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1. Introduction

We are concerned with the following classical version of the Borsuk—Ulam theorem:
Let f:S"—>R* be a map and let A,={xeS"| fx=f(—x)}. Then, if k<n, 4;#¢. In fact,
theorems due to Yang [17] give an estimation of the size of A, in terms of the
cohomology index. This classical theorem concerns the antipodal action of the group
G=1Z, on §". It has been generalized and extended in many ways (see a comprehensive
expository article by Steinlein [16]). This author ([9, 10)] and Nakaoka [14] proved
“continuous” or “parameterized” versions of the theorem. Analogous theorems for
actions of the groups G=S' or S> have been proved in [11], and [12]; compare also
[4, 5, 6].

A tool in estimating the size of the set A, (for G=2Z,) in terms of index is the first
Stiefel-Whitney class of a space with a free involution. Similarly, such an estimate for
G=S' makes use of the first Chern class; and for G=S7 the first Pontriagin class is
used. A natural question arises of whether there exists a corresponding result using
other characteristic classes.

Various extensions of the concept of index were defined and used by Fadell and
Husseini (see [5, 6]). In a forthcoming paper [7], Fadell and Husseini introduce a
general notion of index for an arbitrary compact Lie group action as an ideal-valued
function. T arrived independently at the concept of an ideal-valued index and presented
my results, with an application to a geometric situation, at the NATO Advanced Study
Institute on “Variational Methods in Nonlinear Problems” held in Montreal in July
1986, where Fadell presented his joint results with Husseini; this is how I first learned
about their recent work. I understand, however, that Fadell and Husseini defined their
general notion of index before me and I am pleased to acknowledge their priority in
developing the index theory. In fact, a suggestion that the index can be defined as an
ideal is mentioned in Remark (3.5) of [5]. I shall use the notation Ind€ for the G-index
introduced by Fadell and Husseini and prove some properties of Ind® (Proposition (3.3)
and Theorem (3.4)) which will be needed in this paper.

In theorems of the Borsuk-Ulam type for a general compact Lie group G we usually
consider a map f: X —W of a G-space W, for instance, into a representation space for G;
and we try to estimate the size of the set A, where the G-symmetry becomes degenerate
under f. The degeneracy set may be defined in various ways depending on the context.
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For instance, if £ X— W is an equivariant map of X into a representation space W, we
may want A, to be the set of zeros of f. More generally, for any invariant subset W of
W, we can set A W):= f ~'W. If we don’t want to start necessarily with an equivariant
map f:X—-W, we can apply the averaging construction, replace f by its average
Av f:X—W and define A{W):=(Av f)"'W. (Compare [11] and [12]). The classical
Borsuk-Ulam theorem asserts that for any map f:S$"—R" there is a point in S” where
the average of f (with respect to the antipodal actions on the source space and on the
target space) is zero.

1.1. Example. The following example is a direct generalization of the Borsuk-Ulam~
Yang situation of f:S"—>R**! from the group G=27Z, (0(1)) to G=0(m):

Let X be the Stiefel manifold V,(R™*") of orthonormal m-frames in R™*" and let
f[: X =V (R™*")(R™**)"= W (be a map. In other words, f assigns to every m-frame in
V,(R™*") an m-tuple of vectors in R™** Let W be the subset of W consisting of the
m-tuples which are not linearly independent. We are asking about the size of
A;=(Av f ) W ie, A s is the degeneracy set in our example. Here the group G=0(m)
acts on V,(R™*" and on (R™**™ in the standard way: Thus if we W, then w can be
thought of as an (m+ k) x m matrix (having m+k rows and m columns). For ge0(m) we
define gw:=w-g, where the dot is the matrix multiplication. Then the action is free in
W—W:if weW—W,ie., Rank w=m, and w-g=w, there is an (m x m)-submatrix A of w
which is invertible. Then A-g=A and thus g is the identity. The converse is also true: if
we W and Rank w<m, then one can find a matrix g e O(m) other than the identity such
that w-g=w. Of course, if m=1, then X=5", W=R**!, and we are in the Borsuk-
Ulam-Yang situation. We will prove a theorem in which the size of 4, is described in
terms of index, in a way similar to the assertion of the Borsuk-Ulam theorem. An
estimate of the size of 4, will be given in terms of cohomology, but, as a corollary we
will find a lower bound for the covering dimension, dim 4, of 4: In the case m=2, we
will show that dim 4,22n—k—1; if, in addition, k=n—1 and n=2°—1, then dimA4,=
n+1

There exist also “continuous” versions of the results proved here, for spaces and maps
over a base space. They are analogous to those of [9, 10, 12]. We shall deal with them
in a future paper.

2. Index

Let G be a compact Lie group. We shall be using the Alexander—Spanier cohomology
with coefficients in Z, (which will be suppressed from the notation) and the Borel
equivariant cohomology. If X is a G-space then X;:=EGgx X where EG is a universal
space for G, G acts on EG x X by g(e,x)=(ge,gx) and EG; x X:=(EG x X)/G. The map
X¢—(EG)/G=BG induced by the first projection EG x X -EG is a bundle with fibre X.
If G acts trivially on X then X~ BG x X.

The equivariant cohomology of X is HtX:=H*X;. If G acts freely on X then the
map X;—X/G induced by the second projection EGxX—X is a bundle with a
contractible fibre EG; hence HEX >~ H*(X/G).
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If (*) denotes a one-point space then the constant map EG-—(#) induces an
isomorphism H¥(*)=~ HEEG. We will be identifying the groups H¥%(»), HEEG and H*BG
under this isomorphism.

Proposition (compare [11, (5.1)]) 2.1. Let X be a free G-space, let ¢: X —>EG be an
equivariant map and let c=cy: X —(*) be the constant map. Then under the identification
HEEG=H¥(+x)=H*BG and Ht{X = H*(X/G) we have ¢*=c*: H*BG - H*(X/G).

Definition 2.2. Let G be a compact Lie group and let X be a G-space. Then the G-
index of X is defined to be the kernel of the G-cohomology homomorphism induced by
the constant map cy: X —(#);

Ind®X:=Ker(c*: H(*)» H%X)
Thus the index of X is an ideal in the G-cohomology ring of a point.

In the classical case, when G=1Z, is acting freely on X, the non-trivial element of Z,
represents a free involution on X. In the case BGRP®, H¥*)=H*RP® is a
polynomial algebra over Z, on one generator in dimension one, the first Stiefel-Whitney
class w, e H} (*)=~H'RP®. Its image under c* in H;,X=H'(X/Z,) is the characteristic
class of the involution, w,(X)=c*w,. The kernel of c* is the ideal generated by wi*!, for
some integer n, and thus Ind%(X) can be identified with that integer; it is the largest
integer n such that wi(X)#0. This corresponds to the classical definition of index of
space with a free involution. In an analogous way, for free actions of G=S! and G=8§3
(and for cohomology with rational coefficients), the index can also be identified with an
integer (compare [4, §, 6, 11, 12]).

That the index is natural is expressed by the following proposition.

Proposition 2.3. Let X and Y by G-spaces and let f:X—Y be an equivariant map.
Then

Ind® Y <Ind€ X.

The proof is immediate.
The following theorem is a general principle of which the classical Borsuk-Ulam—
Yang theorem is a special case (compare Remark (5.2)).

Theorem 24. Let X and W be G-spaces and assume that X is paracompact. Let
[ X—W be an equivariant map, and let W be a closed invariant subset of W. Then

(Ind® f~'W)- (Ind®(W — W)) < Ind® X.
Remark. The proof is analogous to the proof of part (b) of Proposition (2.8) of [6]
(additivity property of the integer-valued index). Compare also [9, p. 113], [10, p. 160],

(11, p. 1617 and {12, p. 148]. Thus (2.4) expresses a crucial principle used in these
proofs.
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Proof. As before, for every space Y, c=cy: Y —(#) is the constant map of Y into a
one point space. Let A,=f “1W (thus 4 ¢ corresponds to the singularity set in the
Borsuk—-Ulam-Yang situation) and let aeInd® A,; that is, ¢ ,a=0. Consider ctae H¢X.
Thus (c%a) | A;=0. By the continuity of H¢ it follows that there exists a neighbourhood
N of A, in X such that (c}a)|N=0. Thus c%a=j*a’, where a'e H4X,N) and
j:X—(X,N) is the inclusion. Let beInd®(W —W). Since we have an equivariant
map X—A,»W-—W, we have by (23) that IndS(W—W)cInd®(X—4)).
Hence c}belnd®(X—A4,), that is, c}b|(X—A4,)=0. Thus c}b=j*b, where
beHYX,X—A;) and j:X-—=(X,X—A,) is the inclusion. It follows that c¥(ab)=
(cka)(ckb)=(j*a’)(j*b') = j*(a'b’)=0. Therefore abeInd® X. O

3. The cohomology of grassmannians

Let V,,=V,(R®) denote the Stiefel manifold of orthonormal m-frames in R®. If O(m)
acts on V,, in the standard way (by the right multiplication) then the orbit space of the
action is the infinite Grassmann space G, =G, (R*) of m-dimensional subspaces of R®
and the orbit map V,,—G,, is a classifying bundle for O(m). Thus H§,V, = H*G,,. The
cohomology of G,, (with coefficients in Z,) is a polynomial algebra Z,{w,,...,w,] freely
generated by the Stiefel-Whitney classes w,e H'G,, of the standard m-plane bundle
associated to the principal bundle V,,—G,,.

The orbit space of the standard free action (right multiplication) of O(m) on the Stiefel
manifold V,(R™*") is the real Grassmann manifold G,(R™*") of m-dimensional sub-
spaces of R™™". Thus H¥,Vu(R""")=H*G,(R"*"). There exist two quite different
descriptions of the cohomology of G,(R™*"). On the one hand, Chern [2] gave a
description of the cohomology ring H*G,(R™*") by means of a specific cellular
decomposition of the Grassmann manifolds constructed by Ehresmann [3] which, in
turn was based on the work of Schubert [15]. By letting n—o0, one obtains a
decomposition of the infinite Grassmannian G,,=G,(R®). In this decomposition of G,
evey cell represents a free generator of the cohomology group in the respective
dimension, a monomial in the Stiefel-Whitney classes. On the other hand, the
cohomology of G, (R™ ™ was described in Borel’s thesis [1] as a quotient of the
polynomial ring on the universal Stiefel-Whitney classes and their duals. A pleasing
exposition of the first approach is given in Milnor [13]; compare also Hiller [8].

We can write the total Stiefel-Whitney class as a formal series w=14+w;+w,+ -
and define the total dual class w=1+w,; +w, + --- as the formal inverse of w, i.e., by the
relation

wiv =1 (3.1)

(compare [13, §4]). Relation (3.1) can be used to express the dual classes w;’s in terms of
w,,..., w,. It contains a countable number of relations, one in each positive dimension.

Definition 3.2. Let J(m,n) denote the ideal in Z,[w,...,w,] generated by
W1 tns---» W4, €Xpressed as polynomials in w,,...,w, by using (3.1).
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Theorem 3.3. J(m,n) is the O(m)-index of V,(R™*").

Borel [1] showed that the albegra H,V,=H§,(*)=H*G,, is isomorphic to the
quotient algebra Z,[{w,,...,w,,W,,W,,...]/I(m), where I(m) is the ideal in
Z5[wy,...,W,, Wi, W,,...] generated by the homogeneous terms of ww of positive
dimension. As shown by Borel, it follows that

H*G(R™ ") X Zy[ Wy, o, Wy Wi, .., W/ H(m, 1), (34)

where I(m,n) is the ideal in the polynomial algebra Z,[{w,,...,w,, W,,...,W,,] generated
by the m+n terms of (1+w,+ - +w,)(1+w,+ - +w,) of positive dimension. The
relations corresponding to the first homogeneous terms of the latter product (in
dimensions 1,...,n) yield n equations

Wk+Wk_1w1+ e +W1Wk_1+ﬂ«'k=0, k=1,...,n

which can be solved recursively for w,,...,w, (see [13, p. 40]). Substituting the resulting
formulas to the remaining m homogeneous terms of the product (in dimensions
1+4n,...,m+n) we obtain the ideal J(m,n). Thus H*G (R™* " =Z,[w,,...,Wn,]1/J(m,n).
The O(m) -index of V (R™*™ is Ind°™V, (R™*")=(Ker(c*: H (m)(*)qu(m,Vm(R"'”))
Since the action of O(m) on V,(R™*") is free, H¥,V{R™"*" = H*G,(R""") and, under
this isomorphism, the kernel of ¢* coincides with the kernel of ¢*: H*G,,—H*G,(R™*"),
where ¢ is a classifying map for V,(R™*") (compare [11, (5.1)]); for instance, ¢ can be in
the inclusion G, (R™*"—G,. Thus ¢* corresponds to the quotient map
Zy[Wyy... W l—=Z,y[Wy, ..., w,l/J(m,n) whose kernel is J(m, n). 0O

Let J(m,n), denote the r-dimensional component of the ideal J(m,n). Consider the
map

Wr,n): H ™" 'G, & @ H~"""G,—H'G,,

defined by (x,,..., X)W1 +,X1+ " + Wit nXpme

Lemma 3.5. J(m,n),=Imy(r,n).

For the proof it is enough to observe that every element in J(m,n), can be written as
an element of Im y(r, n) by grouping similar terms with respect to Wy 4 ..., Wy, 4 O

If r<n then J(m,n),=0 and the inclusion G, (R™*" <G, induces an isomorphism
H'G,=H'G,(R™". Thus for r<n, H'G,(R™*" is additively generated by all mono-
mials wi',...,wi of a total degree q,+2q,+ --- +mq,,=r. In this range of r, the rank of
H'G,(R™*" is equal to the number p,(r) of all partitions of r into at most m integers
(see [13, p. 85)).

Let ph(r) denote the number of partitions of r into at most m positive integers each of
which is <n.
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Proposition 3.6. Rank H'G,(R2*")=p%(r).

Proof. If r<n then this rank is p,(r) which is equal to p}(r). Suppose n<r<2n. Since
G,(R**" is a 2n-manifold, by the Poincaré Duality, Rank H'G,(R**")=p,2n—r)=
pa(r). a

Remark 3.7. For m=2, p,(r)=[r/2]+ L

4. Maps of Stiefel manifolds

We return now to our example to Section 1. Thus X=V,(R™"*") and W=(R"*km
have the standard (right) action of O(m), f:X—>W is a map, W is the subset of W
consisting of m-tuples of vectors in R™*" which are not linearly independent, W,=
W—W, and A,=(Avf) 'W. Then the Gram-Schmidt orthogonalization process
provides a homotopy equivalence W=V, (R™**). Thus Ind®™X =J(m,n), Ind®™W,=
J(m, k) and by (2.4) we have the following inclusion.

Theorem 4.1. (Ind®™A)-J(m, k)= J(m,n).

Remark 4.2. If m=1 then X=5", W=R*1, J(m,n) is the ideal in H¥(X)=~ H*RP® =
Z,[w,;] generated by w?*!, and J(m,k) is the ideal generated by wk*!. The index
Ind®MA4,=1Ind’?4, is generated by w{*', for some integer j, the classical Z,-index of
A; In thls case, the inclusion of (4.1) is equivalent to the inequality j=n—(k+ 1), which
is the assertion of the classical Borsuk—Ulam-Yang theorem.

Thus Theorem 4.1 contains information about the size of A,: it asserts that the
cohomology ring of A4, cannot be too small: its index is bounded above. However,
deciding in a particular case which universal cohomology class of H§,(*) survive by
not finding themselves in the index of A, can be a non-trivial task. In an effort to
extract a more specific information about the size of 4, we shall attempt to determine a
highest possible dimension where the cohomology of A,/0(m), or the 0(m)-cohomology
of A;, is non-zero. This will be done in the next section in the case m=2. In Section 6
we will be able to obtain a better result for the special case when m=2, n=2°—1 and
k=n—1.

5. The case m=2

We shall keep the notation of Section 1. Thus for a map f:V,(R"*2)>(R**2)? we
have

(Ind*®A4,) - J(2, k) < J(2, n). (5.1)

Theorem 5.2. If k<n and f:V,(R"*?)—(R**?)? is a map then H*(A/0(2)) is non-zero
in a dimension at least 2n—k —2.
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Corollary 5.3. The covering dimension of A;/0(2), dim A;/0(2), is at least 2n—k—2.
Furthermore, since the orbit map A;—A/X2) is a bundle with fibre 0(2), dim A,22n—
k—1.

Proof of (5.2). According to (3.6), Rank H?"G,(R"*2)=p3(2n)=1; this also follows
from the fact that G,(R"*?) is a 2n-dimensional manifold. Let v,,e H2"G,(R"*2)=Z, be
the non-zero class (in fact, v, is the image under the natural map H2"G,— H?"G,(R"*?)
of wie H*"G,; see [8, Lemma (1.2)]. Thus the 2n-component J(2,n),, of the index does
not contain the entire H2"G,. This means that there is a class (in this case, it is w}) in
H?"G, which is not in J(2,n),,.

On the other hand, also because G,(R**2?) is a 2k-dimensional manifold,
H?"G,(R**2)=0 for k <n. Therefore the 2n-component J(2,k),,=Im y(2n,k) of the index
(cf. (3.5)) contains the entire cohomology module H2"G,. This means that the map

¥2n, k) H"*~1G, ® H*"*~2G,~H*G,

is surjective. It follows that there exists a pair (x,y)e H>*""*~1G, ® H*"“*~2G, such that
y(2n, k) (x, y) ¢ J(2,n). By the definition of y, W, x+w, ,y¢J(2,n). But w,,, and w,,,
are in J(2,k)=Ind*@V,(R**2), hence it follows (5.1) implies that either x¢Ind®® A, or
y¢1Ind°® A,. This means that either the image of x or the image of y is a non-zero class
in H§;)A ;= H*(A/0(2)). O
6. The case m=2 and n=2°-1

In the case m=2, n=2°—1 and k=n—1 the result of (5.2) can be improved.

Theorem 6.1. If n=2—1 and f:V,(R"*%)—>(R"*")? is a map then H"(A;/0(2)) #0.

Just as in (5.3) we have
Corollary 6.2. The covering dimension dim A/0(2) Zn; hence dim A, 2n+ 1.

Lemma 6.3.

2 —i—1)

—4—1)

Proof.

(P—i=1 (=202 =2i+1)...(2—i—1)
(25=2i—Nlit it
2)Q2i=1)...(i+1)
= i! m
(@2 Qi—1 Qi1

G =0mod 2
W=D G meds

od2
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because the binomial coefficients (a + b)!/alb! satisfy the relation

(a+b)! (a+b—1)! (a+b—1)!
abl @@= ab—1 0

Proof of 6.1. Relation (6.1) for k=n—1 now reads
(Ind°® 4,)-J(2,n—1) = J(2,n). 6.4

The ideal J(2,n—1) is generated by w, and w,, ,, and J(2,n) is generated by w,,, and
W, ., in Z,[w,,w,]. The dual class w, is a polynomial consisting of the terms of

W=(1+(w; +wp)) " =1+ (wy +wy)+(wy +w))*+ -
of total degree n=2°—1. Thus

2t (i)

- : 25—-2i—1_.

%= X aopm™ W2
By (6.3), all the coefficients in this polynomial for i>0 are zero, and for i=0, the
coefficient of w?* ™!, is 1. Thus w,=w?""'=w". Therefore w!eJ(2,n—1). We claim,

however, that wlélndo‘z’ A, For, if w] were in Ind°® A4, relation (7.4) would imply
that wi- wl—wl would belong to J(2,n). However, it was proved by Hiller [8] that
w2"=w?"""'"2 is not zero in H*G,(R"*?); that is, w3"¢ J(2, n).

This completes the proof. 0
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