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1. Introduction

We are concerned with the following classical version of the Borsuk-Ulam theorem:
Let f:Sn->Rk be a map and let Af = {xeS"\fx = f(-x)}. Then, if k^n, Af*4>. In fact,
theorems due to Yang [17] give an estimation of the size of As in terms of the
cohomology index. This classical theorem concerns the antipodal action of the group
G = Z2 on S". It has been generalized and extended in many ways (see a comprehensive
expository article by Steinlein [16]). This author ([9, 10)] and Nakaoka [14] proved
"continuous" or "parameterized" versions of the theorem. Analogous theorems for
actions of the groups G = Sl or S3 have been proved in [11], and [12]; compare also
[4, 5, €].

A tool in estimating the size of the set Af (for G = Z2) in terms of index is the first
Stiefel-Whitney class of a space with a free involution. Similarly, such an estimate for
G = Sl makes use of the first Chern class; and for G = S3 the first Pontriagin class is
used. A natural question arises of whether there exists a corresponding result using
other characteristic classes.

Various extensions of the concept of index were defined and used by Fadell and
Husseini (see [5, 6]). In a forthcoming paper [7], Fadell and Husseini introduce a
general notion of index for an arbitrary compact Lie group action as an ideal-valued
function. I arrived independently at the concept of an ideal-valued index and presented
my results, with an application to a geometric situation, at the NATO Advanced Study
Institute on "Variational Methods in Nonlinear Problems" held in Montreal in July
1986, where Fadell presented his joint results with Husseini; this is how I first learned
about their recent work. I understand, however, that Fadell and Husseini defined their
general notion of index before me and I am pleased to acknowledge their priority in
developing the index theory. In fact, a suggestion that the index can be defined as an
ideal is mentioned in Remark (3.5) of [5]. I shall use the notation IndG for the G-index
introduced by Fadell and Husseini and prove some properties of IndG (Proposition (3.3)
and Theorem (3.4)) which will be needed in this paper.

In theorems of the Borsuk-Ulam type for a general compact Lie group G we usually
consider a map f:X-*W of a G-space W, for instance, into a representation space for G;
and we try to estimate the size of the set Af where the G-symmetry becomes degenerate
under / The degeneracy set may be defined in various ways depending on the context.

271

https://doi.org/10.1017/S0013091500028674 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028674


272 JAN JAWOROWSKI

For instance, if f.X->W is an equivariant map of X into a representation space W, we
may want Af to be the set of zeros of / More generally, for any invariant subset W of
W, we can set Aj{W): = flW. If we don't want to start necessarily with an equivariant
map f:X->W, we can apply the averaging construction, replace / by its average
A\f:X^W and define A^W): = (A\f)~lW. (Compare [11] and [12]). The classical
Borsuk-Ulam theorem asserts that for any map f:S"-*W there is a point in S" where
the average of / (with respect to the antipodal actions on the source space and on the
target space) is zero.

1.1. Example. The following example is a direct generalization of the Borsuk-Ulam-
Yang situation of f:S"->Mk+1 from the group G = Z2 (0(1)) to G = 0(m):

Let X be the Stiefel manifold Fm(Rm+") of orthonormal ro-frames in Um+n and let
/ : X = Vm(Um+n)^(Um+k)m = W (be a map. In other words, / assigns to every m-frame in
Vm(Rm+n) an m-tuple of vectors in Um+k. Let W be the subset of W consisting of the
m-tuples which are not linearly independent. We are asking about the size of
Af = (Av / ) ~l W; i.e., Af is the degeneracy set in our example. Here the group G = 0(m)
acts on Vm(Um+n) and on (Um+k)m in the standard way: Thus if weW, then w can be
thought of as an (m + k) x m matrix (having m + k rows and m columns). For g e 0(m) we
define gw: = wg, where the dot is the matrix multiplication. Then the action is free in
W—W: if weW—W, i.e., Rank w = m, and wg = w, there is an (m x m)-submatrix A of w
which is invertible. Then A • g = A and thus g is the identity. The converse is also true: if
weW and Rank w < m, then one can find a matrix g e 0(m) other than the identity such
that wg = w. Of course, if m=\, then X = S", W = Rk+1, and we are in the Borsuk-
Ulam-Yang situation. We will prove a theorem in which the size of Af is described in
terms of index, in a way similar to the assertion of the Borsuk-Ulam theorem. An
estimate of the size of Af will be given in terms of cohomology, but, as a corollary we
will find a lower bound for the covering dimension, dim As, of Af In the case m = 2, we
will show that dimAf^.2n — k— 1; if, in addition, k = n — 1 and n = 2s—1, then dimAf^
ii + l.

There exist also "continuous" versions of the results proved here, for spaces and maps
over a base space. They are analogous to those of [9, 10, 12]. We shall deal with them
in a future paper.

2. Index

Let G be a compact Lie group. We shall be using the Alexander-Spanier cohomology
with coefficients in Z2 (which will be suppressed from the notation) and the Borel
equivariant cohomology. If X is a G-space then XG: = EGG x X where EG is a universal
space for G, G acts on EGxX by g(e,x) = (ge,gx) and EGGxX: = (EGxX)/G. The map
XG->(EG)/G = BG induced by the first projection EGxX->EG is a bundle with fibre X.
If G acts trivially on X then XG^BGx X.

The equivariant cohomology of X is /f£AT: = /f*Ar
G. If G acts freely on X then the

map XG->X/G induced by the second projection EG x X^X is a bundle with a
contractible fibre EG; hence HGX^H*(X/G).
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If (*) denotes a one-point space then the constant map EG-*(*) induces an
isomorphism H%(*) = H%EG. We will be identifying the groups H%(*), H%EG and H*BG
under this isomorphism.

Proposition (compare [11, (5.1)]) 2.1. Let X be a free G-space, let cp:X-*EG be an
equivariant map and let c = cx:X-*(*) be the constant map. Then under the identification

and HZX = H*(X/G) we have q>*=c*:H*BG->H*(X/G).

Definition 2.2. Let G be a compact Lie group and let X be a G-space. Then the G-
index of X is defined to be the kernel of the G-cohomology homomorphism induced by
the constant map cx:X->(*);

Thus the index of X is an ideal in the G-cohomology ring of a point.

In the classical case, when G = Z2 is acting freely on X, the non-trivial element of Z2

represents a free involution on X. In the case BG^UPX, //£(*) s / / " W ° is a
polynomial algebra over Z2 on one generator in dimension one, the first Stiefel-Whitney
class w1e//l2(*)S//1IRPa>. Its image under c* in H\2X = Hl{X/Z2) is the characteristic
class of the involution, w1(A') = c*w1. The kernel of c* is the ideal generated by w"+1, for
some integer n, and thus Indz(.Y) can be identified with that integer; it is the largest
integer n such that w"(^)#0. This corresponds to the classical definition of index of
space with a free involution. In an analogous way, for free actions of G = Sl and G = S3

(and for cohomology with rational coefficients), the index can also be identified with an
integer (compare [4, 5, 6, 11, 12]).

That the index is natural is expressed by the following proposition.

Proposition 2.3. Let X and Y by G-spaces and let f:X->Y be an equivariant map.
Then

The proof is immediate.

The following theorem is a general principle of which the classical Borsuk-Ulam-
Yang theorem is a special case (compare Remark (5.2)).

Theorem 2.4. Let X and W be G-spaces and assume that X is paracompact. Let
f:X->W be an equivariant map, and let W be a closed invariant subset of W. Then

{lndGf-iW)(lndG{W-W))<zlndGX.

Remark. The proof is analogous to the proof of part (b) of Proposition (2.8) of [6]
(additivity property of the integer-valued index). Compare also [9, p. 113], [10, p. 160],
[11, p. 161] and [12, p. 148]. Thus (2.4) expresses a crucial principle used in these
proofs.
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Proof. As before, for every space Y, c = cY:Y^(*) is the constant map of Y into a
one point space. Let Af = f~1W (thus Af corresponds to the singularity set in the
Borsuk-Ulam-Yang situation) and let a e lnd 0 Af; that is, c%fa=0. Consider c%aeH£X.
Thus (c$a)\Af = 0. By the continuity of H% it follows that there exists a neighbourhood
N of Af in X such that (cJa)|JV = 0. Thus c$a = j*a', where a'eH£(X,N) and
j:X-*(X,N) is the inclusion. Let belndG{W — W). Since we have an equivariant
map X-Af^W-W, we have by (2.3) that I n d G ( W - W)<zlndG(X-Af).
Hence c%belndG{X-Af), that is, c%b\(X-Af)=0. Thus c$b = j*b', where
b'eH%{X,X-Af) and j:X-*(X,X-Af) is the inclusion. It follows that c$(ab) =
(c$a){c$b) = {j*a')(j*b') = j*{a'b') = 0. Therefore abeIndGX. •

3. The cohomology of grassmannians

Let Vm=Vm(Uco) denote the Stiefel manifold of orthonormal m-frames in U°°. If O(m)
acts on Vm in the standard way (by the right multiplication) then the orbit space of the
action is the infinite Grassmann space Gm = Gm(Uco) of m-dimensional subspaces of R°°
and the orbit map Vm-+Gm is a classifying bundle for 0{m). Thus H$im)Vm^H*Gm. The
cohomology of Gm (with coefficients in Z2) is a polynomial algebra Z2[w1,.. . ,wm] freely
generated by the Stiefel-Whitney classes WieH'Gm of the standard m-plane bundle
associated to the principal bundle Vm-*Gm.

The orbit space of the standard free action (right multiplication) of O(m) on the Stiefel
manifold Vm(Um+n) is the real Grassmann manifold Gm(IRm+n) of m-dimensional sub-
spaces of Um+n. Thus H%(m)Vm(Um+n)^H*Gjnm+n). There exist two quite different
descriptions of the cohomology of Gm(Um+n). On the one hand, Chern [2] gave a
description of the cohomology ring H*Gm(Um+") by means of a specific cellular
decomposition of the Grassmann manifolds constructed by Ehresmann [3] which, in
turn was based on the work of Schubert [15]. By letting n-»oo, one obtains a
decomposition of the infinite Grassmannian Gm = Gm(Uco). In this decomposition of Gm

evey cell represents a free generator of the cohomology group in the respective
dimension, a monomial in the Stiefel-Whitney classes. On the other hand, the
cohomology of Gm(IRm+n) was described in Borel's thesis [1] as a quotient of the
polynomial ring on the universal Stiefel-Whitney classes and their duals. A pleasing
exposition of the first approach is given in Milnor [13]; compare also Hiller [8].

We can write the total Stiefel-Whitney class as a formal series w= l + w1 + w2+ •••
and define the total dual class vv = 1 + wl + w2 + • • • as the formal inverse of w, i.e., by the
relation

w w = l (3.1)

(compare [13, §4]). Relation (3.1) can be used to express the dual classes w/s in terms of
w1,.. . ,wm. It contains a countable number of relations, one in each positive dimension.

Definition 3.2. Let J(m,n) denote the ideal in 22[w1, . . . ,wm] generated by
vvj +„, . . . ,wm + n expressed as polynomials in wl J . . . ,wm by using (3.1).

https://doi.org/10.1017/S0013091500028674 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028674


MAPS OF STIEFEL MANIFOLDS 275

Theorem 3.3. J(m, n) is the 0(m)-index of Vm(Um+n).

Borel [1] showed that the albegra //5(m)Kms//J(m)(*) = H*Gm is isomorphic to the
quotient algebra Z2[w1 ). . . ,wm,w1, w2,.. .]//(m), where I(m) is the ideal in
Z2[w1,...,wm,wl,w2,...~] generated by the homogeneous terms of ww of positive
dimension. As shown by Borel, it follows that

//*Gm(Rm + n)^Z2[w1,. . . ,wm,w1,. . . ,wn]//(W >n)) (3.4)

where I(m,n) is the ideal in the polynomial algebra Z2[_wl,...,wm,wl,...,wm] generated
by the m + n terms of (\ + wt+ ••• +wm)(l+wl+ ••• +wn) of positive dimension. The
relations corresponding to the first homogeneous terms of the latter product (in
dimensions l,.. . ,n) yield n equations

which can be solved recursively for wl,...,wn (see [13, p. 40]). Substituting the resulting
formulas to the remaining m homogeneous terms of the product (in dimensions
l+n,...,m + n) we obtain the ideal J{m,n). Thus H*GJIR'n+' ')^Z2[w1,...,wm]/J(m,n).
The 0(m)-index of Km(IRm+") is IndO(m)Fm(IRm+n) = (Ker(c*://g(m)(*)-^ffS(m)Km(IRm+'1)).
Since the action of O(m) on Km(Km+n) is free, H^m)Vm(Um+n)^H*Gm(Um+n) and, under
this isomorphism, the kernel of c* coincides with the kernel of (p*:H*Gm->H*Gm(Um+n),
where q> is a classifying map for Vm(Um+") (compare [11, (5.1)]); for instance, q> can be in
the inclusion GJUm+l')-*-Gm. Thus (p* corresponds to the quotient map
Z2[w1,...,Hi

m]->Z2[w1,...,wm]/J(m,n) whose kernel is J(m,n). •

Let J(m,n)r denote the r-dimensional component of the ideal J(m,n). Consider the
map

d e f i n e d b y ( x , , . . . , x j - » w , + n x ^ +•••+ wm+nxm.

Lemma 3.5. J{m, n)r = Im y(r, n).

For the proof it is enough to observe that every element in J(m, ri)r can be written as
an element of Imy{r,n) by grouping similar terms with respect to wt+„,..., wm+a. •

If r^n then J(m,n)r = 0 and the inclusion Gm(Um+n)cGm induces an isomorphism
HrGm^HrGJUm+n). Thus for r^n, HrGm(Um+n) is additively generated by all mono-
mials H^',...,w^m of a total degree qi + 2q2+ ••• +mqm=r. In this range of r, the rank of
HrGm(Um+") is equal to the number pjr) of all partitions of r into at most m integers
(see [13, p. 85]).

Let p"m(r) denote the number of partitions of r into at most m positive integers each of
which is <n.
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Proposition 3.6. Rank HrG2(U
2+")=pn

2(r).

Proof. If r ̂  n then this rank is p2(r) which is equal to p"2(r). Suppose n ^ r ̂  2n. Since
G2(R2+") is a 2n-manifold, by the Poincare Duality, Rank HrG2(U

2+n)=p2(2n-r) =
Plir). •

Remark 3.7. For m = 2, p2(r) = [r/2] + 1.

4. Maps of Stiefel manifolds

We return now to our example to Section 1. Thus X=Vm(Um+n) and W = (Um+k)m

have the standard (right) action of 0(m), f:X-*W is a map, W is the subset of W
consisting of m-tuples of vectors in Um+" which are not linearly independent, Wo =
W—W, and Af=(A\f)~lW. Then the Gram-Schmidt orthogonalization process
provides a homotopy equivalence W0^Vm(Um+k). Thus Ind0(m)X = J(m,n), Ind0<m)W0 =
J(m, k) and by (2.4) we have the following inclusion.

Theorem 4.1. (lnd°(m)Af) • J(m, k) a J(m, n).

Remark 4.2. If m= 1 then X = S", W=Uk+l, J(m,n) is the ideal in //?2(A:)^//*IRiJ00^
Z J O J generated by w"+1, and J(m,k) is the ideal generated by w^+1. The index
IndO(1)/l / = Ind z M / is generated by w{+1, for some integer j , the classical Z2-index of
Af. In this case, the inclusion of (4.1) is equivalent to the inequality j^n—(k + l), which
is the assertion of the classical Borsuk-Ulam-Yang theorem.

Thus Theorem 4.1 contains information about the size of A/, it asserts that the
cohomology ring of As cannot be too small: its index is bounded above. However,
deciding in a particular case which universal cohomology class of #g(m)(*) survive by
not finding themselves in the index of Af, can be a non-trivial task. In an effort to
extract a more specific information about the size of Af, we shall attempt to determine a
highest possible dimension where the cohomology of Af/0{m), or the 0(m)-cohomology
of Af, is non-zero. This will be done in the next section in the case m = 2. In Section 6
we will be able to obtain a better result for the special case when m = 2, n = 2s— 1 and
k = n-\.

5. The case m = 2

We shall keep the notation of Section 1. Thus for a map / : F2(R
n+2)->(IR* + 2)2 we

have

(Ind°(2U/)-J(2,/c)c:J(2,n). (5.1)

Theorem 5.2. If k<n and f: V2(M
n+2)->(Mk + 2)2 is a map then H*(Ar/0(2)) is non-zero

in a dimension at least 2n — k—2.
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Corollary 5.3. The covering dimension of Af/0(2), dim Af/0(2), is at least 2n — k — 2.
Furthermore, since the orbit map Af->Af/0(2) is a bundle with fibre 0(2), dimAf^2n —
fc-1.

Proof of (5.2). According to (3.6), Rank H2nG2(W
+2) = pn

2(2n) = 1; this also follows
from the fact that G2(Rn+2) is a 2«-dimensional manifold. Let v2neH2"G2(W

+2)^Z2 be
the non-zero class (in fact, v2n is the image under the natural map H2nG2->H2nG2(W

+2)
of w^e//2"G2; see [8, Lemma (1.2)]. Thus the 2n-component J(2,ri)2n of the index does
not contain the entire H2nG2. This means that there is a class (in this case, it is w"2) in
H2nG2 which is not in J(2, n)2n.

On the other hand, also because G2(IR* + 2) is a 2/c-dimensional manifold,
H2nG2(R

k+2) = 0 for k<n. Therefore the 2n-component ./(2,/c)2n = Imy(2n,fc) of the index
(cf. (3.5)) contains the entire cohomology module H2nG2. This means that the map

y(2n,/c): tf2n~k - ! G 2 © H 2 n ~ k - 2G2->/J2"G2

is surjective. It follows that there exists a pair (x,y)eH2n~k~iG2 ®H2n~k~2G2 such that
y(2n,k)(x,y)4 J(2,n). By the definition of y, wk+lx + wk + 2y£ J(2,ri). But vvt + 1 and wk+2

are in J(2,fc) = Ind0(2)K2(R'I + 2), hence it follows (5.1) implies that either x$lnd°i2)Af or
y$lnd0(2) Af. This means that either the image of x or the image of y is a non-zero class

•

6. The case m = 2 and n = 2s— 1

In the case m = 2, n = 2s— 1 and k = n— 1 the result of (5.2) can be improved.

Theorem 6.1. / / n = 2 s - 1 and f: K2(R'1+2H(IR'1 + 1 ) 2 is a map then H\A//0(2))#0.

Just as in (5.3) we have

Corollary 6.2. The covering dimension dim /ty/0(2) ^ n; hence dim Af ^ n + 1.

Lemma 6.3.

Proof.

(2s —i — 1)! (2 s -2i ) (2 3 -2i + l ) . . . ( 2 s - i - l )

mod 2

l+^-^s0mod2,

https://doi.org/10.1017/S0013091500028674 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028674


278 JAN JAWOROWSKI

because the binomial coefficients (a + b)\/a\bl satisfy the relation

(a + b)\_(a + b-iy. (a + b-\)\
a\b\ ~ (a-l)lb\ + a\{b-\)\ ' D

Proof of 6.1. Relation (6.1) for k = n— 1 now reads

(Ind0<2) Af) • J(2, n-l)cz J{2, n). (6.4)

The ideal J(2,n — 1) is generated by wn and wn+1, and 7(2,n) is generated by vvn + 1 and
vvn+2 in Z2[w1,«i2]. The dual class wn is a polynomial consisting of the terms of

of total degree n = 2s — 1. Thus

V \ A ' x^" 2 « - 2 i - l i

" £„ (25-2i-P ' 2'

By (6.3), all the coefficients in this polynomial for i > 0 are zero, and for i = 0, the
coefficient of w\'~l, is 1. Thus wn = wl'~l = w"1. Therefore w"eJ(2,n —1). We claim,
however, that w" ^ Ind0(2) Af. For, if w" were in Ind0 ( 2M/, relation (7.4) would imply
that H>1 • w" = w\" would belong to J(2, ri). However, it was proved by Hiller [8] that
w\" = w\'+l"2 is not zero in H*G2(W

 + 2); that is, w\"iJ(2,n).
This completes the proof. •
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