are injective. So Theorem 3.8
implies that i, ¢ is injective.

To see that iy X iy induces an isomorphism II(A X, N¢) = IT1(A) x, Z¢, note
that the universal property of IT(A X, NY) implies that iy X iy induces a homo-
morphism 7:TI(A X, N — TI(A) X, Z such that 7 o i Ax ¢ = IA X iye. We construct
an inverse. The restriction ¢ := ixx ntlaxio) : A = II(A X, NY) is a functor, as is
€2 := iax wt|aoxave. The universal property of II(A) implies that ixy n¢lax(o) induces
a homomorphism & : II(A) — TI(A X, N%); and i Ax,N¢|A0xe extends to a homomor-
phism & : A? x Z¢ — TI(A x, N%). Routine calculations show that & x & : II(A) X5
Z! — TI(A X, NY) is a homomorphism inverse to i. |

REMARK 3.16. Combining Theorem 3.14 and Corollary 3.15(iv), we see that
crossed-product graphs of 1-graphs always embed in their fundamental groupoids.

EXAMPLES 3.17. We present two examples of Corollary 3.15(i).

(i) Define f:N?> —» N by f(a,b) = a+b. Let A = f*(B,). Corollary 3.15 implies
that f*(A) embeds in its fundamental group since Theorem 3.14 impies that the
1-graph B, does. Indeed, for 8 : [n] X [n] — [n] X [n] given by 6(i,j) = (i,j), we
have A = F}.

(i) Let A be a 2-graph and define f : N> — N? by f(a,b) = (a,b) + 1. Then f*(A)
is the dual graph 1A described in [1, Definition 3.1]. So for the 2-graph
A =F; from example (i) above, f*(F;) embeds in its fundamental group by
Corollary 3.15(1).

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101109

14 N. Brownlowe, A. Kumjian, D. Pask and A. Sims [14]

COROLLARY 3.18 (Action graphs). Let A be a k-graph. Let B, be the 1-graph
described in Example 2.3(i). Let uw a, be a functor from B, to Aut(A). Let
I'=B,xA; define d:T — N by d(u, 1) = (lul,dd); define r,s: T =T by
r(u, ) = (u, a,(r(1))) and s(u, ) = (u, s(1)); and define composition in I" by

, (D), &) = (uv, ). (3-3)

Then (I',d) is a (k+ 1)-graph. If in : A — II(A) is injective, then ir : I’ — II(T') is
injective.

PROOF. It is routine to check that (3-3) determines an associative composition. The
map d is clearly a functor and if d(u, 1) = (a + b, m + n), then factorising u = p,u;, and
A = A, A, with the appropriate degrees, the factorisation (i, A) = (ta, @y, () (s, A1)
is the unique factorisation of (u, 1) into morphisms of degrees (a,m) and (b,n). So I'
is a (k + 1)-graph.

Universality of II(A) implies that each a, extends to an automorphism of II(A).
So a extends to an action of TI(B,) = F, on II(A), with semidirect product groupoid
I1(B,) =<z II(A). Then ip, X is is an embedding of I in I1(B,,) =<4 I1(A). The result now
follows by Theorem 3.8. ]

EXAMPLES 3.19.

(i) Fix m,n > 2. Let A = B,, be the 1-graph described in Example 2.3(i). For each
f € B, let @ be a permutation of B, and extend this to a 1-cocycle B, — Aut(A)
in the only possible way. By Theorem 3.18, these data give rise to a 2-graph
I' that embeds in its fundamental group. Define 6 : [n] X [m] — [m] X [n] by
0(i,j) = (j/, 1) if and only if @ (f;) = f;. Then I is isomorphic to the 2-graph F;
of Example 2.5. In particular, F; embeds in its fundamental group.

EXAMPLE 3.20. Fix n > 2 and a permutation o € Bij([n]), the group of all bijections
of the set [n]. Define 6 : [n] X [n] — [n] X [n] by 0(,j) = (o(i),j). This fits into the
situation of Example 3.19, so F, embeds in its fundamental group.

DEFINITION 3.21. Let X be a nonempty set. A map R : X> — X is a (set-theoretic)
Yang—Baxter solution if

(R x idx)(idx X R)(R X idx) = (idx X R)(R X idx)(idx X R)

as maps on X>. For every permutation o of X, there is a Yang—Baxter solution R
given by R(e, f) = (o(f), e); such solutions are called permutation-type Yang—Baxter
solutions.

For the interplay between the Yang—Baxter equation and k-graphs, see [47].

LEMMA 3.22. Fix a finite set X and a Yang—Baxter solution R : X> — X* on X. Fix
k=2 Let Ay =1{v). For i<k let Aj'y = {i} X X. For (i,e) € A{y and (j, f) € Ay
withi < j, set

(i), /) =G, [, €) ifR(e, f)=(f.€).
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There is a unique k-graph Ay r with these edges and factorisation rules. If R is a
permutation-type Yang—Baxter solution, then i : Ay g — I(Axr) is injective.

PROOF. The first statement follows from [47, Section 4.1]. For the second statement,
we proceed by induction. For k = 2, this follows from [47, Section 4.1]. Now suppose
inductively that A_; x embeds in its fundamental groupoid. There is an automorphism
a of Ag_1g such that a(i,e) = (i,0(e)) for all i< k—1 and e € X. For e € B|1X|, let
@, := @ € Aut(Ay_ g). Corollary 3.18 yields a k-graph I' = By; X, Ag—1 g. Choose a
bijection ¢ : BL, — Ai}R. Then there is an isomorphism I' — Ay r that agrees with ¢

X
on B|1)(| C I' and takes each (i, e) € Ai’_l RrETto+1e) € Ai;el . Corollary 3.18 implies
that I embeds in its fundamental groupoid, so Ay z does too. ]

REMARK 3.23. For a long time, the literature on k-graphs lacked concrete examples
with k£ > 3 not obtained from lower-rank graphs via the constructions of Corollary 3.15.
Yang’s important insight [47] remedied this situation: every Yang—Baxter solution
yields k-graphs for arbitrary k, typically not of the forms from Corollary 3.15. In
particular, Lemma 3.22 uses Yang’s construction to see that every finite permutation
o yields a k-graph that embeds in its fundamental groupoid for each k > 1. Taking
o = id yields Cartesian-product k-graphs, but most other choices of o yield k-graphs
that do not arise from the constructions of Corollary 3.15.

REMARK 3.24. Work of Lawson and Vdovina also yields many embeddable k-graphs.
A monoidal k-graph is rigid [29, page 37] if whenever e and f are edges of different
degrees, there are unique edges ¢’,e”, f’, f” such that ¢’f = f'e and ef” = fe”.
Theorem 3.8 and [29, Theorem 11.14] combined imply that every rigid monoidal
k-graph A embeds in II(A).

We finish the section by showing that a strongly connected k-graph A embeds in
I1(A) whenever the submonoid of endomorphisms at any vertex embeds in a group.

PROPOSITION 3.25. Let A be a strongly connected k-graph and H a group. Fix v € A°.
If there exists an injective monoid homomorphism ¢ : vAv — H, theni: A — TI(A) is
injective.

PROOF. The universal property of II(A) given in Definition 2.9 implies that
there is a homomorphism ¢ : i(v)II(A)i(v) — H such that ¢oi=c. Since A is
strongly connected and since II(A) is a discrete groupoid, II(A) is isomorphic
to T(A%) x i(W)II(A)i(v). Post-composing this isomorphism with idy(a0) XC yields a
groupoid homomorphism ¢ : TI(A) — T(A®) x H. Suppose that g(i(u)) = g(i(v)). Fix
A € vAr(u) and T € s(u)Av. We have

((v,v), c(Aut)) = (v, v), E(i(AuT))) = q((AuT))
= q@i(Av1)) = ((v,v), CEATN((v, V), c(AvT)).

Since c¢ is injective, Aut = Avt and so u =v. Thus, goi, and therefore i, is
injective. O

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101109

16 N. Brownlowe, A. Kumjian, D. Pask and A. Sims [16]

EXAMPLE 3.26. Consider the 2-graph A below with relations ape = fa;, aje = faog,
bf = eb.

Then A is strongly connected. None of our results before Proposition 3.25 apply
to show that A embeds in I1(A). Since eba; = bfa; = ba;_;e for each i, the monoid
uAu C A has presentation

ulu = {e, bay, ba; : eba; = ba,_je,i = 0,1),

so is isomorphic to the semidirect product F] X, N for the action « that interchanges
{bay, ba,}, the generators of IF‘;'. The action a extends uniquely to an action & of
Z on F,, and uAu = ]Fg Xqo N embeds in FF, Xz Z. So Proposition 3.25 implies that
i: A — II(A) is injective.

4. C*-algebraic results

Here, we generalise [25, Corollary 4.14], which says that the C*-algebra of a
connected row-finite 1-graph is Rieffel-Morita equivalent to a crossed product of a
commutative C*-algebra by the fundamental group of the graph. The situation is much
more complicated in higher dimensions.

Let A be a connected row-finite source-free k-graph. Fix v € A°. By Theorem 2.18
(see [33, Corollary 6.5]), there is a cocycle n: A — m(A,v) such that the
skew-product 71 (A, v) X, A is isomorphic to the universal cover X of A. It then follows
from [26, Theorem 5.7] that C*(A) is Rieffel-Morita equivalent to C*(X) < 71 (A, v).
Our main theorem describes the coefficient algebra C*(X) of this crossed product.

THEOREM 4.1. Let A be a connected row-finite source-free k-graph and let
X=m(A,v)Xy; A be as above so that C*(A) is Rieffel-Morita equivalent to
C*(2) < (A, V).

(i)  The C*-algebra C*(X) is AF.

(i) If A embeds in its fundamental groupoid TI(A), then C*(X) is type Iy and its
spectrum has a cover by zero-dimensional compact open Hausdorff subsets.

(iii) If A embeds in its fundamental groupoid TI(A) and ' is simply connected, then
C*(2) is Rieffel-Morita equivalent to a commutative C*-algebra.

We use the next two results to prove parts (i) and (ii) of Theorem 4.1.

PROPOSITION 4.2. Let T be a row-finite source-free k-graph. If T is simply connected,
then there is a map f:T° — ZF such that d(2) = f(s()) — f(r()) for all A1 €T.
Moreover, C*(I') is AF.

PROOF. Since d: T —» ZFis a cocycle, Lemma 2.19 ensures the existence of f. Now,
[26, Lemma 5.4] implies that C*(I') is AF. O
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EXAMPLE 4.3. Let A be the 2-graph of Example 3.1 (see [32, Example 7.1]).
Recall that A does not embed in its fundamental groupoid and the universal cover
T = 7% x4 A is simply connected. We claim that C*(Z) is Rieffel-Morita equivalent
to the UHF algebra Mg~ (in fact, C*(X) = Mg~ ® K). For each n € N, set v, :=nl
and observe that as in the proof of [26, Lemma 5.4], A, := C*({s) : s(1) = v,}) =
K(L?*(s~'(v,))). Moreover, for all n, A, C A,,; and the multiplicity of the embedding
is 6 (since |[v,Av,.1| = 6). Since the sequence (v,),”, is cofinal in Z2,

* ~ 1; ~1; 2/.—1
C'(X) =limA, = lHm K (s~ (va)))-
Hence, C*(Z) is Rieffel-Morita equivalent to the UHF algebra Mg~ as claimed.

PROPOSITION 4.4. Let I be a row-finite source-free k-graph. If I is singly connected,
then, for each v € I, the corner s,C*(I)s, is an abelian C*-algebra isomorphic to
C(Z(v)). Moreover, C*(T') is type Iy and Prim C*(I") admits a cover by zero-dimensional
compact open Hausdorff sets.

PROOF. Fix x,y €™ such that x(0)=y(0) and p,q € N*. We claim that if
oP(x) = 04(y), then p=¢g and x=y. To see this, suppose that o”(x) = o9(y).
Then o?(x)(0) = c9(y)(0). Let u:=x(0)=y0) and v:=0”x)(0)=0c9y)0).
Then x(0, p),¥(0,q) € ul'v. Since T' is singly connected, x(0, p) = y(0,q). Hence,
x = x(0, p)oP(x) = y(0, g)o?(y)(0) = y, and the claim holds.

Now, recall from [26] that ' = gg and that for v € T?,

Grlzw =y € Gr: s(y), r(y) € Z(v)},

Sy = Xzw) C Cg(gg) and 5,C*(D)s, = C*(Grlzy)). By the first paragraph,
gﬂgm = Z(v). Hence, C*(Grlzw)) = C(Z(v)). So for each v € I'¥, the ideal I, generated
by s, is Rieffel-Morita equivalent to the abelian C*-algebra C(Z(v)). Since C*(I') is
generated by the ideals 7, C*(I') is type Io.

By definition of the hull-kernel topology, the ideals /, yield a cover of Prim(C*(I'))
by open sets I, = Prim(/,). Since each I, is Rieffel-Morita equivalent to C(Z(v)),
each Prim(/,) = Z(v) is a zero-dimensional compact open Hausdorff subspace of
Prim(C*(I)). m|

PROOF OF THEOREM 4.1(1) AND (II). Proposition 4.2 for I' = £ gives part (i). If
A — TI(A) is injective, then so is £ — [1(X) by Proposition 3.13. Since X is simply
connected, Proposition 3.6 implies that X is singly connected; so Proposition 4.4 for
I' = X gives part (ii). ]

To prove Theorem 4.1(iii), we argue that the spectrum C*(Z)" is Hausdorff: then
Theorem 4.1(ii) shows that C*(X) is Rieffel-Morita equivalent to a continuous-trace
Cr-algebra with totally disconnected spectrum, and the Dixmier—Douady theorem
shows that C*(X) is Rieffel-Morita equivalent to Co(C*(X)"). We argue that
Co(C*(2)") = M /Gy and use the additional hypothesis that ! is simply connected
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to prove Theorem 4.1(iii). We do not know whether this additional hypothesis is
automatic; certainly, even for 1-graphs, being singly connected does not guarantee that
the associated C*-algebra has Hausdorff spectrum.

EXAMPLE 4.5. Let E be the directed graph (pictured below) such that:

o E%={u,,v,:n€Z}U{w,;:neZandi>0}; and
E! ={en, fn, & hy :n€Z} Uik, :neZandi>0},

and such that forn € Z and i > 0,

r(en) = s(en-1) = r(gn) = tn,  r(fn) = s(fu-1) = r(hn) = va,
s(gn) = s(hn) = r(kn,O) = W0, S(kn,i) = r(kn,i+l) = Wni+1-

uq u) uy
€0 €l

k20 N k2] N
2,0 w21 w22

w00 h 0.2
k-1.0 ko1

ot ol

This graph E is singly connected. Define x,y € E* by x =epejey--- and
vy = fofifp---. Then [x] # [y] in Qg)) /Ge. We claim that they cannot be separated
by disjoint open sets. To see this, for n € Z, let z, = k,0kn1ks2---. We show that
[z,] = [x] and z,, — [y] as n — oco. By symmetry, we just have to show that [z,] — [x].
For this, just note that [z,] = [epe; - - - €,-1812,] and we have lim,,_,., ege] - - - €,-18n2n =
epér1ér - = X.

We have C*(E) = C*(Gg) by [27, Proposition 4.1]. Since C*(E) is type Iy, its
spectrum is homeomorphic, by [11, Corollary 4.2], to the orbit space gg” /GE of GE,
which we just saw is not Hausdorff. Note that E is not simply connected (for example,
eog1h" f hogy' € TIE™ )il \ {uo}).

Example 4.5 suggests a Hausdorffness criterion (Lemma 4.7). As this criterion is
not easy to check, in Theorem 4.8, we specialise to singly connected k-graphs and
recast it in terms of the following relation on vertices, which permeates analyses of
ideals of k-graph C*-algebras [36].

NOTATION 4.6. For I' a k-graph, we define a relation < on I'’ by v < w if and only if
vI'w # 0.
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LEMMA 4.7. Let I be a row-finite source-free k-graph and let Gr be its k-graph
groupoid. The orbit space ' |Gr is Hausdorff if and only if for every pair of infinite
paths x,y € T such that [x] # [y], there exists N € N¥ such that the vertices x(N) on
x and y(N) on y have no common upper bound with respect to <, in the sense that
s(u) # s(v) for all u € x(N)I" and v € y(N)T.

PROOF. We have [x] = [y] if and only if 0"(x) = 0" (y) for some m, n. So it suffices
to fix x,y such that o™ (x) # o"(y) for all m,n, and show that [x] and [y] can be
separated if and only if there exists N as in the statement. Suppose that there
is no such N. For each N € N, choose uy € x(N)I" and vy € y(N)I' with s(uy) =
s(vy), and zy € s(uy)I™. Then x(0, N)uyzy — x and y(0, N)vyzy — y. Since each
[x(0, Muyzn] = [zv] = [Y(0, N)vyzy], this forces [zy] — [x] and [zy] — [v]. Now
suppose that there exists N as in the statement. Then g(Z(x(0, N))) and g(Z(y(0, N)))
are disjoint open neighbourhoods of [x] and [y] in I /Gr. O

Recall that a filter for a partially ordered set (X, <) is a nonempty subset F' € X such
that:

(a) forall u,v € F, there exists w € F such that u,v < w;
(b) ifveFandu<v,thenuekF.

A filter F for < is called an ultrafilter if:
(c) F is not properly contained in any other filter F” for (X, <).

If T is singly connected, then < is a partial order on I'. We show that elements of
'™ /Gr correspond with ultrafilters for (I'’, <) and use this to characterise Hausdorff-
ness of I'°/Gr.

THEOREM 4.8. Let T be a singly connected row-finite source-free k-graph. Then the
ultrafilters for (I, <) are exactly the sets [x]° := {r(y) : y € [x]} indexed by elements
x € I'™. Moreover, I' /|Gy is Hausdorff if and only if for every pair U,V of distinct
ultrafilters of (I, <), there is a pair u € U and v € V with no common upper bound
with respect to <.

PROOF. For the first statement, first fix x € T, If v, v, € [x]°, then v; = r(ac™(x))
and v, = r(Bo”(x)) for some a,B,m,n, and then w = r(c™*"(x)) € [x]° satisfies
viTw # 0 by definition; so [x]° satisfies part (a). If w e [x]° and v eT? satisfy
v <w, say @ € v['w, then since w € [x]°, we have w = r(Bo"(x)) for some S,n and
so v = r(aBo’(x)) € [x]% so [x]° satisfies part (b). Suppose that F is a filter for
(I, <) containing [x]°. Fix v € F; we must show that v € [x]°. Since v, x(0) € F, there
exists w € F with v < w and x(0) < w, and by part (b), if w € [x]°, then v € [x]%; so
we just have to show that w € [x]°. Fix @ € x(0)I'w. Then r(c¥®(x)) € [x]° C F. So
there exists w’ € F such that #(c?®(x)),w < w'; say p € r(c?®@(x))I'w’ and T € wI'w'.
So at and x(0,d(a))p both belong to x(0)I'w’. Since I' is singly connected, this
forces at = x(0,d(@))p, so the factorisation property forces x(0,d(@)) = a; hence,
w = s(@) = s(x(0, d(@))) € [x]°.
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Now, fix an ultrafilter F for (I'’, <). Enumerate F = (v, vs,...), put w; =v; and
inductively use part (a) to choose w;;; € F such that v;.1, w; < wip. So (wy); is an
increasing sequence such that every v € F satisfies v < w; for some i. For each i, use
that w; < wiyp to fix @; € wil'wiy g, let p; := a; - - - @; and choose y; € Z(p;) C I'™. Since
(vi)i belongs to the compact set Z(vy), it has a convergent subsequence y;, — y € Z(vy).
We claim that F = [y]°. By part (c), it suffices to show that F C [y]°. So fix v € F.
Then v =v,, <w,, for some m € N. Choose [ so that i; > m. For I’ > [, we have
Yir € Z(p;,) € Z(p;). Hence, y € Z(p;,). So w;, = s(p;,) = r(c™@(y)) € [y]°. By choice
of (wj); and [, we have v < w,, < w;,. So part (b) gives v € [y1°. This proves the first
statement.

For the second statement, by Lemma 4.7, it suffices to show that for all x,y € I
with [x] # [y], there exists N such that s(x(N)I') N s(y(N)I') = 0 if and only if, for all
pairs U # V of ultrafilters of (I'%, <), there exist u € U and v € V with no common
upper bound with respect to <.

First, suppose that for every pair x,y € I'™°, there exists N such that s(p) # s(r) for
every p € x(N)I" and 7 € y(N)I'. Fix ultrafilters U # V, and fix x,y € I'™® with U = [x]°
and V = [y]°. Fix N such that s(p) # s(r) for every p € x(N)I" and 7 € y(N)I". Then
u=x(N) e U and v = y(N) € V have no common upper bound. Now, suppose that for
every pair U # V of ultrafilters, there exist u € U and v € V with no common upper
bound. Fix x,y € I with U = [x]° and V = [y]°. Fixu € U and v € V with no common
upper bound. Fix x” € [x] and y’ € [y] with r(x") = u and r(y’) = v, and m,m’ and
n,n’ such that o”(x) = o (x') and o”'(y) = 0 (y’). Fix N > m,n. Then ul'x(N) # 0
and v['y(N) # 0. Since u, v have no common upper bound, nor do x(N) and y(N); so
s(p) # s(t) for all p € x(N)I" and T € y(N)I. O

REMARK 4.9. Lemma 4.7 gels with [25, Proposition 4.3]: if E is a simply connected
row-finite source-free directed graph, then £~ /G is Hausdorff. We prove the contra-
positive. Suppose that £~ /G is not Hausdorff. Since E is a 1-graph, i : E* — [1(E*)
is injective. Corollary 4.7 gives x,y € E* such that 0™ (x) # o”(y) for all m,n, and,
for all N > 0, py € x(N)E* and 7y € y(N)E* such that s(oy) = s(ty) =: wy. We first
claim that there exists Ny such that x(n) # y(m) for all m,n > Ny. To see this, suppose
that there are increasing sequences (n;), (m;) such that x(n;) = y(m;) for all i. Since
E is singly connected, x(n;, n;1) = y(m;, m;y1) for all i; so o™ (x) = 0™ (y), which is
a contradiction. So by replacing x,y with o™ (x) and o™ (y), we may assume that
x(m) # y(n) for all m, n.

Hence, each wy is on exactly one of x, y; without loss of generality, wy is not on
x. Let a = x(0, |pg|) and B = y(0, |ro|). Then palamel‘Ti'ﬂ‘lro € (IE)),. We show
that palapk,oﬂ";(l]lﬁ_l‘ro # wo. Since r(p|y,) = x(|pol) # ¥(ITol) = r(t,) in reduced form
IT(]>\
since wo = s(79) # x(lool) = s(@) in reduced form, p; Yo = ¢~'nf, where f is the last

edge of @ and £, 7 € E*. So in reduced form, pj ' apy, 77} = {'nfeyA™!. In particular,

7ol
the word fe appears in the reduced form of pg' apj,7;.! 8770, so this is a nontrivial

[20, Proposition 4.9], pj, 7!, = eyAd™!, where e € E' is the first edge of p|,,. Similarly,

element of (II(E)),,. Hence, E is not simply connected.
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REMARK 4.10. The argument of the preceding remark does not go through for
k-graphs because there is no canonical reduced form for elements of the fundamental
groupoid of a k-graph.

For 1-graphs E*, we can use Remark 4.9 to check Hausdorffness of E*/GE =
C*(E*)". So it helps to relate Hausdorffness of the orbit space of a k-graph to that
of a natural sub-1-graph

PROPOSITION 4.11. Let I be a row-finite source-free k-graph. Suppose that I is simply
connected. Then T |Gr is Hausdorff if and only if TNV /|G is Hausdorff.

To prove this, we show that I'°/Gr is homeomorphic to a clopen subset of

C* /G

LEMMA 4.12. Let T be a row-finite source-free k-graph. Suppose that T is simply
connected. Let f :T° — ZF be a function such that d(2) = f(s(1)) — f(r(1)) for all
A €T as in Proposition 4.2. Let E be the directed graph such that E° = f~(Z1) and
E' = ETL. Let j : E® — T be the map such that j(x) is the unique infinite path such
that j(x)(0,n - 1) = x1x5 - - - x,, for all n € N (see [26, Remark 2.2]). Then j descends to
a homeomorphism j : E* |Gg — I’ /Gr.

PROOF. The map j restricts to a homeomorphism vE® — vI'™ for each v € E?, so is
continuous.

We claim that if x,y € E®, then j(x) ~g, j() if and only if x ~g, y. To see this, fix
x,y € E¥. Then j(x) ~g, j(y) if and only if there exist m,n € N* such that o (j(x)) =
o"(j(y)). Since f(r(c™(j(x)))) = f(r(x)) + m for all m € N* and similarly for y, and
since f(r(x)), f(r(y)) € Z1, we deduce that j(x) ~g. j() if and only if there exist m,n €
N* such that o™ (j(x)) = 0™(j(y)) and m — n € Z1. Since m — n € Z1 if and only if there
exists p € N¥ such that m + p,n + p € N1, we deduce that j(x) ~gr J(v) if and only if
o“1(j(x)) = o®(j(y)) for some a, b € N; that is, if and only if 0%(x) = o(y) for some
a,b € N. Hence, j(x) ~g. j(y) if and only if x ~g, y. It follows that j descends to a
continuous function?: E®/Gg —> T'®/Gr.

Fix p:T? — N satisfying f(v) + p(v) € Z1 for all v. For x e ™ and j € N, let
% 1= oPUO((j— D1,j1) € E' and define h(x) := %1%+ X, - -+ € E*. As x 5 p(r(x))
is locally constant, / is continuous. Since o™ (x) ~g, x for all x, the claim above
shows that x ~g. y if and only if h(x) ~g, h(y), so h descends to a continuous
function /2 : T /Gr — E*/Gg. It is routine to check that /2 and j are mutually inverse:
hoj=idg~ and [j o h(x)] = [0 (x)] = [x] for all x € ['™. In particular, j descends to
a homeomorphism as claimed. ]

PROOF OF PROPOSITION 4.11. Resume the notation of Lemma 4.12. It suffices for us
to show that ('"1)* /G is Hausdorff if and only if E* /Gy, is Hausdorff.

For p € ZK, 1et V), := f~'(p + Z1) €T (so Vy is V in Lemma 4.12). If p — ¢ ¢ Z1,
then V,I"™V, = 0. Soifx € V,I" and y € V,I™!, then 0} (x) # o?!(y) foralla,b € N
and hence, [x]g,,,, # [¥]g,.,-Hence, the sets {V,(I"™)> : p € Z*"! x {0}} have mutually
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disjoint open images in (I"'1)*/Grwu1. So it suffices to show that each of these images
is Hausdorff.

Let g : M1)® — (MYH* /G be the quotient map. By assumption, E°/Gr =
g(Vo(T)>) is Hausdorff, so it suffices to fix p e Z¥'\ {0} and show that
(q(V, T ™) = (g(VoI™ ),

Since V), = V4 for all a €N, we may assume that p > 0. Fix n € N¥ such
that p+ne€Z1. Then o : VoI'™ —» V,I'” and o": V,I'* — V,,,,I'* = ViI'™ are
continuous. Using [26, Remark 2.2], we can identify V,I"* with V,,(I"Nl)oo and VoI'™
with VoI and these identifications are compatible with the shift maps.

If x ~g,, ¥, then 0”(x) ~g,, o”(y) and similarly for n, so o and o descend
to continuous maps &7 : g(VoI'™)* — g(V,I")® and 6" : g(V,IT)™ — (Vo [TH)>.
Since x ~g o (x) = oP(0"(x)), we see that 67 o " is the identity map on
q(V,I"™)* and, similarly, 67 o &" is the identity map on g(VoI"'™)*. So &7 and &"
are mutually inverse and hence homeomorphisms. ]

COROLLARY 4.13. Let T be a row-finite source-free k-graph. Suppose that both I and
the sub-1-graph TN are simply connected. Then T |Gr is Hausdorff.

PROOF. Proposition 4.2 gives f : I'® — ZF such that d(1) = f(s(2)) — f(r(2)) for all
A €T. Let E be the directed graph such that E° = f~!(Z1) and E' = E°T. Lemma 4.12
gives ' /Gr = E®/Gg. Since E* is a sub-1-graph of the simply connected graph I''1,
it is simply connected. Hence, E /G is Hausdorff by [25, Lemma 4.2] (see Remark
4.9) and thus, I'*°/Gr is Hausdorff. O

EXAMPLE 4.14. Surprisingly, simple connectedness of I" and of T'™'! are independent
conditions. For the monoidal 2-graph A of [32, Example 7.1] (Example 3.1), we have
an isomorphism IT(A) = Z? that intertwines i : A — IT(A) with d : A — N? C 7.
So T':=7% x4 A =n(A) x; A is simply connected. However, I is the graph with
vertices {v,, : m € Z?} and six parallel edges from v,y to v, for each m € Z?,
so is not simply connected. In the other direction, let A; be the 1-graph with
vertices Z and edges e, with s(e,) = n+ 1 and r(e,) = n, and define [ : N> —» N by
[(m,n) = m + n. Then the 2-graph I' := [*(Q) has fundamental group Z generated by
(eo, (1,0))(eo, (0, 1))7!, so is not simply connected, but I'*! is a disjoint union of copies
of Q, so is simply connected.

REMARK 4.15. In the context of Corollary 4.13, simple connectedness of I is
equivalent to that of E* as in Lemma 4.12. Also, as in the proof of Proposition 4.11,

the orbit space (") /G is a topological disjoint union of copies of E®/Gr indexed
Zk/71.

PROOF OF THEOREM 4.1(111). As in the proof of part (ii), since A — II(A) is injective,
X is singly connected, and C*(Z) is type Iy. The proof of Proposition 4.4 shows that
G+ has trivial isotropy. Hence, the spectrum of C*(X) is homeomorphic to the orbit
space X /Gs [11, Corollary 4.2]. Now, since PRI simply connected, Corollary 4.13
implies that £ /Gy is Hausdorff. So C*(Z) is a continuous-trace C*-algebra. Since
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X :=3%/Gs is zero-dimensional, H3(X,Z) = {0}, and hence the Dixmier-Douady
invariant 6(C*(X)) € H3(X,Z) is trivial. So by the Dixmier-Douady theorem
[37, Corollary 5.58], C*(X) is Rieffel-Morita equivalent to C(X*/Gy). O

REMARK 4.16. A related realisation of C*-algebras of k-graphs (and more general cat-
egories) as crossed products of abelian algebras by partial actions of their fundamental
groups appears in [7, Theorem 4.17]. Interestingly, embeddability also crops up there
for different reasons.

REMARK 4.17. It seems hard to nail down the relationships between the key hypothe-
ses in this section: simple connectedness of I' and of I'"!, and embedding of T in IT(T).

For example, the following two assertions both seem reasonable: that if I' is simply
connected, then the 1-dual 1I" obtained from Proposition 2.7 for f:n—>n+1 is
also simply connected; and that 1I" always embeds in TI(1I') (after all, 1T' 3 1 —
(r(1), d(), s(2)) is injective on | J,<; I, and this map descends to II(I), so the skeleton
and factorisation rules are preserved in I1(T")). However, at most one of these assertions
is true in general: consider the skew-product I := Z? x4 A of Example 3.1; we show
that if 1I" is simply connected, then it does not embed in I1(1I).

Since 1T is canonically isomorphic to the skew-product Z? X, (1A), if 1T is simply
connected, then Z? x; (1A) is simply connected, forcing (A, v) = Z>. However,
inspection of the skeleton of 1A shows that eeec and eedec are distinct blue cycles
based at the vertex ec € 1A, so generate a sub-semigroup of 1A isomorphic to FZ,
which cannot embed in Z?.

REMARK 4.18. The preceding remark is exemplary of a number of seemingly
elementary questions that we have been unable to resolve.

(i) If T is simply connected and embeds in I1(T'), is ' /Gr Hausdorff?

(i) Ifboth T and I'™! are simply connected, does I necessarily embed in II(I")?
(iii)) Which, if either, of the two assertions mentioned in Remark 4.17 is correct?
(iv) Does 1I" always embed in [1(1I')?

S. A}-groups

In this section, we construct coverings X+ — Aq of 2-graphs corresponding to
A,-groups T'-. These groups arise from free, vertex-transitive actions on buildings.
We show that X4 and A4 both embed in their fundamental groupoids, and that X4 is
always singly connected so that its C*-algebra is of Type 1.

The A,-groups are built from finite projective planes. A finite projective plane (P, L)
of order g consists of finite sets P of points and L of lines with |P| = |L| = ¢*> + g + 1,
and a relation € from P to L—if p € [, we say p lies on [ and that [ contains p—such
that any two points lie on exactly one common line, any two lines contain exactly one
common point and there exist four distinct points of which no single line contains more
than two. Each line necessarily contains exactly g points and each point necessarily lies
on exactly ¢ lines.
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We begin with a brief introduction of the groups we wish to study and by collecting
some structural results that we need for our construction.

5.1. A~2-gr0up basics. Following [8, Section 2], given a finite projective plane (P, L)
and a bijection A : P — L, we define a triella compatible with A to be a set 7 C P X
P x P such that:

(T1) given x,y € P, there exists z € P such that (x,y,z) € 7 if and only if y € A(x);
(T2) y,20€T = (y,z,x)€T;
(T3) for any x,y € P, there is at most one z € P such that (x,y,z) € 7.

DEFINITION 5.1. Given a finite projective plane (P, L), a bijection A : P — L and a
triella 7~ compatible with A as above, we define the associated A,-group by

I' =Ty :={ay,x € P| asaya, = 1 foreach (x,y,2) € T).

REMARKS 5.2.

(i) The associated A}—building is an oriented simplicial 2-complex constructed from
the Cayley graph of I's: the vertices or O-simplices are identified with I's,
the 1-simplices are identified with pairs (w, wa,) where w € I'- and x € P. The
2-simplices are identified with triples (w, wa,, wa.a,) where w € I'y-, x € P and
y € A(x). The free and transitive action of 'z on O-simplices by left multiplication
extends to a free action on the building.

(i) 1In[24,45], Vdovina et al. start with similar data to produce an object they call a
polyhedron satisfying rules that have the flavour of a triella. We discovered this
point of view late in our investigation and plan to look into it more deeply in
future work.

EXAMPLE 5.3. Many examples are considered in [9]. The following illustrative
example with g = 2 was first described in [9, Section 4]:

FAJ = <Cl0, e, ag ot aril; ali+11; A[i+31; = 1> where [l]7 = (l mod 7)

We describe elements of I'+ as products of generators and their inverses. The
following standard terminology for finitely generated groups helps us discuss such
expressions.

DEFINITION 5.4. Let Ty be an A,-group with generators {a, : x € P}. By a word in
'+, we mean a string of the form g;g» - - - gx such that each g; € {ax,a;1 :x € P}. The
word g - - - gx represents the element w € I'y if the product Hle gi inI'7 is equal to w.
We typically indicate the group law by juxtaposition, so we write w = g; - - - gy when
the word g; - - - g represents w. Context dictates whether a string g; - - - g is being
regarded as a word or as a product.

It is helpful to express elements of I's in a standard form.
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PROPOSITION 5.5. Let I'y be an A}-group with generators {a, : x € P}. Let w € 'z
Then there are unique integers m,n > 0 and unique elements X1, ..., X, V1, Yy € P
such that

_ -1 -1
W =dy c Ay, dy o ay s, and 5-1)

(a) xis1 € Ax) for 1 <i<m;  (b)y; & Ayjv1) for 1 <j<n; and
(c) Xm #y1ifm,n> 1.

For the same m, n, there are also unique t,...,t,,S1,...,Su € P such that

= 1 -1
w=a, ---a, dg - ds,, and (5-2)

(@)'sis1 € A(sy) for L <i<m;  (b)'t; ¢ Atj) for 1 <j < n; and
©) 't #s1ifmyn> 1.

We call the expressions above the right normal form and left normal form of w,
respectively. Both have minimal length amongst words in the generators and their
inverses that represent w. Moreover, every minimal-length word in the generators and
their inverses that represents w contains m generators and n generator-inverses.

PROOF. See [8, Proposition 3.2] and [10, Lemma 6.2]. O

COROLLARY 5.6. Let 'y be an A}-group with generators {a, : x € P}. Forall x,y € P

such that x # y, there exist unique s,t € P with s # t such that a;lay = asat‘l.

Proposition 5.5 allows us to define a degree functor for a 2-graph structure on I'r-
in terms of the number of generators and their inverses in a minimal representative of
an element.

DEFINITION 5.7. Let T's be an A,-group. Define 6§ : ['; — N? by 6(w) = (m, n) if its
right normal form is as in (5-1) (equivalently, its left normal form is as in (5-2)). We
define the length of w to be |6(w)| = m + n. We call ¢ the shape function.

REMARK 5.8. The shape function ¢ is not additive. For example, in the Zz-group
La1 =<ao, ..., a6 : ap,apwy,agivay, = 1),

S(araz) = 6(az') = (0, 1) # (2,0) = 6(a1) + 6(ar).
The shape function ¢ gives rise to a natural notion of a reduced word.

DEFINITION 5.9. A word g - - - g in I'y- is said to be reduced if it has minimal length
among words that represent the same element of I'y-. That is, g - - - gx is reduced if

lo(g1--- gl = k.
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REMARKS 5.10.

(i)  The final statement of Proposition 5.5 shows that words in right normal form or
left normal form are reduced words.

(i) Not all words that have no ‘obvious cancellations’ are reduced: the word
wp = a0a4*1a6 in FA.I = <ao, <o Ag L A, a1i1),A1i43); = 1) is not reduced since

0004_106 = dpa1dzde = agalao_l = a3_1a0_1.

(iii) Every subword of a reduced word is reduced.

(iv) If w=gy---g is reduced and for some i, g; = a, and g;;; = a;,l for some
x,y € P with x # y, then by Corollary 5.6, there exist unique s,7 € P with s # ¢
such that a,a,™" = a,™'a,. The word obtained from w by replacing g;gis1 = a.a;’
with a, 7 a, is also reduced.

EXAMPLE 5.11. Consider I'y :=T'41 ={ao,...,as : a[i],A[i+11,A[i+3]; = 1) from Exam-
ple 5.3. For w = aga,'a5' € I'y, we have 6(w) = (1,2); the reduced expressions for w
and the corresponding segment of the reversed Cayley graph of I';- (the Cayley graph
of I'Y) are illustrated below.

w
[ ]
1 -1 ag s
w = apa;, ag /a4
[ e i

[ )
ao
R | -1 a aj
W =das didg x a3\
@ < [ )

I | a 4
w=as a; a, X«/:

To obtain 2-graphs from A, groups, we relate the shape function ¢ to the group law.

LEMMA 5.12 (Unique factorisation). Let T+ be an As-group and suppose that
m,n € N? and w € Ty satisfy (w) = m + n. Then there exist unique h, k € T';- such that
5(h) = m, 8(k) = n and w = hk. More generally, if n; € N? satisfy 6(w) = ny + - -+ + ng,
then there exist unique h; € I'q such that each 5(h;) = njand w = hy - - - .

Given w, h, k € I'g- such that 5S(whk) = 6(w) + 6(h) + 6(k), we have 6(wh) = 6(w) +
o6(h) and 6(hk) = 6(h) + 6(k).

PROOF. This follows from repeated applications of Corollary 5.6. ]

NOTATION 5.13. If 6(w) = (m,n) > 1, then Lemma 5.12 yields unique a,b,c,d € ['r
such that

w=bd=ca, 6@a)=d6b)=1 and 6(d)=0(c)=0o(w)-1.

We adopt the notation s(w) = a, r(w) = b, c(w) = ¢, d(w) = d. Note that if 6(w) =1,
then r(w) = s(w) and b(w) = c(w) = 1.
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We provide a criterion for determining when a concatenation of three reduced words
is reduced.

PROPOSITION 5.14. Let T be an A,-group and fix wo,wi,wy € I'y-. Suppose that
o(wowy) = d(wg) + 6(wy), S(wiwy) = 6(wy) + (W) and 6(wy) > 1. Then

S(wowiwz) = 6(wp) + 6(wr) + 6(w2).

PROOF. We induct on |6(w;)|. Suppose that [6(w;)| = 1, so é(w,) € {(1,0), (0, 1)}. If

o(wy) = (1,0), then wy = a, for some x € P, so wow;w, = wow;a,. By Proposition 5.5,

if 6(wowy) = (m,n), then in left normal form, wow; :as‘ll'--as‘nla,ln'a,m and

wi =a,l---ayla ---a,. Lemma 5.12 gives g; =t (as 6(wowy) = 6(wo) + 6(w1))

and x ¢ A(q¢) (as 6(wiwy) = 6(wyq) + 6(w,)). Hence,
Wow Wy = a;ll ...a;nlall eeay ay
is the left normal form of wow;w, and so
d(wowiwyp) = (m + 1,n) = (m,n) + (1,0) = d(wowy) + 6(w2) = d(wp) + (wy) + d(wy).

If 6(wyp) = (0, 1), arguing similarly with right normal forms gives s(wowiw,) = d(wg) +
o(wy) + 8(wy).

Now suppose that the result holds for |[6(w;)| = n > 1, suppose that |[6(w)| = n + 1.
Then there exist unique A, k € I'q- such that wy = hk, 6(wp) = 6(h) + 6(k) and |6(k)| = 1.
Since

o(wihk) = 6(wiwz) = 6(w1) + 6(w2) = 6(w1) + 6(h) + 6(k),

Lemma 5.12 gives d(w1h) = 6(wy) + 6(h). Since |6(h)| = n, the induction hypothesis
gives d(wo(wih)) = 6(wg) + 6(wy) + 6(h) = d(wg) + 6(wh). Moreover,

S((w1h)k) = 6(wiwsr) = 8(wy) + 6(wa) = 6(wy) + 6(h) + 6(k) = S(wih) + 6(k).
Therefore, since 6(w1h) > 1 and |6(k)| = 1, it follows that

d(wowiwz) = 6(wo(wih)k) = 6(wo) + 6(wih) + 6(k) = 6(wo) + 6(w1) + 6(h) + 6(k)

= 6(wo) + 6(w1) + 6(w2). O

The following extends the above criterion to an arbitrary concatenation of reduced
words.

COROLLARY 5.15. Fix wy, wy,...,w, € I's. Suppose that 6(wiw;1) = 6(w;) + 0(Wiy1)

forall0 <i<nanddé(w;)) = 1forall0 <i<n. Then
S(wWow - Wy_1wp) = 6(wo) + 6(W1) + -+ - + 6(Wn-1) + 6(wp).

PROOF. We induct on n. This is trivial for n = 1. Fix n > 1, suppose the result holds
for all k < n, and fix wg, w1, ..., Wn, Wpe1 € Iy with 6(wjwiq) = 6(w;) + 6(w;,) for all
i=0,1,...,nand 6(w;) > 1foralli =1,...,n Then
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Swowy - == wy) = 6(wo) + 6(w1) + -+ + 8(wy) = S(wowy - - - Wy—1) + 6(Wy),
and since S(w,W,41) = (W) + S(Wpy1),
S(wowy =+ - WpWns1) = S(Wowy « - - Wy—1) + 6(Wy) + 6(Wpt1)
= 6(wo) + 6(w1) + -+ + 6(Wp) + 6(Wnt1)
by Proposition 5.14. Thus, the result holds by induction. O

5.2. The 2-graph associated to an A,-group. Given an A,-group I's, we now
construct a 2-graph Ag using the relation between the multiplicative structure of its
reduced words and the shape function discussed in the previous section.

DEFINITION 5.16. Fix an A,-group I'~. We define
Ar={welr:6w)>1} and A} ={uely:du) =1}

We define r,s : A+ — Ag_ as in Notation 5.13 and d : A+ — N? by d(1) = 6(1) - 1.
For A, u € Ag such that s(1) = r(u), we define A o u as follows: write 4 = c(1)s(4) and
u = r(u)b(u) as in Notation 5.13; we define

Ao u = c(D)s(D)b(u). (5-3)

Our definition of Aoy in (5-3) emphasises the overlap of A = c(d)s(1) and
u = r(u)c(u) in the element s(1) = r(u) of 6-'(1) CT's. We can also express it to
emphasise its compatibility with the maps b and c: for A,u € Ay as above with

s(A) = r(p),

Ao p = c(O)s(D)b(p) = r(Db(Db() and Ao p = c(Dr(wbu) = c(D)c@E)sw).
(5-4)

Our main result in this subsection is that Definition 5.16 defines a 2-graph.

THEOREM 5.17. With definitions and notation as above, (Ag,d) is a 2-graph and the
maps b, c : A — U'q of Notation 5.13 are 1-cocycles.

PROOF. Associativity of multiplication in I'; ensures that Ay is a category under
o. To see that d : A+ — N? is a functor, fix A, u € A with s(1) = r(u). We have
Ao u = c(D)s()b(u), where 6(s(1))) = 1. So the first part of Lemma 5.12 gives

0(c(D)s() = d() + 1 = 6(c(D)) + 6(s(4))
O(s(Db(w)) = d(p) + 1 = 6(s() + 6(b(w)).
Hence, by Proposition 5.14 and since 6(s(4)) = 1 by definition,
d(A o ) = S(e(Ds(DbE) — 1 = 6(c() + 6(s() + 6(b(w) — 1 = d() + d(w).

It remains to show that (Ag,d) satisfies the factorisation property. Suppose
that d(d) = (m; + mp,n; +ny). Then 6(A) = (m; +my,n; +ny)+1. Hence, by
Lemma 5.12, there exist unique g, &,k such that A = ghk, 6(g) = (my,ny), 6(h) =1
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and 8(k) = (my,ny). Thus, A =uov, where u=gh, v=hk, dlu)= (ny,n) and
d(v) = (my, ny), and this is the unique such factorisation.

Fix A, u € Ay with s(1) = r(u). Equation (5-4) and the definition of ¢ give
c(dowsdop) =Aou=c(De@s@) and r(dowb(Aow) = Aou=r()bDbw).
We already saw that s(1 o p) = s(u) and r(A o y) = r(4), so cancellativity in I'y- gives
c(D)c(u) = c(A o u) and b(D)b(w) = b(A o p). O

REMARK 5.18. Resume the notation of [38, Section 7]. Let M, M, be the matrices
[38, page 135] obtained from the Cayley graph % of I's regarded as a building
as in [8]. Then Ag is isomorphic to the 2-graph Ay, », obtained from the M; as
in [26, Example 1.7(iv)]. Indeed, as I's- acts transitively on vertices of %7, we can
identify the alphabet A = I'/J [38, page 135] with type-rotating isometries i : t — HB7
such that i((0,0)) = er,.. By Proposition 5.5, i = i((1,1)) is a bijection between
such isometries and 6~'(1) = Ag_. Likewise, for wi,wy € Ag_, the set wlAiiwz is in
bijection with type-rotating isometries i : p,, — %7 such that i((0,0)) = er,, 1(1) = w;
and #(1 + &)t(g;)"" = wy; that is, diagrams as in [38, Figure 9]. So the adjacency
matrices of As are the M;. Since M|, M, satisfy (HO)-(H3) [38, Proposition 7.9
and Theorem 7.10], MM, is a 0, I-matrix, so [19, Theorems 4.4 and 4.5] gives
Ar]— = AMth'

COROLLARY 5.19. With notation as above, the cocycle ¢ : Ag — 'y of Theorem 5.17
is essential and the canonical map i : A — TI(Ay) is injective.

PROOF. Since A = c(1)s(4) for all 1 € Ag, ¢ X s is injective. Hence, c is essential as in
Definition 3.10, and the result follows from Proposition 3.12. |

5.3. The covering 2-graph X4. In this section, we construct a covering 2-graph X+
for As.
We define X5 C I'- X I' as follows. Let

T = {(x,y) €Ty xT7r: 1<6(x7"y)} and X9 :={(x,y) € Ty xT'r : 1 =6(x""y))

with d(x,y) := 6(x"'y) — 1 for all (x,y) € 7. By Lemma 5.12, for each (x,y) € X7,
there exist unique z,, wy, € I's- such that

0 zey) =0wiiy) =1 and  S(x7'y) = 6(x " zey) + 6(z5yy) = 6(x wy) + S(WLL).
(5-5)

We define r(x,y) := (x,2cy) and s(x,y) := (Wyy,¥). If (u,v) € Xy satisfies
s(x,y) = r(u,v), we define (x,y)(u,v) := (x,v). We show that Xy = '+ X, Aq (see
Definition 2.4).

PROPOSITION 5.20. With the above structure, X4 is a 2-graph. Let ¢ : A — T'+ be
the cocycle of Theorem 5.17. There is an isomorphism ¢ : L+ — Uy X. Aq such that
#(x,y) = (x,x7'y) for all (x,y) € Zr. The inverse satisfies ¢~ (x, ) = (x, xA). There is
a free action of I'+ on X given by g - (x,y) := (gx, gy), and ¢ is equivariant for this
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action and the left action of '+ on T'y X Aq by translation in the first coordinate. In
particular, ¢ descends to an isomorphism ¢ '\ — Ag such that ¢([x y) =x7ly.

PROOF. We prove that ¢ :Igq X, Ay — Z5 defined by u(x,4) = (x,x1) for
(x,d) € [y X. Ay is an isomorphism, and deduce that ¢ ="' has the desired
properties. To see that ¢ is a functor, fix (x,4) € '+ X, Ag. Then d(x, 1) = d(1d) =
d(x,xA) = d(W(x, 1)). Recall that c()s(d) = A = r(D)b(L), s(x, ) = (xc(A), s(1)) and
s(x, xA) = (xc(Q), xA) since w = xc(Q) satisfies S(w™'x1) = 6(s(1)) = 1 and

S(x'x) = 6(1) = 8(c(D) + 6(s(1) = 6(x'w) + S(wxQ).
Hence,
Y(s(x, D) = Y(xc(), s() = (xc(d), xc(D)s(A) = (xc(A), xA) = s(x, xA) = s@W(x, D).

A similar computation shows that ¥/(r(x, 1)) = (x, xr(1)) = r(¥(x, 2)).
Given composable elements (x, A), (xc(1),u) € I'+ X, A, the above argument
shows that y/(x, 1), ¥(xc(1), u) are composable in 5. We have

Y((x, D(xe(), ) = Y(x, Ao p) = (x,x(4 o w))
= (%, xc(Dp) = (x, x)(xe(A), xe(Dp) = e, DY (xe(), ).

Hence, ¢ is an isomorphism and thus X4 is a 2-graph. That ¢ is equivariant follows
from its definition and the last assertion follows from [26, Remark 5.6]. O

PROPOSITION 5.21. Let (x,z), (w,y) € Z0.. Then (x,2)Zr(w,y) # 0 if and only if
Sa'wy+1=68(""y) =6z y) + 1,

and then (x,2)X7-(w,y) = {(x,y)}. In particular, X5 is singly connected and C*(Zy) is

type ly.

PROOF. If o € (x,2)Z5(w,y), then r(o) = (x,z) and s(o) = (w,y), so o = (x,Y),
w = wy, and z = z,, by (5-5). In particular, (x,z)Zs(w,y) is either empty or equal

to {(x, y)}.
If 6(x"'y) > 1, then (x,y) € X+ if and only if s(x,y) = (w,y) and r(x,y) = (x,2).
Moreover, s(x,y) = (w,y) if and only if w = w,,, that is (see (5-5)),

SOty) = 6t w) + s(wly) = 6 w) + 1
and r(x,y) = (x,7) if and only if z = 7, ,, that is,
oGy =67 + oz y) = 6y + L.

The final assertion follows from the first paragraph of the proof and
Proposition 4.4. ]

REMARK 5.22. That X4 is singly connected also follows from the facts that
X5 = I's X, Agq (by Proposition 5.20), c is essential and I's- X, A¢ is singly connected
(by Corollary 5.19).

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725101109

[31]

(1]
(2]
(3]
(4]
(3]
(6]
(7]
(8]
(91
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
(21]
[22]
[23]
[24]

[25]

Embeddability of higher-rank graphs 31

References

S. Allen, D. Pask and A. Sims, ‘A dual graph construction for higher-rank graphs, and K-theory
for finite 2-graphs’, Proc. Amer. Math. Soc. 134 (2006), 455-464.

G. Aranda Pino, J. Clark, A. an Huef and I. Raeburn, ‘Kumjian—Pask algebras of higher-rank
graphs’, Trans. Amer. Math. Soc. 365 (2013), 3613-3641.

B. Armstrong and N. Brownlowe, ‘Product-system models for twisted C*-algebras of topological
higher-rank graphs’, J. Math. Anal. Appl. 466 (2018), 1443—1475.

T. Bates, D. Pask, I. Raeburn and W. Szymanski, ‘The C*-algebras of row-finite graphs’, New York
J. Math. 6 (2000), 307-324.

E. Bédos, S. Kaliszewski and J. Quigg, ‘Skew products of finitely aligned left cancellative small
categories and Cuntz—Krieger algebras’, Miinster J. Math. 14 (2021), 59-99.

M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature (Springer-Verlag, Berlin,
1999).

K. A. Brix, C. Bruce and A. Dor On, ‘Normal coactions extend to the C*-envelope’, Preprint,
2024, arXiv:2309.04817 [math.OA].

D. Cartwright, A. Mantero, T. Steger and A. Zappa, ‘Groups acting simply transitively on the

vertices of a building of type A, I’, Geom. Dedicata 47 (1993), 143-166.
D. Cartwright, A. Mantero, T. Steger and A. Zappa, ‘Groups acting simply transitively on the

vertices of a building of type A, II', Geom. Dedicata 47 (1993), 167-226.

D. Cartwright and W. Mtotkowski, ‘Harmonic analysis for groups acting on triangle buildings’,
J. Aust. Math. Soc. Ser. A 56 (1994), 345-383.

L. O. Clark, ‘Classifying the types of principal groupoid C*-algebras’, J. Operator Theory 57
(2007), 251-266.

L. O. Clark, A. an Huef and A. Sims, ‘AF-embeddability of 2-graph algebras and quasidiagonality
of k-graph algebras’, J. Funct. Anal. 271 (2016), 958-991.

L. O. Clark, C. Flynn and A. an Huef, ‘Kumjian—Pask algebras of locally convex higher rank
graphs’, J. Algebra 399 (2014), 445-474.

K. R. Davidson, S. C. Power and D. Yang, ‘Atomic representations of rank 2 graph algebras’,
J. Funct. Anal. 255 (2008), 819-853.

P. Dehornoy, F. Digne, E. Godelle, D. Krammer and J. Michel, Foundations of Garside Theory,
EMS Tracts in Mathematics, 22 (European Mathematical Society (EMS), Ziirich, 2015).

D. G. Evans, ‘On the K-theory of higher rank graph C*-algebras’, New York J. Math. 14 (2008),
1-31.

C. Farthing, D. Pask and A. Sims, ‘Crossed products of k-graph algebras by Z*, Houston J. Math.
35 (2009), 903-933.

E. Gillaspy, ‘K-theory and homotopies of 2-cocycles on higher-rank graphs’, Pacific J. Math. 278
(2015), 407-426.

R. Hazlewood, I. Raeburn, A. Sims and S. B. G. Webster, ‘On some fundamental results about
higher-rank graphs and their C*-algebras’, Proc. Edinb. Math. Soc. (2) 56 (2013), 575-597.

P. J. Higgins, Notes on Categories and Groupoids, Van Nostrand Rienhold Mathematical Studies,
32 (Van Nostrand Reinhold, London—-New York—Melbourne, 1971).

P. T. Johnstone, ‘On embedding categories in groupoids’, Math. Proc. Cambridge Philos. Soc. 145
(2008), 273-294.

E. T. A. Kakariadis, ‘Applications of entropy of product systems: higher-rank graphs’, Linear
Algebra Appl. 594 (2020), 124-157.

S. Kaliszewski, A. Kumjian, J. Quigg and A. Sims, ‘Topological realizations and fundamental
groups of higher-rank graphs’, Proc. Edinb. Math. Soc. (2) 59 (2016), 143-168.

J. Konter and A. Vdovina, ‘Classifying polygonal algebras by their Ky-group’, Proc. Edinb. Math.
Soc. (2) 58 (2015), 485-497.

A. Kumjian and D. Pask, ‘C*-algebras of directed graphs and group actions’, Ergodic Theory
Dynam. Systems 19 (1999), 1503-1519.

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


https://arxiv.org/abs/2309.04817
https://doi.org/10.1017/S1446788725101109

32

[26]
(27]

[28]
[29]

[30]
(31]

[32]

[33]
[34]

[35]
[36]

[37]

[38]
[39]
[40]
[41]

[42]
[43]

[44]
[45]
[46]

[47]

N. Brownlowe, A. Kumjian, D. Pask and A. Sims [32]

A. Kumjian and D. Pask, ‘Higher rank graph C*-algebras’, New York J. Math. 6 (2000), 1-20.

A. Kumyjian, D. Pask, I. Raeburn and J. Renault, ‘Graphs, groupoids and Cuntz—Krieger algebras’,
J. Funct. Anal. 144 (1997), 505-541.

A. Kumjian, D. Pask, A. Sims and M. F. Whittaker, ‘Topological spaces associated to higher-rank
graphs’, J. Combin. Theory Ser. A 143 (2016), 19-41.

M. Lawson and A. Vdovina, ‘Higher dimensional generalisations of the Thompson groups’, Adv.
Math. 369 (2020), 107-191.

A. Mal’cev, ‘On the immersion of an algebraic ring into a field’, Math. Ann. 113 (1937), 686—691.
S. A. Mutter, A.-C. Radu and A. Vdovina, ‘C*-algebras of higher-rank graphs from groups acting
on buildings, and explicit computation of their K-theory’, Publ. Mat. 68 (2024), 187-217.

D. Pask, I. Raeburn and J. Quigg, ‘Fundamental groupoids of k-graphs’, New York J. Math. 10
(2004), 195-207.

D. Pask, I. Raeburn and J. Quigg, ‘Coverings of k-graphs’, J. Algebra 289 (2005), 161-191.

D. Pask, I. Raeburn and N. A. Weaver, ‘A family of 2-graphs arising from two-dimensional
subshifts’, Ergodic Theory Dynam. Systems 29 (2009), 1613—1639.

D. Pask, A. Rennie and A. Sims, ‘Noncommutative manifolds from graph and k-graph
C*-algebras’, Comm. Math. Phys. 292 (2009), 607-636.

I. Raeburn, A. Sims and T. Yeend, ‘Higher-rank graphs and their C*-algebras’, Proc. Edinb. Math.
Soc. (2) 46 (2003), 99-115.

I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Math-
ematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998),
xiv+327 pages.

G. Robertson and T. Steger, ‘Affine buildings, tiling systems and higher rank Cuntz—Krieger
algebras’, J. reine angew. Math. 513 (1999), 115-144.

G. Robertson and T. Steger, ‘Asymptotic K-theory for groups acting on A, buildings’, Canad. J.
Math. 53 (2001), 809-833.

R. Rosjanuardi, ‘Complex Kumjian—Pask algebras’, Acta Math. Sin. (Engl. Ser.) 29 (2013),
2073-2078.

E. Ruiz, A. Sims and A. P. W. Sgrensen, ‘UCT-Kirchberg algebras have nuclear dimension one’,
Adv. Math. 279 (2015), 1-28.

H. Schubert, Categories (Springer-Verlag, Heidelberg, 1972).

A. Skalski and J. Zacharias, ‘Entropy of shifts on higher-rank graph C*-algebras’, Houston J. Math.
34 (2008), 269-282.

J. Spielberg, ‘Graph-based models for Kirchberg algebras’, J. Operator Theory 57 (2007),
347-374.

A. Vdovina, ‘Combinatorial structure of some hyperbolic buildings’, Math. Z. 241 (2002),
471-478.

D. Yang, ‘Endomorphisms and modular theory of 2-graph C*-algebras’, Indiana Univ. Math. J. 59
(2010), 495-520.

D. Yang, ‘The interplay between k-graphs and the Yang—Baxter equation’, J. Algebra 451 (2016),
494-525.

NATHAN BROWNLOWE, School of Mathematics and Statistics,
The University of Sydney, Sydney, NSW 2006, Australia
e-mail: nathan.brownlowe @sydney.edu.au

ALEX KUMIIAN, Department of Mathematics (084),
University of Nevada, Reno, NV 89557-0084, USA
e-mail: alex @unr.edu

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press


mailto:nathan.brownlowe@sydney.edu.au
mailto:alex@unr.edu
https://doi.org/10.1017/S1446788725101109

[33] Embeddability of higher-rank graphs

DAVID PASK, School of Mathematics & Applied Statistics,
University of Wollongong, Wollongong, NSW 2522, Australia
e-mail: david.a.pask @gmail.com

AIDAN SIMS, School of Mathematics & Applied Statistics,

University of Wollongong, Wollongong, NSW 2522, Australia
e-mail: asims @uow.edu.au

https://doi.org/10.1017/51446788725101109 Published online by Cambridge University Press

33


mailto:david.a.pask@gmail.com
mailto:asims@uow.edu.au
mailto:
https://doi.org/10.1017/S1446788725101109

	1 Introduction
	2 Background and preliminary results
	2.1 Higher-rank graphs
	2.2 Fundamental groupoids, fundamental groups and universal covers
	2.3 Simply connected k-graphs
	2.4 The path groupoid GΛ and the C*-algebra C*(Λ)

	3 Embedding results for higher-rank graphs
	3.1 Nonembeddings
	3.2 Embedding singly connected higher-rank graphs
	3.3 More general embedding results

	4 C*-algebraic results
	5 ˜A2-groups
	5.1 ˜A2-group basics
	5.2 The 2-graph associated to an ˜A2-group
	5.3 The covering 2-graph ΣT


