
JFP 12 (2): 91–132, March 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796801004257 Printed in the United Kingdom

91

A calculus of module systems

DAVIDE ANCONA and ELENA ZUCCAã
Dipartimento di Informatica e Scienze dell’Informazione,

Via Dodecaneso, 35,16146 Genova, Italy

(e-mail: {davide,zucca}@disi.unige.it)

Abstract

We present CMS, a simple and powerful calculus of modules supporting mutual recursion

and higher order features, which can be instantiated over an arbitrary core calculus satisfying

standard assumptions. The calculus allows expression of a large variety of existing mecha-

nisms for combining software components, including parameterized modules similar to ML

functors, extension with overriding as in object-oriented programming, mixin modules and

extra-linguistic mechanisms like those provided by a linker. Hence CMS can be used as a

paradigmatic calculus for modular languages, in the same spirit the lambda calculus is used

for functional programming. We first present an untyped version of the calculus and then a

type system; we prove confluence, progress, and subject reduction properties. Then, we define

a derived calculus of mixin modules directly in terms of CMS and show how to encode other

primitive calculi into CMS (the lambda calculus and the Abadi-Cardelli object calculus).

Finally, we consider the problem of introducing a subtype relation for module types.

Capsule Review

The paper concerns a primitive calculus of module systems (CMS). A module is identified

with a collection of private code fragments that have explicitly named (and, in the typed

version, typed) import and export components. The authors describe a small, orthogonal and

well-motivated set of operations for merging two modules, selecting the output component

of a closed module, renaming a module’s components, and connecting a module’s output

to its input components. In combination, these constructs can be used to model features of

traditional moduel and object-oriented calculi as well as features such as dynamic linking.

The main advantage of this calculus is the support for manipulation of open code fragments

that can then be flexibly combined before taking a fix-point of the fragments to obtain a

closed, recursive module. The main disadvantage is that the hard issues involving recursive

type components are not fully addressed.

Introduction

Considerable effort has been recently invested in studying theoretical foundations

and developing new forms of module systems; let us mention the wide literature

about foundations and improvements of the Standard ML (Milner et al., 1990)

modules system (Leroy, 1994; Harper & Lillibridge, 1994), the notions of mixins

ã Partially supported by Murst – Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la
trasformazione di sistemi software and APPlied SEMantics – Esprit Working Group 26142.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

92 D. Ancona and E. Zucca

(Bracha, 1992; Duggan & Sourelis, 1996; Flatt et al., 1998; Ancona & Zucca, 1998a;

Ancona & Zucca, 1998b) and units (Flatt & Felleisen, 1998), the type-theoretical

analysis of recursion between modules proposed in Crary et al. (1999).

Two principles which seem to emerge as common ideas of all these approaches

are the following. First, a module system should have two linguistic levels, a module

language providing operators for combining software components, constructed on

top of a core language1 for defining module components. The module language

should have its own typing rules and be as independent as possible from the

core language; even more, it could be in principle instantiated over different core

languages (see Leroy (2000) for an effective demonstration). Secondly, modules

should actually correspond to compilation units, and typing rules of the module

language should formalize the inter-check phase described in Cardelli (1997). Indeed,

operators of the module language could also correspond, in practice, to an extra-

linguistic tool like a linker.

In this paper, we define a primitive module calculus based on these two principles

and suitable for encoding various existing mechanisms for composing modules, in

the same way as λ-calculus provides a theoretical basis for functional languages; in

particular it supports mutually recursive modules and higher-level features (modules

with module components), and it is parametric in the underlying core language.

A basic module of this calculus is written, using some syntactic sugar and consid-

ering here for simplicity the untyped version, as follows:

import X1 as x1, . . . , Xm as xm
export Y1 = E1, . . . , Yn = En
local z1 = E ′1, . . . , zp = E ′p

A basic module introduces component names and variables. The former are the

names of the components the module either imports from (input components

X1, . . . , Xm) or exports to (output components Y1, . . . , Yn) the outside. The latter

are the variables used in definitions inside the module (that is, the expressions

E1, . . . , En, E
′
1, . . . , E

′
p, which can be expressions of the core language or in turn

module expressions if the module has module components). These variables can

be either deferred (x1, . . . , xn), that is, associated with some input component, or

locally defined (z1, . . . , zp). This distinction between component names and variables

is essential for keeping the module level independent from the core level, as will be

explained in more detail later.

Now, as example of a typical operator which can be easily encoded in our calculus,

consider a link operator used for merging two or more modules. This operator may

be regarded as either an operation provided by a module language in order to define

structured module expressions or an extra-linguistic mechanism to combine object

files provided by a tool for modular software development. Regardless of the view

we take, we can informally define this operator as follows. For any pair of modules

M1 and M2, link (M1,M2) is well-defined if the sets of the output components of

M1 and M2 are disjoint. In this case, link (M1,M2) corresponds to a module where

1 Following the terminology introduced with Standard ML.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 93

some input component of one module has been bound to the definition of the

corresponding output component of the other module, and conversely. In particular,

if each input component of both modules has been bound we get a module with no

input components, called a concrete module.

For instance, let the modules BOOL and INT define the evaluation of some boolean

and integer expressions in a mutually recursive way:

module BOOL is

import IntEv as ext_ev

export BoolEv = ev

local

fun ev EQ(ie1,ie2) = ext_ev(ie1)==ext_ev(ie2)

| ...

...

end BOOL;

module INT is

import BoolEv as ext_ev

export IntEv = ev

local

fun ev IF(be,ie1,ie2) = if ext_ev(be) then ev(ie1) else ev(ie2)

| ...

...

end INT;

then link (BOOL, INT) intuitively corresponds to the module

module BOOL_INT is

export IntEv = iev

export BoolEv = bev

local

fun bev EQ(ie1,ie2) = iev(ie1)==iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = ifbev(be) then iev(ie1) else iev(ie2)

| ...

...

end BOOL_INT;

The separation between component names and variables allows one to use in-

ternally the same name ev for the evaluation function in the two modules; in the

compound module, indeed, ev of BOOL and ev of INT are α-renamed to bev and

iev, respectively.

Note also that the link operator informally described above can be decomposed

in two steps: first, just putting together the declarations of the two arguments in one

module, yielding

module

import IntEv as ext_iev

import BoolEv as ext_bev

export IntEv = iev

export BoolEv = bev

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

94 D. Ancona and E. Zucca

local

fun bev EQ(ie1,ie2) = ext_iev(ie1)==ext_iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = if ext_bev(be) then iev(ie1) else iev(ie2)

| ...

...

end;

then, binding import components with export components of the same name (in this

case), yielding BOOL INT. Formally, this corresponds to the fact that link is a derived

operator which can be expressed by the sum and freeze basic operators of CMS.

In the following, we define the calculus CMS (Calculus of Module Systems)

where module expressions are either basic modules which are, apart from syntactic

sugar, those described above, or constructed by three operators (sum, reduct and

freeze); moreover, a selection operator allows one to extract a module component

(section 1.1). In section 1.2 we define a reduction semantics for CMS and in section 2

we prove that CMS satisfies the Church–Rosser property (abbreviated CR in the

sequel). In section 3 we define a typed version of CMS and prove that it enjoys the

progress and subject reduction properties. In section 4 we illustrate how a derived

calculus DCMS supporting a link operator, like the one informally introduced

above, and virtual components can be defined on top of CMS. This derived calculus

supports, in a general framework of module composition, redefinition of components

which is typical of object-oriented programming. To analyse the expressivity of the

calculus, in section 5 we encode the λ-calculus and the Abadi-Cardelli object calculus

into CMS. These encodings also shed light on the relationship between CMS modules

and both ML-like functors and the objects of object-oriented programming. In

section 6 we propose an extension of typed CMS with subtyping and discuss related

problems. Finally, related work is considered in section 7, while in the Conclusion

we summarize the contribution of the paper and outline further work.

This paper is an extended and improved version of earlier work (Ancona &

Zucca, 1999). The main novel contributions are the following. On the technical side,

the ability of representing core terms containing module expressions independently

from the core language and without any knowledge of its syntactic rules is now

obtained by means of explicit substitutions (Curien et al., 1996). This allows a clean

integration of the core and module levels; in particular, Church–Rosser, progress

and subject reduction properties for CMS can be stated and even proved in a nice

modular way, assuming the same properties at the core level. On the language side,

we present the derived calculus DCMS, which directly supports virtual components

in section 4 and an extension with subtyping in section 6.

1 Untyped CMS

1.1 Syntax

The abstract syntax of the untyped calculus is given in figure 1.

We first present the module-level syntax, then discuss the abstraction of the core

language.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 95

E ::= x | (variable)

[ι; o; ρ] | (basic module)

E1 + E2 | (sum)

σι |E|σo | (reduct)

freezeσf (E) | (freeze)

C[ρ] | (core expression)

E.X (selection)

ι ::= xi
i∈I7→Xi (ι-assignment)

o ::= Xi

i∈I7→Ei (o-assignment)

ρ ::= xi
i∈I7→Ei (ρ-assignment)

σ ::= Xi

i∈I7→Yi, Yj j∈J (renaming)

Fig. 1. Abstract syntax of the untyped calculus.

Lower case meta-variable x ranges over an infinite numerable set Var of variables ,

whereas upper case meta-variables X and Y range over an infinite numerable set

Name of component names . This distinction at the level of the calculus reflects, from

a practical perspective, the separation that a linker makes between internal names

(what we call variables) and external names (what we call component names).

The meta-variable E ranges over the set of all module expressions (or terms)

which is denoted by EE .

A basic module corresponds to building a module by collecting a set of com-

ponents. A basic module is made up of an assignment of input names to deferred

variables (also called ι-assignment), of expressions to output names (also called

o-assignment) and of expressions to local variables (also called ρ-assignment or sub-

stitution); all these assignments have a scope that is delimited by square brackets.

The notation xi
i∈I7→Xi (I possibly empty) is used for representing the unique

surjective and finite map ι s.t. dom(ι) = {xi | i ∈ I}, cod (ι) = {Xi | i ∈ I} and

ι(xi) = Xi for all i ∈ I . The expression is well-formed only if for any i1 and i2 in I ,

if i1 6= i2 then xi1 6= xi2 .

The expression ι1, ι2 is well-formed only if dom(ι1) ∩ dom(ι2) = ∅ and denotes the

assignment ι s.t. dom(ι) = dom(ι1)∪dom(ι2), cod (ι) = cod (ι1)∪cod (ι2), ι(x) = ι1(x) for

all x ∈ dom(ι1) and ι(x) = ι2(x) for all x ∈ dom(ι2). For application and composition

of maps we use the standard notation (see the comments on the reduct operator in

section 1.2, for further details on map composition).

For the sake of simplicity, we identify all expressions representing the same map.

Similar notations and assumptions are used for the other kinds of assignments, and

for renamings. Finally, we assume that a basic module expression is well-formed

only if the set of deferred and local variables are disjoint (dom(ι)∩dom(ρ)). The sets

of input and output components, however, can have a non empty intersection.

As an example of basic module, the expression

[ext ev 7→ IntEv ; BoolEv 7→ ev ; ev 7→ ...]

corresponds to the module BOOL defined in the Introduction.

Before describing the other module operators, we should justify the separation

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

96 D. Ancona and E. Zucca

of variables and component names. There are several technical and methodological

motivations for this separation.

Technically speaking, variables can be α-converted, in the sense that we can

rename (in an appropriate way) the variables of an expression E without changing

the observable semantics of E. The same cannot be done for component names (see

section 1.2). Furthermore, the distinction between component names and variables

is crucial for avoiding typing problems related to module extension and hiding (see

Riecke & Stone (1999), and section 3). Finally, if we want the module calculus to

be independent from the core level, then component names have to be necessarily

independent from the variables of the core language.

Methodologically speaking, this separation is a way of abstracting from the

particular programming language a module comes from, even allowing composition

of heterogeneous software components; variables correspond to the particular dialect

spoken inside each module, whereas names represent a sort of lingua franca which

allows modules to talk to each other.

Analogous distinctions are those between program variables and labels that con-

nect fragments in Harper & Lillibridge (1994), variables and field/method names in

the Abadi–Cardelli object calculus (Abadi & Cardelli, 1996) and names and identi-

fiers in Leroy (1994); also in the object calculus defined in Riecke & Stone (1999)

objects have dictionaries mapping external to internal names and in MzScheme’s

units (Flatt & Felleisen, 1998) imported and exported variables have separate inter-

nal (binding) and external (linking) names, and the internal names within a unit can

be α-renamed.

Returning to the module operators, modules can be merged together by means of

the sum operator.

The reduct operator is an expressive construct for renaming the component names;

input and output components are separately renamed via two renamings (see below)

σι and σo, respectively, which are two finite maps over Name.

The freeze operator allows the binding between input and output names; this

binding is specified by the renaming σf . Finally, it is possible to access an output

component from the outside via the selection operator.

The meta-variable σ ranges over the set of renamings (finite maps over Name).

The notation Xi
i∈I7→Yi, Yj j∈J (I or J possibly empty) is used for representing the unique

map σ s.t. dom(σ) = {Xi | i ∈ I}, cod (σ) = {Yi | i ∈ I ∪ J} and σ(Xi) = Yi, for all

i ∈ I .
A renaming Xi

i∈I7→Yi, Yj j∈J is well-formed only if {Yi | i ∈ I} and {Yj | j ∈ J} are

disjoint sets and for any i1 and i2 in I , if i1 6= i2 then Xi1 6= Xi2 and, similarly, for

any j1 and j2 in J , if j1 6= j2 then Yj1 6= Yj2 .

We introduce the following abbreviations for the reduct: if σι is an inclusion,

that is, of the form Xi
i∈I7→Xi, Xj

j∈J , then σι|E|σo is written {Xi|i∈I∪J}|E|σo ; if in particular

J = ∅, that is, σι is the identity, then we simply write E|σo . Analogously, if σo is of

the form Xi
i∈I7→Xi, Xj

j∈J , then σι|E|σo is written σι|E|{Xi|i∈I} and, if σo is the identity, then

we simply write σι|E.

The meta-variable C ranges over the set of core expressions (or terms), denoted

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 97

by EC . Therefore the syntax of CMS is parametric in the set EC; we assume that

Var ⊆ EC .

The production E ::= C[ρ] intuitively corresponds to the term obtained by

applying the substitution ρ to C with no capture of free variables. Note that the

substitution is explicit, in the sense of Curien et al. (1996); in other words, C[xi
i∈I7→Ei]

is a core term annotated with a ‘pending’ substitution where arbitrary (that is, even

non-core) expressions may appear. The intuition is that, when reducing terms, the

explicit substitution xi 7→ Ei (for some i ∈ I) can be effectively ‘applied’ to the core

term C whenever Ei is a core expression (see rule (sub) in figure 2 in the sequel). In

this way we can represent core terms containing module expressions independently

from the core language and without any knowledge of its syntactic rules. Whenever

the substitution is empty and no ambiguity arises, we simply write C instead of C[].

The ability to represent this kind of terms (that is, core terms containing module

subterms) is crucial if we want our module calculus to have a selection operator (see

figure 2 and comments below). Indeed, this is the only module operator of CMS

which can return as result a core term (possibly containing module subterms). If

we removed selection from the set of CMS operators, then we could replace the

production E ::= C[ρ] with E ::= C , thus avoiding explicit substitution.

However, we consider selection an essential feature of CMS , since no module

language is usable in practice without this operator. On the other hand, selection

can be disregarded if we are interested only in modeling extra-linguistic mechanisms

for combining modules (like linking).

The production E ::= C[ρ] is applicable only under the following implicit as-

sumptions:

(1) FVC (C) ⊆ dom(ρ)

(2) FV (C[ρ]) ∩ dom(ρ) = ∅
where FVC :EC → P(Var) is a core language dependent function associating with

each core expression the set of its free variables; dom(ρ) denotes the domain of

ρ (formally defined below); FV (C[ρ]) denotes the set of free variables in C[ρ]

(formally defined below). These assumptions are needed for proving CR (section 2);

on the other hand, they do not restrict the expressive power of the language (see

the definition of α-congruence below).

The independence of the calculus from the core language is effective, in the sense

that reduction and typing rules we provide are constructed on top of those of the

core language, so that a type-checker or an interpreter for the module language

could be constructed in a modular way enriching one for the core level, as done

in Leroy (2000). The prototype we have developed for the calculus is actually built

following this idea (see the Conclusion).

Note that the approach taken here does not allow the definition of the core

language to depend in turn on the module language, that is, having a mutual depen-

dency between the module and the core language. However, our prototype, which

has been written in Java, goes further and allows the user to define instantiations

of CMS where modules are first class values at the core level (at least for the un-

typed version). We leave to further investigation the possibility of defining a formal

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

98 D. Ancona and E. Zucca

framework allowing mutual dependency between the core and the module level (see

the Conclusion).

Notations and Definitions. For any module expression E, let FV (E) denotes the set

of free variables of E inductively defined by:

FV (x) = {x}
FV (C[ρ]) =

⋃
E∈cod (ρ) FV (E)

FV ([ι; o; ρ]) =
⋃
E∈cod (o)∪cod (ρ) FV (E) \ (dom(ι) ∪ dom(ρ))

FV (E1 + E2) = FV (E1) ∪ FV (E2)

FV (σι|E|σo) = FV (E)

FV (freezeσf (E)) = FV (E)

FV (E.X) = FV (E)

As expected, at the module level the only binding construct is that for basic

modules. If E = [ι; o; ρ] then we denote by BV (E) the set dom(ι) ∪ dom(ρ) of its

binders. Finally, we define V (E) to be the set of all variables in E.

Capture avoiding and parallel meta-level substitution for module terms is induc-

tively defined as follows:

x{ρ} = ρ(x) if x ∈ dom(ρ)

x{ρ} = x if x 6∈ dom(ρ)

C[xi
i∈I7→Ei]{ρ} = C[xi

i∈I7→Ei{ρ}]
[ι; o; ρ]{ρ′} = [ι; o{ρ′|V }; ρ{ρ′|V }], V = dom(ρ′) \ BV ([ι; o; ρ])

if BV ([ι; o; ρ]) ∩⋃E∈cod (ρ′) FV (E) = ∅
(E1 + E2){ρ} = E1{ρ}+ E2{ρ}
σι|E|σo{ρ} = σι|E{ρ}|σo
freezeσf (E){ρ} = freezeσf (E{ρ})
E.X{ρ} = E{ρ}.X
(Xi

i∈I7→Ei){ρ} = Xi
i∈I7→Ei{ρ}

(xi
i∈I7→Ei){ρ} = xi

i∈I7→Ei{ρ}
where ρ′|V denotes ρ′ restricted to the domain V (V ⊆ dom(ρ′)). The condition for

the case of basic modules ensures that there are no captures of free variables; it is

sufficient, but clearly not necessary.

Note that the definition of meta-level substitution for module terms is completely

independent of that for core terms (see below).

α-congruence. We define the relation ∼= over well-formed module terms as the con-

gruence inductively defined by the following rules:

(core)
C ∼=C C

′

C[ρ] ∼= C ′[ρ]

(sub)
C[x 7→ E, ρ] ∼= C{x 7→ x′}[x′ 7→ E, ρ]

(ι-basic)
[x 7→ X, ι; o; ρ] ∼= [x′ 7→ X, ι; o{x 7→ x′}; ρ{x 7→ x′}]

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 99

(ρ-basic)
[ι; o; x 7→ E, ρ] ∼= [ι; o{x 7→ x′}; x′ 7→ E{x 7→ x′}, ρ{x 7→ x′}]

The definition of ∼= depends on two ‘ingredients’ that have to be provided by the

core calculus: α-congruence ∼=C and capture avoiding substitution over core terms

(differently from substitution for module terms, we do not need parallel substitution

at the core level).

For the moment we do not require meta-level substitution at the core level to

satisfy any property. However, later on we will see that for defining the reduction

rules (see figure 2) and proving CR (see section 2) it is convenient to assume some

standard properties.

Note that, with abuse of notation, we use the same symbol for meta-level substi-

tution for both module and core terms. However this does not cause any ambiguity,

since the meta-variable upon which substitution is applied clearly reveals the kind

of substitution: C{ρ} always denotes substitution at the core level, whereas E{ρ}
substitution at the module level.

Finally, note the difference between C[x 7→ E] and C{x 7→ E}: the former denotes

a particular language construct corresponding to explicit substitution, the latter is a

meta-level notation for denoting the term obtained by capture avoiding substitution

of the term E for the variables x in the core term C . In particular, the first

expression is well-formed if E is a (well-formed) module expression, whereas the

second expression is well-formed only when E is a (well-formed) core expression.

As usual, in the following we will identify any pair of terms E1 and E2 s.t. E1
∼= E2;

more precisely, we will feel free to α-convert any term to avoid captures and clashes

of variables while applying either substitutions or reduction steps. For instance,

[x 7→ X; V 7→ y;]{y 7→ x} is identified with the term [z 7→ X; V 7→ x;]; indeed,

[x 7→ X; V 7→ y;]{y 7→ x} is not defined, since x would be captured. However,

[x 7→ X; V 7→ y;] ∼= [z 7→ X; V 7→ y;] and [z 7→ X; V 7→ y;]{y 7→ x} = [z 7→
X; V 7→ x;].

1.2 Reduction rules

The reduction rules for the untyped calculus are defined in figure 2.

Moreover, we assume the usual rule for contextual closure.

(ctx)
E1 → E2

IE[E1]→ IE[E2]

A one hole context IE[] is inductively defined by the following rules:

IE[] ::= [] | C[ρ[]] | [ι; o[]; ρ] | [ι; o; ρ[]] | IE[] + E | E + IE[] | σι |IE[]|σo |
freezeσf (IE[]) | IE[].X

o[] ::= X 7→ IE[], o

ρ[] ::= x 7→ IE[], ρ

By definition, the one step reduction relation → is the relation over well-formed

terms inductively defined by the rules in figure 2 plus the rule (ctx). For this reason,

we have omitted all side conditions ensuring well-formedness of terms, since those

are satisfied by definition.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

100 D. Ancona and E. Zucca

(core)
C

+→CC
′

C[ρ]→ C ′[ρ]

(sub)
C[x 7→ C ′[ρ1], ρ2]→ C{x 7→ C ′}[ρ1, ρ2]

(sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2]→ [ι1, ι2; o1, o2; ρ1, ρ2]

BV (E1) ∩ FV (E2) = ∅
BV (E2) ∩ FV (E1) = ∅
Ei = [ιi; oi; ρi], i = 1, 2

(reduct)
σι |[ι; o; ρ]|σo → [σι ◦ ι; o ◦ σo; ρ]

(freeze)
freezeσf ([ι1, ι2; o; ρ])→ [ι2; o; ρ, o ◦ σf ◦ ι1]

cod (ι2) ∩ dom(σf) = ∅

(selection)
[; o; xi

i∈I7→Ei].X → o(X){xj j∈I7→[;Y 7→ Ej; xi
i∈I7→Ei].Y }

Fig. 2. Reduction rules for the untyped calculus.

The equational theory is convertibility, that is, equality is the convertibility relation

↔ (the transitive reflexive symmetric closure of→); thanks to CR (proved in section

2) the relation ↔ can be characterized as follows: E1 ↔ E2 iff there exists E s.t.

Ei
∗→E, for i = 1, 2 (where

∗→ denotes the transitive reflexive closure of →).

Core. The definition of the reduction relation for the module calculus is parametric

in the one step reduction relation→C of the core; however, the rule uses the transitive

closure of→C (denotated by
+→C). This choice simplifies the proof of CR (see section

2), while retaining the same convertibility relation. Note that the rule can be applied

only when both C[ρ] and C ′[ρ] are well-defined, that is, ρ is well-defined and

assumptions (1) and (2) of section 1.1 hold for both terms. However, if we require

the core language to verify the following assumption, then the well-formedness of

C[ρ] clearly implies that of C ′[ρ].

Assumption 1.1

For any pair of core terms C and C ′, if C
+→CC

′, then FVC (C ′) ⊆ FVC (C).

Substitution. The (sub) rule applies an explicit substitution to a core term; note that,

since the right-hand side uses meta-level substitution at the core level, an explicit

substitution can be ‘applied’ only when a variable is substituted with a core term,

that is, a term of the form C[ρ]. As happens for the reduction rule (core), the

rule (sub) can be applied only when both C[x 7→ C ′[ρ1], ρ2] and C{x 7→ C ′}[ρ1, ρ2]

are well-defined. However, if we require the core language to verify the following

assumption, then the well-formedness of the term in the left-hand side clearly implies

that of the term in the right-hand side (after an appropriate α-conversion of the

left-hand side term, in order to have dom(ρ1) ∩ dom(ρ2) = ∅).
Assumption 1.2

For any pair of core terms C and C ′ and any variable x, FVC (C{x 7→ C ′}) ⊆
(FVC (C) \ {x}) ∪ FVC (C ′).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 101

Sum. The reduction rule for sum is straightforward; this operation simply has the

effect of gluing together two modules. However, particular attention is needed in

order to correctly apply this rule.

First, we have to pay attention that the free variables of one module are not

captured by the binders of the other (side condition). Furthermore, recall that

the reduction is defined only over well-formed terms, therefore the binders of one

module must be disjoint from those of the other (BV (E1) ∩ BV (E2) = ∅). These

two side conditions (both the explicit and the implicit) can always be satisfied by an

appropriate α-conversion.

For the same reason of well-formedness, the output components of the two

modules must be disjoint (dom(o1)∩dom(o2) = ∅); however, in this case the reduction

gets stuck since this conflict cannot be resolved by an α-conversion. The only way to

solve this problem is to explicitly rename the output components in an appropriate

way by means of the reduct operator (see below), thus changing the term.

The sets of the input components of the two modules can have a non empty

intersection and the resulting set of the input components of the sum is simply the

union of them; this means that the input components having the same name in the

two modules are shared in the resulting sum.

Finally, note that sum represents a very primitive way of assembling together two

modules, since it provides no way for inter-connecting their components (apart from

the fact that input components are shared2). This can be done only at a second

stage, after sum has been performed, by means of the freeze operator (see below). In

other words, sum corresponds to the ability of collecting pieces of unrelated code.

In the sequel we will consider also an alternative version of CMS with left

preferential sum ← instead of the (non preferential) sum operator presented in

figures 1 and 2; its reduction rule is defined as follows:

(left-sum)
[ι1; o1, o; ρ1]← [ι2; o2; ρ2]→ [ι1, ι2; o1, o2; ρ1, ρ2]

BV (E1) ∩ FV (E2) = ∅
BV (E2) ∩ FV (E1) = ∅
dom(o) ⊆ dom(o2)
Ei = [ιi; oi; ρi], i = 1, 2

Unlike a non-preferential sum, the expression E1 ← E2 can be reduced also when the

output components in E1 and E2 are not disjoint (that is, when o is not empty); in this

case the definitions in E2 override the definitions of the corresponding components

in E1. As happens for the rule (sum), the implicit condition dom(o1) ∩ dom(o2) = ∅
must be satisfied for the rule (left-sum) to be applicable.

Note that these two versions of sum cannot be expressed in terms of each other.

More precisely, for fixed modules E1 and E2, (E1 ← E2) can be expressed in terms

of the other operators: first restrict the exports of E1, then sum it with E2. However,

it is not possible to define an abstraction over arbitrary modules E1 and E2 that

performs a left sum, because an abstraction cannot know the overlap between the

exports of E1 and E2.

2 We could avoid implicit sharing of input components in the (sum) rule by requiring dom(ι1)∩dom(ι2) =
∅, thus forcing the user to make this sharing explicit by means of the reduct operator.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

102 D. Ancona and E. Zucca

However, in section 3 we will show that in typed CMS the left preferential sum

operator can be expressed in terms of the non preferential; more precisely, a family

of left sum operators can be expressed, one for each combination of module types.

Therefore, rather than considering a calculus having both operators, we prefer to

keep a minimal version. In the sequel, unless differently specified, by CMS we mean

the calculus with non preferential sum.

Reduct. The reduct operator performs a renaming of component names and does

not change the ρ-assignment and the variables of a module; its effect is simply a

composition of maps which can be correctly performed only if cod (ι) ⊆ dom(σι) and

cod (σo) ⊆ dom(o) (implicit side condition). This means that we allow a slightly more

general notion of map composition (the standard one would require cod (ι) = dom(σι)

and cod (σo) = dom(o)) where inclusions may be implicitly used.

This form of renaming turns out to be rather powerful: indeed, input and output

names are renamed independently, by specifying two renamings σι and σo, respec-

tively.3 The two renamings are contravariant for the same reason that a function

from A to B can be converted into a function from A′ to B′ whenever two conversion

functions from A′ to A and from B to B′ are provided.

Note that the two renamings can be non-injective and non-surjective. A non-

injective map σι allows sharing of input components, whereas a non-surjective one

is used for adding dummy (in the sense that no variable is associated with them)

input components; a non-injective map σo allows duplication of definitions, whereas

a non-surjective map is used for hiding output components.

As a final remark, note that the syntactic representation chosen for ι-assignments

is not suitable for expressing non-surjective maps, although composition of such

assignments with non-surjective renamings may produce non-surjective assignments.

Hence, we represent a non-surjective assignment by associating a fresh variable with

each input component which is not reached in ι. For instance, the term

{X,W }|[x 7→ X; Y 7→ x, Z 7→ 1;]|{Y }
reduces in one step to

[x 7→ X,w 7→W ; Y 7→ x;]

where w is a fresh variable.

Freeze. As already stated, the freeze operator is essential for binding input with

output components in order to accomplish inter-connection of modules. In other

words, freeze corresponds to the phase, typical of any linker, of external names

resolution which immediately follows the merge of the object files. However in this

case the resolution is neither implicit nor exhaustive. A renaming σf explicitly speci-

fies how resolution has to be performed, associating output to input components;

3 In the primitive calculus there exists no relationship between the names of the input and output
components and the fact that these two sets of names may not be disjoint has no semantic consequence;
we will consider later (section 4) how to encode in the calculus module systems with virtual, that is,
both input and output, components.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 103

furthermore, the domain of σf can be a proper subset of all input components of

the module so that resolution is partial.

The effect of applying the freeze operator is that all input components that are

resolved, represented by the set cod (ι1), disappear and all the deferred variables

mapped into them, represented by the set dom(ι1), become local.

These variables are associated with the definition of the output component to

which they are bound by σf , that is, o(σf (ι1(x)), for all x ∈ dom(ι1)). Recall that

the composition is well-defined if the following implicit side conditions are verified:

cod (ι1) ⊆ dom(σf) and cod (σf) ⊆ dom(o).

The explicit side condition just ensures that cod (ι1) actually contains all the input

components that have to be resolved and are specified by σf .

The deferred variables and the input components which are not resolved (repre-

sented by dom(ι2) and cod (ι2), respectively) and the o-assignment are not affected.

As an example, the module expression

freezeF 7→G([f 7→ F, k 7→ K; G 7→ E(f, k);])

reduces in one step to

[k 7→ K; G 7→ E(f, k); f 7→ E(f, k)]

where E(f, k) denotes an expression possibly containing the free variables f and k.

Selection. Finally, output components can be accessed from the outside by means of

the selection operator. Selection is legal only for modules where all input components

have been resolved (called concrete modules), hence, for all modules having an empty

ι-assignment. Furthermore, the selected component X must be in dom(o) (that is,

must be an output component of the module); this is an implicit side condition

ensuring o(X) to be well-defined.

Since definitions in modules can be mutually dependent, the expression corre-

sponding to the selected component may contain some (necessarily local) variables

{xi | i ∈ I} which have to be replaced with their corresponding definition. Therefore,

for each j ∈ I , the variable xj is replaced with the term [;Y 7→ Ej; xi
i∈I7→Ei].Y ,

which clearly reduces to the definition associated with xj in the module. Note that

recursion is obtained by propagating the ρ-assignment of E in the resulting term by

means of the substitution.

As an example, the module expression

[; G 7→ g; k 7→ E(k, g), g 7→ k].G

reduces in one step to

[; Y 7→ k; k 7→ E(k, g), g 7→ k].Y

1.3 Conservativity

We conclude this section by showing that every instantiation of CMS over a core

calculus CC corresponds to a conservative extension of CC .

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

104 D. Ancona and E. Zucca

Trivially, each closed core term C is naturally embedded in the module term C[].

Furthermore, the calculus is stratified: explicit substitutions allow core terms to

contain module terms, however if a term of form C[ρ] contains a module subterm

that does not reduce to a core term, then C[ρ] gets stuck since rule (sub) cannot be

applied; these kinds of terms will be ruled out in the typed version of the calculus

given in section 3.

On the other hand, if all module subterms Ei in C[ρ] reduce to a core term (that

is, a term of form Ci[ρi]), then it is easy to prove that, by iterating (sub) reduction

steps, we finally obtain a core term C ′[]. The further reduction of C ′[] is core

calculus dependent, but clearly we expect that the semantics of each core term in

the core calculus corresponds to the semantics of its embedding in CMS. This is

ensured by the following property:

Fact 1.3 (Conservativity 1)

For each pair of closed core terms C1 and C2 we have: C1[]→ C2[] iff C1
+→CC2.

Proof

⇒: the only applicable rule is (core).

⇐: just apply rule (core).

q

An analogous property for the static semantics is proved in section 3.

2 Church–Rosser property for CMS

Before proving CR for CMS we introduce some standard definitions and properties

on Term Rewriting Systems (TRSs) and Combinatory Reduction Systems (CRSs)

which will be used later on. For more technical details, we refer the reader elsewhere

(Klop, 1987; Klop et al., 1993).

2.1 Technical preliminaries

Definition 2.1

An Abstract Reduction System (ARS) is a pair <A, (→α)α∈I> consisting of a set

A and a sequence of binary relations →α on A, also called reduction or rewrite

relations.

If for a, b ∈ A we have (a, b) ∈→α we write a →α b. The reflexive, the transitive

reflexive and the transitive reflexive symmetric closures of →α are written
=→α,∗→α, ↔α, respectively. The composition →α ◦ →β is defined by a →α ◦ →β b if

a→α c→β b for some c ∈ A. The converse relation of →α is written ←α.

Definition 2.2

If →α and →β are reduction relations on A, we say that they commute if
∗←β ◦ ∗→α =

∗→α ◦ ∗←β .

We say that they strongly commute if ←β ◦ →α=
=→α ◦ =←β .

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 105

Fact 2.3

If →α and →β strongly commute, then they commute.

Definition 2.4

A reduction is Church-Rosser (or confluent) if
∗→ is self-commuting.

Theorem 2.5 (Hindley)

Let <A, (→α)α∈I> be an ARS s.t. for all α, β ∈ I , →α and →β commutes. Then the

union
⋃
α∈I →α is CR.

We refer to Klop (1987) and Klop et al. (1993) for the notions of Term Rewriting

System and of Combinatory Reduction System, respectively.

The following definitions and theorem on TRSs apply also to CRSs (by replacing

the word ‘variable’ with ‘meta-variable’).

Definition 2.6

A term is linear if it contains no multiple occurrences of the same variable. A TRS

is left-linear if each LHS of all its reduction rules is a linear term.

Definition 2.7

Let α → β and γ → δ be two rewrite rules s.t. α is unifiable with a non-variable

subterm of γ. Hence, there is a context IE[], a non-variable term t and a substitution

ρ s.t. γ = IE[t] and α{ρ} = t{ρ}; as a consequence, the term γ{ρ}(= IE[t]{ρ}) can be

reduced in two possible ways: IE[t]{ρ} → IE[β]{ρ} and γ{ρ} → δ{ρ}.
The pair <IE[β]{ρ}, δ{ρ}> is called a critical pair . If α → β and γ → δ are the

same rewrite rule, then we furthermore require that α is unifiable with a proper

non-variable subterm of γ(= α).

Definition 2.8

A critical pair <s, t> is called convergent if s and t have a common reduct.

Definition 2.9

A TRS is orthogonal if it is left-linear and there are no critical pairs.

Theorem 2.10

Every orthogonal TRS is CR.

Theorem 2.11

Let C1 and C2 be two left-linear CRSs defined on two disjoint alphabets. Then

C1 ∪ C2 is CR iff C1 and C2 are CR.

The proof of Theorem 2.11 can be found in Van Oostrom (1994, Theorem 3.4.29,

p. 126).

2.2 Proof of CR for CMS

To prove CR we need some (standard) assumptions over the core calculus (in

addition to Assumptions 1.1 and 1.2).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

106 D. Ancona and E. Zucca

Assumption 2.12

In the sequel we will consider instantiations of CMS over core languages satisfying

Assumptions 1.1 and 1.2 plus the following properties:

1. the alphabets of the core and the module calculus must be disjoint;

2. for any pair of variables x1 and x2 and core term C , C1 and C2, if x1 6∈ FVC (C2)

and x2 6∈ FVC (C1) then

C{x1 7→ C1}{x2 7→ C2} = C{x2 7→ C2}{x1 7→ C1};
3. for any pair of variables x1 and x2 and core term C , C1 and C2, if x2 6∈

FVC (C) \ {x1} then C{x1 7→ C1}{x2 7→ C2} = C{x1 7→ C1{x2 7→ C2}};
4. for any variable x and core term C , C1 and C2, if C1→CC2 then

C1{x 7→ C}→CC2{x 7→ C};
5. for any variable x and core term C , C1 and C2, if C1→CC2 then

C{x 7→ C1}→CC{x 7→ C2};
6. the reduction relation →C is CR.

Assumption 2.12.1 requires that the two calculi have different operator symbols.

Assumptions 2.12.2 and 2.12.3 ensure that substitution well-behaves w.r.t. composi-

tion. Assumptions 2.12.4 and 2.12.5 require the reduction relation →C to be closed

w.r.t. substitution and context application.

Lemma 2.13

Rules (core) and (sub) strongly commute.

Proof

By induction on the minimum of the depth of the two redexes. We underline the

redex in each reduction step when not coinciding with the whole term.

Basis. We distinguish the following cases:

1. Both (core) and (sub) redexes have depth 0, hence they coincide with the whole

term. Assuming that C1
+→CC2, we have the following two reductions:

C1[x 7→ C[ρ1], ρ2]→core C2[x 7→ C[ρ1], ρ2]

C1[x 7→ C[ρ1], ρ2]→sub C1{x 7→ C}[ρ1, ρ2]

Now clearly C2[x 7→ C[ρ1], ρ2] →sub C2{x 7→ C}[ρ1, ρ2]. Furthermore, by as-

sumption 2.12.4 C1{x 7→ C} +→CC2{x 7→ C}, therefore C1{x 7→ C}[ρ1, ρ2] →core

C2{x 7→ C}[ρ1, ρ2].

2. Only the (sub) redex has depth 0. The most significant sub-case is represented

by the following reductions, assuming that C1
+→CC2:

C[x 7→ C1[ρ1], ρ2]→core C[x 7→ C2[ρ1], ρ2]

C[x 7→ C[ρ1], ρ2]→sub C{x 7→ C1}[ρ1, ρ2]

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 107

Now clearly C[x 7→ C2[ρ1], ρ2] →sub C{x 7→ C2}[ρ1, ρ2]. Furthermore, by as-

sumption 2.12.5 C{x 7→ C1} +→CC{x 7→ C2}, therefore C{x 7→ C1}[ρ1, ρ2] →core

C{x 7→ C2}[ρ1, ρ2].

The sub-case where the (core) redex is in ρ1 is analogous, whereas the sub-case

where the (core) redex is in ρ2 is trivial.

3. Only the (core) redex has depth 0. Easy check.

Induction Step. Assume that for some term E, E ′ and E ′′ we have E →core E
′ and

E →sub E
′′ , where both redexes have depth greater than 0. Then we distinguish two

possible cases. If the redexes are disjoint then trivially there exists E′′′ s.t. E ′ →sub E
′′′

and E ′′ →core E
′′′. Otherwise the redexes are nested, therefore E can be decomposed as

E = IE1[E1], E1 = IE2[E2] for an appropriate non empty context IE1 and a (possibly

empty) context IE2 and terms E1, E2 s.t. E1 →core E
′
1, E2 →sub E

′
2 (or, equivalently, the

other way round) and E ′ = IE1[E ′1], E ′′ = IE1[IE2[E ′2]]. Therefore, since E1 →core E
′
1

and E1 = IE2[E2] →sub IE2[E ′2], by inductive hypothesis, there exists E ′′′ s.t. E ′1 →sub

E ′′′, IE2[E ′2] →core E
′′′. Finally, by context closure, E ′ = IE1[E ′1] →sub IE1[E ′′′] and

E ′′ = IE1[IE2[E ′2]]→core IE1[E ′′′]. q

Lemma 2.14

Rule (core) strongly self-commutes.

Proof

By induction on the minimum of the depth of the two redexes.

Basis. We distinguish the following cases:

1. Both redexes have depth 0, hence they coincide with the whole term. Assuming

that C1
+→CC2 and C1

+→CC3, we have the following two reductions:

C1[ρ]→core C2[ρ]

C1[ρ]→core C3[ρ]

Now, by Assumption 2.12.6, there exists a core term C4 s.t. C2
∗→CC4 and

C3
∗→CC4, therefore either C2[ρ] →core C4[ρ] or C2[ρ] = C4[ρ], and either

C3[ρ]→core C4[ρ] or C3[ρ] = C4[ρ].

2. Only one redex has depth 0. Easy check.

Induction Step. Analogous to proof of Lemma 2.13. q

Lemma 2.15

Rule (sub) strongly self-commutes.

Proof

By induction on the minimum of the depth of the two redexes.

Basis. We distinguish the following cases:

1. Both redexes have depth 0, hence they coincide with the whole term. We have

the following two reductions:

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

108 D. Ancona and E. Zucca

C[x1 7→ C1[ρ1], x2 7→ C2[ρ2], ρ3]→sub C{x1 7→ C1}[ρ1, x2 7→ C2[ρ2], ρ3]

C[x1 7→ C1[ρ1], x2 7→ C2[ρ2], ρ3]→sub C{x2 7→ C2}[x1 7→ C1[ρ1], ρ2, ρ3]

Applying (sub) once more we obtain

C{x1 7→ C1}[ρ1, x2 7→ C2[ρ2], ρ3]→sub C{x1 7→ C1}{x2 7→ C2}[ρ1, ρ2, ρ3]

C{x2 7→ C2}[x1 7→ C1[ρ1], ρ2, ρ3]→sub C{x2 7→ C2}{x1 7→ C1}[ρ1, ρ2, ρ3]

Now since we are assuming that C1[ρ1] and C2[ρ2] are well-defined we have

that FVC (C1) ⊆ dom(ρ1) and FVC (C2) ⊆ dom(ρ2).

Also, C{x1 7→ C1}[ρ1, x2 7→ C2[ρ2], ρ3] and C{x2 7→ C2}[x1 7→ C1[ρ1], ρ2, ρ3] are

well-defined, hence x2 6∈ dom(ρ1) and x1 6∈ dom(ρ2). Therefore x1 6∈ FVC (C2)

and x2 6∈ FVC (C1) and we can apply Assumption 2.12.2.

2. Only one redex has depth 0. The most significant sub-case is represented by

the following reductions:

C[x1 7→ C1[x2 7→ C2[ρ1], ρ2], ρ3]→sub C{x1 7→ C1}[x2 7→ C2[ρ1], ρ2, ρ3]

C[x1 7→ C1[x2 7→ C2[ρ1], ρ2], ρ3]→sub C[x1 7→ C1{x2 7→ C2}[ρ1, ρ2], ρ3]

Applying (sub) once more, we obtain

C{x1 7→ C1}[x2 7→ C2[ρ1], ρ2, ρ3]→sub C{x1 7→ C1}{x2 7→ C2}[ρ1, ρ2, ρ3]

C[x1 7→ C1{x2 7→ C2}[ρ1, ρ2], ρ3]→sub C{x1 7→ C1{x2 7→ C2}}[ρ1, ρ2, ρ3]

Now since we are assuming that the term C[x1 7→ C1[x2 7→ C2[ρ1], ρ2], ρ3]

is well-formed, we have that FVC (C) ⊆ {x1} ∪ dom(ρ3), whereas from the

fact that the term C{x1 7→ C1}[x2 7→ C2[ρ1], ρ2, ρ3] is well-formed, we deduce

dom(ρ3) ∩ ({x2} ∪ dom(ρ2)) = ∅ and, hence, x2 6∈ FVC (C) \ {x1}. Therefore, we

conclude by Assumption 2.12.3.

The sub-cases where the inner redex is in either ρ1 or ρ2 are trivial.

Induction Step. Analogous to proof of Lemma 2.13. q

Theorem 2.16

Under Assumption 2.12, CMS is CR.

Proof

Let CMS C denote the calculus consisting only of the rules (core) and (sub).

By Fact 2.3, Theorem 2.5 and Lemmas 2.13, 2.14 and 2.15 we have that CMSC is

CR.

Furthermore, let CMSM denote the calculus consisting of all the rules of CMS

except (core) and (sub). Trivially CMSM is an orthogonal CRS, therefore, by

Theorem 2.10, is CR.

Now, clearly CMS can be obtained as the disjoint union of the two left-linear

CRSs CMS C and CMSM , therefore we can conclude by Theorem 2.11. q

3 Typed CMS

In this section we address the problem of defining a type system for CMS. As

usual, we will prove that the reduction relation defined on the untyped calculus does

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 109

not get stuck on well-typed terms (progress property) and preserves types (subject

reduction property).

Since here we are mainly interested in type checking rather than in type inference

algorithms, the terms of the typed calculus are decorated with types so that they are

slightly different from those of the untyped calculus.

The types of the calculus are defined by

τ ::= cτ | [Xi:τi
i∈I; Xj:τj

j∈J]

A type is either a core type cτ (that is, a type of the core language) or a module

type [Xi:τi
i∈I; Xj:τj

j∈J], abbreviated by [Σι; Σo]. Clearly, we must assume that the

core calculus is typed.

For the sake of simplicity, we do not introduce recursive module types and

assume that core types are disjoint from module types. Recursive types are essential

for typing expressions like [; M 7→ m; m 7→ [; M 7→ m;]], where modules

have themselves as components; we leave to further work the ability of expressing

recursive module types (see the Conclusion).

Note that, according to the definition above, core types cannot be built on top of

module types, hence we are forcing the core and module language to be stratified

so that modules are not first-class values. See the Conclusion for a discussion about

this restriction.

A module type is a pair of signatures Σι and Σo. A signature is a list of pairs

consisting of a component name and a type. In the following we will identify all

signatures which represent the same set of pairs (that is, order and repetitions are

immaterial).

Intuitively, if a module M has type [Xi:τi
i∈I; Xj:τj

j∈J], then {Xi | i ∈ I} and

{Xj | j ∈ J} represent the sets of input and output components of M, respectively.

The type annotation Xi:τi says that the input (resp. output) component Xi can be

correctly bound to (resp. associated with) an expression of type τi.

A module type is well-formed if the two signatures Σι and Σo turn out to be

two maps from component names into well-formed types. This is formalized by the

judgment ` [Σι; Σo] defined by the following rules:

`̀Σι, `̀Σo

` [Σι; Σo]

` τi ∀ i ∈ I
`̀Xi:τii∈I

∀i, j ∈ I.Xi = Xj ⇒ τi = τj

C` cτ
` cτ

where
C` cτ is the corresponding judgment for well-formed types at the core level.

The expression Σ1,Σ2 denotes the union of the signatures Σ1 and Σ2; note that

this operation is not closed w.r.t. well-formed signatures. The other operators over

signatures (∩, \ and ⊆) which we use in the sequel are standard (and closed w.r.t.

well-formed signatures).

The syntax of the typed calculus is the same as that of the untyped version, apart

from basic modules where deferred and local variables are decorated with types:

[xi:τi
i∈I7→Xi; Xj

j∈J7→Ej; xk:τkk∈K7→Ek]
A typed basic module is well-formed if the type decoration is coherent in the sense

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

110 D. Ancona and E. Zucca

(var)
Γ ` x:τ

Γ(x) = τ

(core)
xi:cτi

i∈I C` C:cτ Γ ` Ei:cτi ∀i ∈ I
Γ ` C[xi

i∈I7→Ei]:cτ

(basic)

` [Xi:τi
i∈I; Xj:τj

j∈J]
Γ, xi:τi

i∈I∪K ` Ej:τj ∀ j ∈ J ∪K
Γ ` [xi:τi

i∈I7→Xi; Xj

j∈J7→Ej; xk:τkk∈K7→Ek]:[Xi:τii∈I; Xj:τj j∈J]

(sum)
` [Σι

1,Σ
ι
2; Σo

1,Σ
o
2], Γ ` E1:[Σι

1; Σo
1], Γ ` E2:[Σι

2; Σo
2]

Γ ` E1 + E2:[Σι
1,Σ

ι
2; Σo

1,Σ
o
2]

Σo
1 ∩ Σo

2 = ∅

(reduct)
Γ ` E:[Σι; Σo]

Γ ` σι |E|σo :[Σ′ι; Σ′o]
σι: Σι → Σ′ι

σo: Σ′o → Σo

(freeze)
Γ ` E:[Σf ,Σι; Σo]

Γ ` freezeσf (E):[Σι; Σo]

σf : Σf → Σo

Σf ∩ Σι = ∅

(selection)
Γ ` E:[; Xi:τi

i∈I]

Γ ` E.Xk:τk
k ∈ I

Fig. 3. Typing rules for the typed calculus.

that if xi1 :τi1 , xi2 :τi2 and ι(xi1) = ι(xi2) then τi1 = τi2 for any pair of deferred variables

xi1 , xi2 .

For instance, the module

[f:int → int 7→ F, k:int 7→ K; G 7→ λx:int .k ∗ f(x)[k 7→ k, f 7→ f];]

has type [F:int → int , K:int; G:int → int].

The typing rules for the typed calculus are defined in figure 3.

A context Γ is a finite (possibly empty) sequence of assignments of well-formed

types to variables where variable repetition is allowed. The predicate Γ(x) = τ is

inductively defined as follows:

• ∅(x) = τ is false for any variable x and type τ;

• (Γ, x:τ)(x′) = τ′ iff (x = x′ and τ = τ′) or (x 6= x′ and Γ(x′) = τ′).

In the following, we will use the auxiliary functions and predicates defined below.

• dom(∅) = ∅ and dom(Γ, x:τ) = dom(Γ) ∪ {x};
• Γ ⊆ Γ′ iff for all variables x, if Γ(x) = τ, then Γ′(x) = τ.

In the judgments we identify all contexts Γ and Γ′ s.t. Γ ⊆ Γ′ and Γ′ ⊆ Γ.

The (core) typing rule expresses the dependence from the core type system; the

core typing judgments have form Γ
C` C:cτ, where Γ is a context containing only

core types, C a core expression and cτ a core type.

The (sum) typing rule allows sharing of input components having the same name

and type, whereas the side condition prevents output components to be shared.

Note that the side condition Σo
1 ∩ Σo

2 = ∅ and the premise ` [Σι
1,Σ

ι
2; Σo

1,Σ
o
2] are

both needed to ensure that the domains of the two maps represented by Σo
1 and Σo

2,

respectively, are disjoint.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 111

The typing rule for the left preferential sum is the same as the typing rule (sum)

except for the absence of the side condition. However, differently to what happens

for the untyped calculus, in typed CMS the left preferential sum can be expressed

in terms of the non preferential. Indeed, the following property can be proved: for

any closed terms E1 and E2, if ∅ ` Ei:[Σι
i; Σo

i], for i = 1, 2, and ∅ ` E1 ← E2:τ, then

(E1 ← E2)↔ (E1|Σo
1\Σo

2
+ E2).

Note the difference between the expression

[; X 7→ x, Y 7→ x+ 1; x 7→ 1]|{Y } + [; X 7→ true;]

and the following expression (not in CMS) obtained from the former by making

component names and variables coincide:

[; X 7→ 1, Y 7→ X + 1;]|{Y } + [; X 7→ true;].

The former evaluates to a well-typed expression, but not the latter (an analogous

counter-example can be found in Riecke & Stone (1999); see also section 6).

The side conditions having form σ:Xi:τi
i∈I → Xj:τj

j∈J (see typing rules (reduct)

and (freeze)) ensure that the renaming σ preserves types; formally, this means that

σ: {Xi | i ∈ I} → {Xj | j ∈ J} and σ(Xi) = Xj ⇒ τi = τj for all i ∈ I , j ∈ J .

The reduction rules for the typed calculus are simply the rules of figure 2 annotated

with types.

As happens for the dynamic semantics, the static semantics of CMS is a conser-

vative extension of the core static semantics.

Fact 3.1 (Conservativity 2)

For each core context Γ, closed core term C and core type cτ we have: Γ ` C[]:cτ

iff ∅ C` C:cτ.

Proof

⇒: the only applicable rule is (core).

⇐: just apply rule (core) q.

To prove progress and subject reduction, we need some further (standard) as-

sumptions over the core language.

Assumption 3.2

In the following we will consider core languages satisfying the following additional

properties (besides Assumptions 1.1, 1.2 and 2.12).

1. (Substitution) If Γ1, x:cτ2

C` C1:cτ1, Γ2

C` C2:cτ2, and dom(Γ1) ∩ dom(Γ2) = ∅,
then Γ1,Γ2

C` C1{x 7→ C2}:cτ1.

2. (Progress) LetVC be a subset of core expressions called core values. If ∅ C` C:cτ

then either C ∈ VC or C→CC
′, for some C ′ ∈ EC .

3. (Subject Reduction) If C1→CC2 and Γ
C` C1:cτ then Γ

C` C2:cτ.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

112 D. Ancona and E. Zucca

Ev ::= Cv[] | (core value)

[ι; o; ρ] (module value)

Fig. 4. Values.

The following lemmas hold for CMS instantiated over core languages satisfying

Assumptions 3.2.

Lemma 3.3 (Weakening)

If Γ ` E:τ, then Γ′ ` E:τ for any context Γ′ s.t. Γ ⊆ Γ′.

Proof

Easy induction over the typing rules. q

Lemma 3.4 (Substitution)

If Γ, xi:τi
i∈I ` E:τ and Γ ` Ei:τi for all i ∈ I , then Γ ` E{xi i∈I7→Ei}:τ.

Proof

By induction over the height of the proof tree for Γ, xi:τi
i∈I ` E:τ.

Basis. Corresponds to the typing rule (var) and can be easily proved by definition

of substitution.

Induction Step. Corresponds to all the other typing rules. We consider only the less

obvious cases (basic) and (core).

• (basic): set E = [xi:τi
i∈I7→Xi; Xj

j∈J7→Ej; xk:τkk∈K7→Ek] and assume Γ, xl:τl
l∈L ` E:τ.

Then, by the premiss of the rule (basic), we have Γ′ ` Ej:τj for all j ∈ J ∪K ,

with

Γ′ = Γ, xl:τl
l∈L, xi:τi

i∈I∪K;

furthermore, by hypothesis, Γ ` El:τl for all l ∈ L. Now let L′ ⊆ L be s.t.

{xl | l ∈ L′} = {xl | l ∈ L} \ {xi | i ∈ I ∪K},
so that obviously E{xl l∈L7→El} = E{xl l∈L

′7→El} and Γ′ = Γ, xi:τi
i∈I∪K, xl:τl

l∈L′ . Then,

by inductive hypothesis, Γ, xi:τi
i∈I∪K ` Ej{xl l∈L

′7→El}:τj for all j ∈ J ∪K; therefore

we can apply (basic) and conclude by definition of substitution.

• (core): set E = C[yj
j∈J7→Ej] and assume Γ, xi:τi

i∈I ` E:cτ. Then, by the premises

of the (core) rule, we have yj:cτj
j∈J

C` C:cτ and Γ, xi:τi
i∈I ` Ej:cτj , for all

j ∈ J; furthermore, by hypothesis, Γ ` Ei:τi for all i ∈ I . Therefore, by

inductive hypothesis, Γ ` Ej{xi i∈I7→Ei}:cτj , for all j ∈ J , and by rule (core) we

can derive Γ ` C[yj
j∈J7→Ej{xi i∈I7→Ei}]:cτ. But, by definition, C[yj

j∈J7→Ej{xi i∈I7→Ei}] =

C[yj
j∈J7→Ej]{xi i∈I7→Ei}. q

To state the progress property, we have to define the set VE of values for CMS,

ranged over by Ev; of course, this set will be inductively defined on top of the set

VC of the core values, ranged over by Cv , as shown in figure 4.

It is easy to see that VE ⊆ EE; recall that, when no ambiguity arises, we simply

write C instead of C[] in module expressions.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 113

Lemma 3.5

For each Ev ∈ VE ,

• if ∅ ` Ev:cτ, then Ev is of the form Cv[];

• if ∅ ` Ev:[Σι; Σo], then Ev is of the form [ι; o; ρ].

Proof

Easy check. q

Theorem 3.6 (Progress)

If ∅ ` E:τ, then either E ∈ VE or E → E ′, for some E ′ ∈ EE .

Proof

The proof is by induction over the typing rules.

• (var): this case is vacuous since the metarule cannot be applied when Γ = ∅.
• (core): in this case E is of the form C[xi

i∈I7→Ei], for some C s.t. xi:cτi
i∈I

C` C:cτ

and Ei s.t. Γ ` Ei:cτi, for all i ∈ I .
If I = ∅ then by Assumption 3.2.2 either C ∈ VC , and therefore C[] ∈ VE ,

or C→CC
′, and therefore by reduction rule (core) C[]→ C ′[].

If I 6= ∅ then for an arbitrary i ∈ I and by inductive hypothesis either Ei ∈ VE ,

and therefore by Lemma 3.5 Ei is of the form Cv[] and reduction rule (sub)

can be applied, or Ei → E ′i and reduction rule (core) can be applied.

• (basic): in this case trivially E ∈ VE .

• (sum): in this case E is of the form E1 +E2, for some E1 s.t. Γ ` E1:[Σι
1; Σo

1], E2

s.t. Γ ` E2:[Σι
2; Σo

2] and either E1 6∈ VE or E2 6∈ VE , hence the thesis follows

by inductive hypothesis and by applying context closure, or E1, E2 ∈ VE ,

hence, by Lemma 3.5, E1, E2 are basic modules. In this case, the thesis follows

by applying the reduction rule (sum); note that the explicit side conditions

and the implicit side condition BV (E1) ∩ BV (E2) = ∅ can be always satisfied

by an appropriate α-conversion, while the side condition dom(ι1)∩dom(ι2) = ∅
is implied by the side conditions of the typing rule (sum).

• (reduct): in this case E is of the form σι|E ′|σo , for some E ′ s.t. Γ ` E ′:[Σι; Σo],

σι: Σι → Σ′ι, σo: Σ′o → Σo and either E ′ 6∈ VE , hence the thesis follows by

inductive hypothesis and by applying context closure, or E ′ ∈ VE , hence, by

Lemma 3.5, E ′ = [ι; ov; ρv]. In this case, the thesis follows by applying the

reduction rule (reduct); note that the implicit side conditions cod (ι) ⊆ dom(σι)

and cod (σo) ⊆ dom(o) are implied by the side conditions of the typing rule

(reduct).

• (freeze): in this case E is of the form freezeσf (E ′), for some E ′ s.t. Γ `
E ′:[Σf ,Σι; Σo], σf : Σf → Σo, Σf ∩Σι = ∅, and either E ′ 6∈ VE , hence the thesis

follows by inductive hypothesis and by applying context closure, or E ′ ∈ VE ,

hence, by Lemma 3.5, E ′ = [ι; ov; ρv]. In this case, the thesis follows by

applying the reduction rule (freeze); note that it is possible to decompose ι as

ι1, ι2 s.t. cod (ι1) = dom(σf), hence the explicit side condition and the implicit

side conditions cod (ι1) ⊆ dom(σf) and cod (σf) ⊆ dom(o) are implied by the

side conditions of the typing rule (freeze).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

114 D. Ancona and E. Zucca

• (selection): in this case E is of the form E ′.Xk , for some E ′ s.t.

Γ ` E ′:[; Xi:τi
i∈I], k ∈ I , and either E ′ 6∈ VE , hence the thesis follows by

inductive hypothesis and by applying context closure, or E ′ ∈ VE , hence, by

Lemma 3.5, E ′ = [; ov; ρv]. In this case, the thesis follows by applying the

reduction rule (selection). q

Theorem 3.7 (Subject Reduction)

If E → E ′ and Γ ` E:τ, then Γ ` E ′:τ.
Proof

The proof is by induction over the reduction rules.

• (core): in this case we have that E and E ′ are of the form C[xi
i∈I7→Ei] and

C ′[xi
i∈I7→Ei], respectively, and C

+→CC
′ (otherwise the reduction rule would not

be applicable); furthermore, the judgment Γ ` E:cτ can be derived only by

applying the type rule (core), therefore we have xi:cτi
i∈I

C` C:cτ and Γ ` Ei:cτi,
for all i ∈ I . Therefore, by Assumption 3.2.3, xi:cτi

i∈I
C` C ′:cτ and, by rule

(core), we derive Γ ` C ′[xi i∈I7→Ei]:cτ.
• (sub): in this case E and E ′ are of the form C[x 7→ C ′[xi

i∈I7→Ei], xj j∈J7→Ej] and

C{x 7→ C ′}[xkk∈I∪J7→ Ek], respectively, with I ∩ J = ∅; furthermore, the judgment

Γ ` E:cτ can be derived only by applying the type rule (core), hence, the

following judgments must be valid: x:cτx, xj:cτj
j∈J

C` C:cτ, Γ ` C ′[xi i∈I7→Ei]:cτx
and Γ ` Ej:cτj , for all j ∈ J . Similarly, from the validity of Γ ` C ′[xi i∈I7→Ei]:cτx
we have xi:cτi

i∈I
C` C ′:cτx and Γ ` Ei:cτi, for all i ∈ I . Note that, since E ′

is a well-formed term, we have that {xi | i ∈ I} ∩ {xj | j ∈ J} = ∅, hence,

by Assumption 3.2.1 we have xk:cτk
k∈I∪J

C` C{x 7→ C ′}:cτ. Finally, by type rule

(core), using the hypotheses xk:cτk
k∈I∪J

C` C{x 7→ C ′}:cτ and Γ ` Ek:cτk , for all

k ∈ I ∪ J , we derive Γ ` C{x 7→ C ′}[xkk∈I∪J7→ Ek]:cτ.

• (sum): in this case E has form E1 + E2, with

En = [xin:τin
in∈In7→Xin; Xjn

jn∈Jn7→Ejn ; xkn:τkn
kn∈Kn7→ Ekn],

for n = 1, 2 (assuming I1 ∩ I2 = ∅, J1 ∩ J2 = ∅ and K1 ∩ K2 = ∅), whereas

E ′ has form [xi:τi
i∈I1∪I27→ Xi; Xj

j∈J1∪J27→ Ej; xk:τk
k∈K1∪K27→ Ek]. Since the judgment Γ `

E:[Σι
1,Σ

ι
2; Σo

1,Σ
o
2] can be derived only by applying the type rule (sum), we

have ` [Σι
1,Σ

ι
2; Σo

1,Σ
o
2], Γ ` E1:[Σι

1; Σo
1] and Γ ` E2:[Σι

2; Σo
2]. Similarly,

from the validity of Γ ` En:[Σι
n; Σo

n], for n = 1, 2, since the only applicable

rule is (basic), we have Γ, xi:τi
i∈In∪Kn ` Ej:τj , for all j ∈ Jn ∪ Kn and n = 1, 2.

Furthermore, since E ′ is well-formed, we have that {xii∈I1∪K1} ∩ {xii∈I2∪K2} = ∅,
therefore, by Lemma 3.3, we deduce Γ′ ` Ej:τj , for all j ∈ J1∪J2∪K1∪K2, with

Γ′ = Γ, xi:τi
i∈I1∪I2∪K1∪K2 . From these last judgments and from ` [Σι

1,Σ
ι
2; Σo

1,Σ
o
2],

by virtue of type rule (basic), we deduce Γ ` E ′:[Σι
1,Σ

ι
2; Σo

1,Σ
o
2].

• (reduct): in this case E and E ′ have form σι|[ι; o; ρ]|σo and [σι ◦ ι; o ◦ σo; ρ],

respectively. Since the judgment Γ ` E:[Σ′ι; Σ′o] can be derived only by

applying the type rule (reduct), we have that Γ ` [ι; o; ρ]:[Σι; Σo]. Similarly,

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 115

from the validity of Γ ` [ι; o; ρ]:[Σι; Σo], since the only applicable typing

rule is (basic), we have ` [Xi:τi
i∈I; Xj:τj

j∈J] and Γ, xi:τi
i∈I∪K ` Ej:τj for all

j ∈ J ∪K . Since [Xi:τi
i∈I; Xj:τj

j∈J] (corresponding to [Σι; Σo]) is well-formed

and σι and σo preserve types (by virtue of the side condition of the type

rule (reduct)), we can easily deduce the validity of ` [Σ′ι; Σ′o]. Furthermore,

if σι is not surjective, we have dom(σι ◦ ι) = dom(ι) ∪ {xm | m ∈ M}, where

{xm | m ∈ M} is a set of fresh new dummy variables. Hence, by Lemma 3.3,

we have Γ, xi:τi
i∈I∪K, xm:τm∈M ` Ej:τj for all j ∈ J ∪ K , where τ can be any

well-formed type, and we can conclude by applying the type rule (basic).

• (freeze): in this case E and E ′ have form freezeσf ([ι1, ι2; o; ρ]) and [ι2; o;

ρ, o ◦ σf ◦ ι1], respectively, with cod (ι2) ∩ dom(σf) = ∅. Since the judgment

Γ ` E:[Σι; Σo] can be derived only by applying the type rule (freeze), we have

that Γ ` [ι1, ι2; o; ρ]:[Σf ,Σι; Σo].

Similarly, from the validity of Γ ` [ι1, ι2; o; ρ]:[Σf ,Σι; Σo], by applying

type rule (basic), we have ` [Xi:τi
i∈I; Xj:τj

j∈J] and Γ, xi:τi
i∈I∪K ` Ej:τj for all

j ∈ J∪K . Now set Im = dom(ιm), for m = 1, 2 (clearly I1∪I2 = I and I1∩I2 = ∅).
Since [Xi:τi

i∈I; Xj:τj
j∈J] is well-formed, we have that [Xi:τi

i∈I2 ; Xj:τj
j∈J∪I1] is

well-formed, too. Furthermore, since σf preserves types by the side condition of

the type rule (freeze), we have that for all i1 ∈ I1 and j ∈ J , if (ρ, o◦σf ◦ι1)(xi1) =

o(σf (Xi1)) = Ej , then τi1 = τj , therefore we can conclude by virtue of the type

rule (basic).

• (selection): in this case E and E ′ have form

[; o; xi
i∈I7→Ei].X and o(X){xj j∈I7→[;Y 7→ Ej; xi

i∈I7→Ei].Y },
respectively. Since the judgment Γ ` E:τk can be derived only by applying

the type rule (selection), we have that Γ ` [; o; xi
i∈I7→Ei]:[; Xi:τi

i∈I]. Sim-

ilarly, from the validity of Γ ` [; o; xi
i∈I7→Ei]:[; Xi:τi

i∈I], since the only

applicable typing rule is (basic), we have ` [; Xi:τi
i∈I] and Γ, xi:τi

i∈I ` Ei:τi
for all i ∈ I (in particular, we have Γ, xi:τi

i∈I ` o(X):τk). From these judg-

ments we can derive Γ ` [;Y 7→ Ej; xi
i∈I7→Ei]:[; Y :τj], for all j ∈ I , by

the type rule (basic), and, then, Γ ` [;Y 7→ Ej; xi
i∈I7→Ei].Y :τj , for all j ∈ I ,

by the type rule (selection). Therefore, by Lemma 3.4, we conclude that

Γ ` o(X){xj j∈I7→[;Y 7→ Ej; xi
i∈I7→Ei].Y }:τk .

• (ctx): all cases can be easily proved by inductive hypothesis. q

4 A derived calculus of module systems

The calculus CMS presented in the preceding sections is designed to be both pow-

erful enough for expressing a variety of composition operators on modules, and as

simple as possible. Indeed, there are only three module combinators (selection plays

a different role, as explained in section 1.1) which correspond to three very primitive

ways of manipulating modules: gluing together two modules (sum), renaming com-

ponents in an arbitrary way (reduct) and binding input with output components to

accomplish inter-connection (freeze).

While this minimal version of the calculus is the best choice from a theoretical

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

116 D. Ancona and E. Zucca

point of view, e.g., for proving properties, the power of the calculus in terms of

language design is much better illustrated by defining a derived calculus DCMS

whose set of operators is larger and closer to constructs of concrete programming

languages than that of CMS, but can be encoded in CMS in a very simple way (see

figure 6 below). We present an abridged formal definition of DCMS, full details can

be found in Ancona (1998, Chapter 4).

The calculus DCMS defines, on top of a generic core language, a language of

mutually dependent modules allowing redefinition of components (overriding), also

called mixin modules (Bracha, 1992; Ancona & Zucca, 1998b). In a language sup-

porting mixin modules, the programmer can write open (that is, mutually depending

on others) code fragments which can be type-checked and compiled separately.

Moreover, it is possible to derive from existing ones new code fragments which

extend and possibly modify behavior, as happens for heir classes with respect to

their parents in the object-oriented approach, but in a more symmetric manner.

The advantages of this approach are clear; for an extended illustration we refer to

Bracha (1992), where the notion of mixin-based programming in the general context

of module composition was introduced for the first time.

Technically speaking, there are two main novelties in DCMS with respect to CMS :

first, operators behave in a name-driven manner (that is, binding between components

is implicitly determined by equality of their names); second, components defined in

a module are further divided into two classes: virtual and frozen components.

The possibility of defining virtual components is the generalization to arbitrary

modular languages of a key idea of the object-oriented approach, that is, the ability

of writing modules (classes) where components (methods) are simultaneously ready

to be used via selection (that is, are output components), and can be modified

in a way that changes the behavior of the components referring to them (that is,

are input components). This is sometimes called the open-closed property of the

object-oriented approach. We say that a module language supports mixin modules

(or simply mixins) if it provides both mutual recursion and virtual components.

Note that, according to this terminology, traditional object-oriented languages, even

though methods of a parent and an heir class can refer to each other (hence there

is mutual recursion) do not support mixins since an heir class cannot be used as

a real module in the sense of the two principles mentioned in the Introduction,

since it relies on a fixed parent class. Extensions of object-oriented languages with

mixins (also called mixin classes or parametric heir classes in this case) are proposed

elsewhere (Bracha & Griswold, 1996; Flatt et al., 1998; Bono et al., 1999; Ancona

et al., 2000).

To illustrate the difference between virtual and frozen components, let us introduce

some syntactic sugar for DCMS basic modules (for simplicity we consider the

untyped version):

import X1 as x1, . . . , Xm as xm
export virtual V1 = E1 as v1, . . . , Vn = En as vn
export frozen F1 = E ′1, . . . , Fp = E ′p
local y1 = E ′′1 , . . . , yp = E ′′q

As shown above, in a DCMS basic module the import and local parts are as in

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 117

CMS but the exports are split in two parts, a frozen part which has the same form

of the export part in CMS and a virtual part where a component declaration has

the form V = E as v. This can be considered as an abbreviation for both V = E

and V as v.

As an example, consider the following concrete module M1, where we consider

integer expressions as part of the core language:

module M1 is

export virtual V = 2 as v

export frozen F = f, Sum = v + f

local f = 3

end M1;

This module, being concrete, can be effectively used; for instance the Sum component

can be selected, obtaining 5. However, we can modify the definition of the virtual

component, combining M1 with another module M2 defined, for example, as follows:

module M2 is

export virtual V = 4 as v

end M2;

by means of a left-preferential link operator, denoted by ⇐. In the resulting module

M1⇐M2 selecting the Sum component would produce 7. On the contrary, if we override

the F component by combining M1 with M3 defined as follows:

module M3 is

export frozen F = f

local f = 4

end M3;

then in the resulting module M1⇐M3 the component Sum still evaluates to 5, since its

definition always refers to the original value of F.

As shown by the example, a module with virtual components has, intuitively,

two different semantics: an open semantics as a function, which is needed when the

module is extended via overriding, and a closed semantics (the fixed point of the

function), which is needed when the module is used via selection of a component. In

Ancona & Zucca (1998b), we have provided a categorical denotational semantics for

modules with virtual components based on this idea, originally due to Cook (1989)

and Reddy (1988). The notion of virtual/frozen component is clearly independent

of (even though inspired by) object-oriented programming and can be applied (in

principle) to any module language. For a more comprehensive treatment of this

subject we refer to Bracha (1992), where this notion was introduced for the first

time, and Ancona (1998).

Virtual components of DCMS can be easily encoded in pure CMS by allowing a

component name to appear both in the input and output assignment. For instance,

the module M1 is represented by

[v 7→ V ; V 7→ 2 ,F 7→ f , Sum 7→ v + f ; f 7→ 3]

Of course, component selection in DCMS cannot directly be expressed by the

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

118 D. Ancona and E. Zucca

(basic)

` [Σι; Σvo; Σfo]

Γ, xi:τi
i∈I∪V∪K ` Ej:τj ∀ j ∈ V ∪ F ∪K

Γ` [xi:τi
i∈I7→Xi; xv:τv

v∈V7→Xv

v∈V7→Ev;Xf

f∈F7→Ef; xk:τkk∈K7→Ek]:[Σι; Σvo; Σfo]

Σι=Xi:τi
i∈I

Σvo =Xv:τv
v∈V

Σfo =Xf :τf
f∈F

(link)

` [Σι; Σvo
1 ,Σ

vo
2 ; Σfo

1 ,Σ
fo
2]

Γ ` Ei:[Σι
i; Σvo

i ; Σfo
i] ∀ i ∈ 1..2

Γ ` E1 ⊕ E2:[Σι; Σvo
1 ,Σ

vo
2 ; Σfo

1 ,Σ
fo
2]

(Σvo
1 ,Σ

fo
1) ∩ (Σvo

2 ,Σ
fo
2) = ∅

Σι = (Σι
1 \ (Σvo

2 ,Σ
fo
2)), (Σι

2 \ (Σvo
1 ,Σ

fo
1))

(freeze)
Γ ` E:[Σι; Σvo; Σfo]

Γ ` freezeΣf (E):[Σι; Σvo
1 ; Σfo

1]

Σf ⊆ (Σvo ,Σfo)

Σvo
1 = Σvo \ Σf

Σfo
1 = (Σfo ,Σf)

(restrict)
Γ ` E:[Σι; Σr ,Σvo; Σfo]

Γ ` restrictΣr (E):[Σr ,Σι; Σvo; Σfo]
Σr ∩ Σvo = ∅

(hide)
Γ ` E:[Σι; Σvo; Σfo]

Γ ` hideΣh (E):[Σι; Σvo
1 ; Σfo

1]

Σh ⊆ (Σvo ,Σfo)

Σvo
1 = Σvo \ Σh

Σfo
1 = Σfo \ Σh

(selection)
Γ ` E:[; Xv:τv

v∈V ; Xf:τf
f∈F]

Γ ` E •Xi:τi
i ∈ V ∪ F

Fig. 5. Typing rules for the DCMS language.

selection operator of CMS, since we first need to take the closed semantics of the

module; for instance, selection of Sum in M1 is encoded by freezeV 7→V (M1).Sum .

We give now the formal definition of the derived calculus DCMS.

The typing rules of the language are defined in figure 5.

Roughly speaking, a DCMS basic module [ι; vo; fo; ρ] corresponds to a CMS

basic module [ι; o; ρ] where the o-assignment has been split into two assignments

vo and fo, corresponding to the virtual and frozen components of the module,

respectively. More precisely, whereas fo is actually an o-assignment (that is, a map

from component names into expressions), vo is of the form xv:τv
v∈V7→Xv

v∈V7→Ev , where xv
is the variable used for referring to the virtual component Xv inside the module; the

notation is an abbreviation for xv 7→ Xv,Xv 7→ Ev suggesting that virtual components

are both imported and exported. The implicit conditions for well-formed terms are

all inherited from CMS in the obvious way (in particular, note that in a well-formed

assignment xv:τv
v∈V7→Xv

v∈V7→Ev the names Xv are distinct for all v ∈ V).

Correspondingly, a module type is a triple [Σι; Σvo; Σfo] where Σvo and Σfo

represent the virtual and frozen components, respectively. Another difference is that

in DCMS there exists a unique name space for module components, therefore the

rules for well-formed types is as follows:

`̀Σι,Σvo ,Σfo

` [Σι; Σvo; Σfo]
Σι ∩ Σvo = ∅, Σι ∩ Σfo = ∅, Σvo ∩ Σfo = ∅

The link operator corresponds to that informally defined in the Introduction,

where the binding between imported components of one argument and exported

(either virtual or frozen) components of the other is implicitly determined by their

names, with moreover the requirement that the kind (either virtual or frozen)

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 119

(basic)
Γ ` [ι; vo; fo; ρ]:[Σι; Xv:τv

v∈V ; Σfo]

Γ ` �[ι; vo; fo; ρ]� = [ι, xv:τv
v∈V7→Xv; Xv

v∈V7→Ev, fo; ρ]
vo = xv:τv

v∈V7→Xv
v∈V7→Ev

(link)

Γ ` Ei:[Σι
i; Σvo

i ; Σfo
i] ∀ i ∈ 1..2

Γ ` �Ei� = E ′i ∀ i ∈ 1..2

Γ ` E1 ⊕ E2:[Σι; Σvo; Σfo]

Γ ` �E1 ⊕ E2� = freezeσ(E
′
1 + E ′2)

σ:Σfo ∩ (Σι
1,Σ

ι
2) ↪→ (Σvo ,Σfo)

(freeze)

Γ ` �E� = E ′
Γ ` freezeΣf (E):[Σι; Σvo; Σfo]

Γ ` �freezeΣf (E)� = freezeσ(E ′)
σ:Σf ↪→ (Σvo ,Σfo)

(restrict)

Γ ` E:[Σι; Σvo; Σfo]

Γ ` �E� = E ′
Γ ` restrictΣr (E):τ

Γ ` �restrictΣr (E)� = E ′ |(Σvo ,Σfo)\Σr

(hide)

Γ ` E:[Σι; Σvo; Σfo]

Γ ` �E� = E ′
Γ ` hideΣh (E):τ

Γ ` �hideΣh (E)� = freezeσ(E ′)|(Σvo ,Σfo)\Σh

σ:Σh ∩ Σvo ↪→ Σvo

(selection)

Γ ` E:[; Σvo; Σfo]

Γ ` �E� = E ′
Γ ` E •X:τ

Γ ` �E •X� = freezeσ(E ′).X
σ:Σvo ↪→ (Σvo ,Σfo)

Fig. 6. Translation of DCMS into CMS.

of exported components must be preserved. Note that this operator returns a

concrete module only if each imported component of E1 is mapped into an exported

component of E2 and conversely.

Even though the link operator looks very natural as a way of assembling modules,

there are few examples of concrete module languages which support this operator,

allowing in practice mutually recursive definitions of modules. The proposal which

more directly uses an analogous operator is that of units for MzScheme (Flatt

& Felleisen, 1998); other proposals include Duggan and Sourelis’s (Duggan &

Sourelis, 1996) proposed addition to SML, the language of object files MTAL

GlewMorrisett99, and the theoretical analysis in (Crary et al., 1999); see Section 7

for a comparison.

The freeze operator changes virtual into frozen components, the restrict operator

changes virtual into imported components, and the hide operator hides exported

(both virtual and frozen) components.

The selection operator, as in CMS, is used for referring to a exported (either

virtual or frozen) component of a concrete module.

The semantics of DCMS is given by translation into CMS (see figure 6). The

translation needs an environment Γ since some type information must be recovered

in order to give a correct translation. The notation Γ ` �E� = E′ means that in

Γ the DCMS expression E is well-typed and translates into the CMS expression E ′.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

120 D. Ancona and E. Zucca

Finally, the left preferential link can be expressed in terms of the non preferential

link operator, in a similar way the left preferential sum can be expressed in terms

of the non preferential sum (as shown in section 3).

Γ ` Ei:[Σι
i; Σvo

i ; Σfo
i] ∀ i ∈ 1..2

Γ ` �hideΣvo∪Σfo (E1)⊕ E2� = E

Γ ` �E1 ⇐ E2� = E

Σvo = Σvo
1 ∩ Σvo

2

Σfo = Σfo
1 ∩ Σfo

2

An extended presentation of how to translate various overriding operators, includ-

ing the super mechanism, in a module language supporting the three basic operators

of sum, reduct and freeze can be found in Ancona & Zucca (1997).

5 Expressive power of the calculus

In this section we analyze the expressive power of CMS by considering two trans-

lations into CMS, the first from the lambda-calculus (5.1), the second from the

Abadi–Cardelli calculus (5.2). In particular, the first translation shows how para-

metric modules can be encoded in CMS, whereas the second sheds some light on

the difference between the notion of module and object. For sake of brevity, we

omit here the formal definition of the first translation which was already detailed in

Ancona & Zucca (1999).

5.1 Parametric modules and a translation for the λ-calculus

Module systems like those of Standard ML (Milner et al., 1990) or Objective Caml

(Leroy, 2000) are based on the idea of designing the module language as a small

applicative language of its own. Hence, modules are of two kinds: constant modules

(structures in ML terminology), which can be seen in our calculus as basic modules

without input components, and functions from modules into modules (functors in

ML terminology), which can be seen in our calculus as basic modules whose input

components are the expected components of the structure which is the parameter of

the functor and output components are those defined by the functor itself. In these

module systems, the only significant operation for composing modules is function

application.

Parametric modules can be easily simulated by CMS-like modules, following the

guideline provide by the translation from λ-calculus into CMS (both in the untyped

version) defined in Ancona & Zucca (1999).

Denoting by �e� the translation of a λ-term e, we have that the α- and β-rules

are valid under the translation.

Proposition 5.1

Let
α,β→ denotes the reduction relation over λ-terms defined by the α- and β-rules (no

η-rule). Then, for each λ-term, if e
α,β→ e′ and �e�→ e′′, then �e′� ↔ e′′.

The proof can be found in Ancona & Zucca (1999).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 121

(var) �x� = x

(object) �[li = ς(xi)bi
i∈1..n]� = [xi

i∈1..n7→Self ; li
i∈1..n7→�bi�;]

(selection) �a.l� = freezeSelf 7→Self (�a�+ [; Self 7→ �a�;]).l

(update) �a.l := ς(x)b� =�a�← [x 7→ Self ; l 7→ �b�;]

Fig. 7. Translation of the Abadi–Cardelli object calculus into the module calculus.

5.2 Object-oriented features and a translation for the Abadi–Cardelli calculus

In the previous section we have considered languages supporting mixins , which, as

already remarked, are not necessarily object-oriented.

For this reason, in this section we focus on a pure object-oriented language,

more precisely, the Abadi–Cardelli object calculus (ACC) as defined in of Abadi &

Cardelli (1996, Chap. 6), to study a formal translation from a pure object-oriented

language into CMS.

One of the most peculiar object-oriented features not directly supported by CMS

is the ability to refer to what is usually called the self object (or simply self), which

is essential when an object is either returned as a result or passed as a parameter in

the body of one of its methods.

For dealing with self we use the standard translation of methods into functions,

see, for example, Abadi & Cardelli (1996), where a method with n parameters is

translated into a function with n + 1 parameters, the first corresponding to self .

Therefore a method invocation of the form a.m(x1, . . . , xn) is translated into the

function application m(a, x1, . . . , xn). Following this idea and recalling that functions

can be easily encoded in our language (see the preceding section), we obtain the

translation from ACC into CMS given in figure 7.

For reasons of space, we consider only the untyped case; the translation for the

typed calculus is analogous. However, note that, in the untyped case, for correctly

translating the update construct we need the left preferential sum, whereas in the

typed case it is possible to use also the (non preferential) sum operator, for the

reasons already explained in section 3.

For the sake of simplicity, and without any loss of generality we assume that

the name Self does not belong to the set of method names, for each expression of

the form a = [li = ς(xi)bi
i∈1..n] all variables xi, for i ∈ 1..n, are distinct and the free

variables4 in a do not belong to {x1, . . . , xn}.
The following proposition shows that the equational theory of the object calculus is

preserved under the translation; see Abadi & Cardelli (1996) for the ACC reduction

rules.

Proposition 5.2

Let
acc→ denote the reduction relation for ACC. Then, for each ACC-term a, if a

acc→ b

and �a�→ b′, then �b�↔ b′.

4 Note that xi may be free in bj , for some i, j ∈ 1..n.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

122 D. Ancona and E. Zucca

Proof

Let o denote the object [li = ς(xi)b
i∈1..n
i]. Then if k ∈ 1..n we have that o.lk reduces

to bk[xk 7→ o]. By induction on the structure of ACC -terms we can easily prove

that �bk[xk 7→ o]� ≡ �bk�[xk 7→ �o�]. In the other direction, o.lk can be

directly translated into freezeSelf 7→Self (�o�+ [; Self 7→ �o�;]).lk , where�o� =

[xi
i∈1..n7→Self ; li 7→ �bi�i∈1..n;].

Recalling that by assumption Self 6= li for all i ∈ I and applying rules (sum) and

(freeze) we obtain [; li
i∈1..n7→�bi�; xi

i∈1..n7→�o�].lk .

Then, by rule (selection), the term reduces to�bk�[xi
i∈1..n7→Ei.Y] which is syntactically

equal to �bk�[xk 7→ Ek.Y], by our hypothesis on the free variables of o. Since by

definition Ek = [; Y 7→ �o�; xi
i∈1..n7→�o�] and Ek.Y reduces to �o�[xi

i∈1..n7→Ei.Y],

which is syntactically equal to �o�, we can deduce that �o� ↔ Ek.Y and, by

congruence, �bk�[xk 7→ Ek.Y]↔�bk�[xk 7→ �o�].

For object update, we have that the the term o.lk := ς(y)b reduces to

[lk = ς(y)b, li = ς(xi)b
i∈(1..n)\{k}
i], which is translated into [xi

i∈1..n7→Self ; lk 7→ �b�, li 7→
�bi�i∈(1..n)\{k};]. In the other direction, o.lk := ς(y)b can be directly translated

into �o� ← [y 7→ Self ; lk 7→ �b�;] which reduces again to [xi
i∈1..n7→Self ; lk 7→

�b�, li 7→ �bi�i∈(1..n)\{k};]. q

As further illustration of this translation, let us show a small example. Consider

the object Counter defined by

Counter = [val = 0, inc = ς(s)s.val := s.val + 1].

The method val returns the current value of the counter, whereas inc returns the

counter itself where its value has been incremented by one.

The encoding of Counter is given by the module defined by

C = [s 7→ Self ;

Val 7→ 0,

Inc 7→ (s← [; Val 7→ freezeSelf 7→Self (s+ [; Self 7→ s;]).Val + 1;]);]

The deferred variable s corresponds to the ς-variable of method5 Inc. The term

s ← [; Val 7→ freezeSelf 7→Self (s+ [; Self 7→ s;]).Val + 1;] is the translation of

s.val := s.val + 1.

Since C is an open module, because of the input component Self , it must be closed

before selecting an output component; in other words we have to use the translation

rule (selection) in figure 7. Therefore, the method invocation Counter .inc.val is

translated into the term

freezeSelf 7→Self (C ′ + [; Self 7→ C ′;]).Val

with C ′ = freezeSelf 7→Self (C + [; Self 7→ C;]).Inc

which reduces, as expected, to 1.

5 Since the method Val is constant we have omitted its ς-variable.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 123

6 Adding subtyping to CMS

At first glance it seems that the type system defined in figure 3 can be easily improved

by adding the subsumption rule, with the following definition of subtyping relation

between module types:

` [Xi:τi
i∈I; Xj:τj

j∈J]

` [Xk:τ
′
k
k∈K; Xl:τ

′
l
l∈L]

τ′i 6 τi ∀i ∈ I, τl 6 τ′l ∀l ∈ L
[Xi:τii∈I; Xj:τj j∈J] 6 [Xk:τ

′
k
k∈K; Xl:τ

′
l
l∈L]

I ⊆ K,L ⊆ J
This definition of subtyping is standard; we can safely replace a module by another

having less input and more output components; subtyping is covariant for output

components and contravariant for input components.

Unfortunately, just adding the subsumption rule makes the type system unsound.

To see this, consider the term E = [; Y 7→ 1;]+[; Y 7→ 2;] which cannot be typed

in the system of figure 3; however, by using the subsumption rule and by definition

of the subtyping relation, we have that E is correct and has type [; Y :int]. But the

reduction of E clearly gets stuck.

This corresponds to the fact that the principle stated above ‘a module can be

always replaced by another having less, and less specific, input and more, and more

specific, output components’ does not hold for some operators of the calculus, whose

correct application strictly relies on the most specific types of arguments (e.g. sum).

Note that, even though in both cases this principle does not hold, this is not the

same of the well-known problem of the conflict between object extension and width

subtyping in extensible object languages. We briefly recall the problem adapting the

discussion in Riecke & Stone (1999). Assume to have an object o = [X 7→ 1, Y 7→
X + 1], hence of type [X:Int, Y :Int]. If we allow width subtyping, then o can also

have the more general type [Y :Int]. At this time, there is no reason to prevent the

addition of a new method X returning the value True of type Bool, thus causing a

dynamic type error.

As explained in Riecke & Stone (1999), one possible solution to this problem is to

introduce the distinction between internal and external names we have in CMS (see

also page 111). Indeed with this distinction o becomes [X 7→ x, Y 7→ x+ 1, x 7→ 1],

and we can safely add [X 7→ True] leaving Y unaffected. Hence we do not have

this problem in CMS. On the contrary, the problem we have is not present in

object languages since they usually allow to combine objects only by overriding, i.e.

preferential sum.

For safely introducing subtyping we have two possibilities. The first is to choose

a set of basic operators which support subsumption (for instance replacing non

preferential sum by preferential sum). The second is to keep the basic operators

of CMS, and, rather than just adding a subsumption rule, to define an alternative

type system where, whenever it is possible, we relax the constraints on the argument

types. A proposal for the second alternative is given in figure 8 (the other rules have

been omitted, since they are unchanged).

Note that with the new rules it is enough to consider only surjective morphisms,

since the non-surjective are obtained ‘for free’ by subsumption. Moreover, note that

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

124 D. Ancona and E. Zucca

(reduct)
Γ ` E:τ, τ 6 [Σι; Σo]

Γ ` σι |E|σo :[Σ′ι; Σ′o]
σι: Σι → Σ′ι

σo: Σ′o → Σo

(freeze)

Γ ` E:[Σf ,Σι; Σo]

[Σf ,Σι; Σo] 6 [Σ′f ,Σι; Σ′o]
Γ ` freezeσf (E):[Σι; Σo]

σf : Σ′f → Σ′o

Σ′f ∩ Σι = ∅

Fig. 8. Typing rules with subtyping.

the type system with subtyping actually is an improvement of that in figure 3, since

now it is possible to type some intuitively correct terms which were not statically

correct before.

As an example, consider the term E = freeze{M 7→N}(E1 + E2).Y where

E1 = [m:[X:int; Y :int] 7→M; Y 7→ freeze{X 7→Y }(m).Y ;],

E2 = [; N 7→ [; Y 7→ 3;];].

It is easy to check that E cannot be typed with the rules of figure 3 even though it

correctly reduces to 3. Indeed,

∅ ` E1 + E2:[M:[X:int; Y :int]; Y :int , N:[; Y :int]]

and the typing rule (freeze) cannot be applied since the type of the input component

M is not equal to the type of the output component N. On the other hand we have

[M:[X:int; Y :int]; Y :int , N:[; Y :int]] 6 [M:[; Y :int]; N:[; Y :int]],

hence, by the new typing rule for freeze,

∅ ` freeze{M 7→N}(E1 + E2):[; Y :int , N:[; Y :int]]

and therefore we can conclude ∅ ` E:int .

7 Related work

The two authors who have more directly inspired the research presented in this

paper are probably G. Bracha and X. Leroy. They have both strongly supported and

clarified with their work the two principles for module systems we have mentioned in

the Introduction, in particular the idea that the module language should be a small

language in itself with its own typing rules constructed on top of an (in principle)

arbitrary core language. Most of the module operators presented in section 4 come

from Bracha’s work (Bracha & Cook, 1990; Bracha, 1992; Bracha & Lindstrom,

1992), as well as the idea of extending to a general context of module composition the

overriding mechanism of the object-oriented approach. Furthermore, Bracha (1992)

represents the first attempt, which has been fully exploited in our own work (here

and Ancona & Zucca (1998b, 1999)), to reduce many different module composition

mechanism to a set of primitive operators with clean semantics. Leroy’s work (Leroy,

1994; Leroy, 2000) has inspired the great importance we have attributed to achieve

the real independence of our module calculus from the underlying core language

and the effectiveness of the construction, in the sense explained in section 1.1 (a

type-checker/interpreter for CMS can be constructed in a modular way on top of

the type-checker/interpreter for the core level, as done in Leroy (2000)).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 125

Advanced modular languages. A large literature concerns ML-style modules (e.g.

see Leroy (1994), Harper & Lillibridge (1994) and Russo (1998). In particular, as

mentioned in section 4, Duggan & Sourelis (1996, 1998) contains proposals for

extending Standard ML with mutually recursive modules6 and the type-theoretical

analysis in Crary et al. (1999) deals with the problem of recursive type definitions

spanning module boundaries in the context of the phase distinction formalism

(Harper et al., 1990).

Other relevant work concerns designing languages with mixin modules as defined

in this paper, that is module languages allowing mutual recursion and overriding

with late binding. We cite again Bracha (1992) and Bracha & Lindstrom (1992),

and the subsequent work in Banavar (1995), Banavar & Lindstrom (1996) and

Limberghen & Mens (1996); more recently, we mention the methodological paper

by Findler & Flatt (1998), the calculus presented in Bono et al. (1999), and the

proposals for mixin-based extensions of Java in Flatt et al. (1998) and Ancona et

al. (2000).

Finally, a proposal which looks similar to our calculus is that of units for

MzScheme (Flatt & Felleisen, 1998). Basic units are very close to basic modules

of CMS since they are, in their graphical representation, boxes with an import, an

export and an internal section (however, unlike our modules, units are run-time

entities with an initialization part). Many units can be composed by a linking

process which is graphically described by putting all the boxes inside a collecting

box and connecting some input to export ports by arrows. This corresponds in

our formalism to a composition of link operators plus a reduct operation which

performs the connections from/to ports of the collecting box. Indeed, there is a

natural graphical representation of all our operators over modules which closely

resembles that given in Flatt & Felleisen (1998) for units; the interested reader can

refer to Ancona & Zucca (1998).

Calculi with linking. Cardelli (1997) proposes a calculus of compilation units for

the simply-typed lambda calculus and presents a set of rules for determining link

compatibility. In Glew & Morrisett (1999), building upon these ideas and module

constructs from high-level languages, the authors present a formal model of typed

object files and a set of inference rules that are sufficient to guarantee that type

safety is preserved by the linking process. The resulting language MTAL is similar

to units (Flatt & Felleisen, 1998) and CMS, but is different from our approach for

the following reasons:

• even though MTAL is independent of the core language, this independency

is not so abstracted as in CMS. For instance, the syntax rules for MTAL are

explicitly based on those for the core language;

• MTAL is a language of object files which deals with low level implementation

issues at the basis of the linking process, whereas CMS is a calculus (and not

6 Duggan and Sourelis use the name mixins for their mutually recursive modules; we prefer to reserve
this name for modules which support both mutual recursion and overriding with dynamic binding as
in the object-oriented approach (see the end of section 4).

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

126 D. Ancona and E. Zucca

only a language) where more emphasis is given to semantic aspects and proofs

of general properties while implementation issues are only barely addressed;

• CMS provides a richer set of operations for combining modules. For instance,

the reduct operator of CMS includes the restriction operator advocated in

Riecke & Stone (1999) (see the final part of section 4.1) for alleviating the

software engineering problems of a flat name space;

• MTAL deals with type components (see the comments in the Conclusion on

how to introduce type components in CMS).

In Drossopoulou et al. (1999), the authors propose a calculus describing compi-

lation and linking in terms of operation on fragments, that is, compilation units.

More precisely, a fragment system consists of two setsS and B of source and binary

fragments, respectively, a compilation function from S × B into B, two linking

operators over source and binary fragments, respectively, and two predicates ex-

pressing well-formedness of binary fragments w.r.t. to source and binary fragments,

respectively. The framework is used for formally expressing the notion of binary

compatibility in Java.

Finally, two recent papers (Wells & Vestergaard, 2000) and (Machkasova &

Turbak, 2000) present module calculi which are very close to CMS. In both proposals

the basic underlying ideas are similar to ours, but much more emphasis is given to

equational reasoning.

In the m-calculus presented in Wells & Vestergaard (2000), a basic module has

the form (using our meta-variables)

X1 . x1 = E1, . . . , Xn . xn = En

that is, is a collection of components where in each Xi . xi = Ei either the Xi or

the Ei can be missing; in the former case the component is called private, in the

latter deferred or input, while a component having both Xi and Ei is an exported or

output component. As it should be clear, a basic module of the m-calculus can be

immediately converted in a CMS basic module as follows:

• every input component Xi . xi = • is translated into a CMS input component

xi 7→ Xi,

• every output component Xi . xi = Ei is translated into a CMS output compo-

nent Xi 7→ xi, plus a CMS local component xi 7→ Ei,

• every local component . xi = Ei is translated into a CMS local component

xi 7→ Ei.

Operators of the m-calculus all behave in a name-driven way, so the comparison

actually is more directly made with the DCMS calculus presented in section 4.

Indeed the translation above expresses the fact that a basic m-calculus is a basic

DCMS module without virtual components (all components are implicitly frozen in

the m-calculus). More precisely, the m-calculus provides the following operators:

• a link operator corresponding to the link of DCMS in the case with no virtual

components;

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 127

• a component hiding operator corresponding to the DCMS hiding or, equiv-

alently, restrict (there is no difference since the m-calculus has no virtual

components);

• a component sieving operator which is complementary to hiding; this operator

is necessary in the m-calculus since it cannot be expressed in terms of the

others; it cannot be translated into DCMS, but can be directly translated into

CMS by means of the reduct operator;

• component selection, corresponding to DCMS or, equivalently, CMS com-

ponent selection (there is no difference since the m-calculus has no virtual

components);

• a letrec construct (a pair 〈M|D〉 consisting of a module plus a collection

of private components) which is basically a different technical solution for

representing terms resulting in the reduction of selection in presence of mutual

recursion.

Finally, the m-calculus is not parametric in the core language, but constructed on

just variables.

While the syntax of the m-calculus is equivalent to a subset of DCMS (except for

the sieving operator), the reduction rules are very different. Indeed, the semantics

of CMS has been designed as a ‘pure’ reduction semantics, in the sense that all the

reduction rules correspond to a simplification step which eliminates a composition

operator (gluing together two basic modules, or performing a renaming, or per-

forming a connection between input and output components). Thus, the equivalence

induced by our reduction rules does not capture equalities that hold in the m-

calculus; for instance, x+ y = y+ x (commutativity of sum of module variables) or

[; V 7→ 1; x 7→ 0] = [; V 7→ 1;] (useless local variables). In Wells & Vestergaard

(2000), a considerable effort is devoted to obtaining these equivalences by adding

appropriate reduction rules. As a consequence, this choice complicates the semantics

and the proof of confluence, but the advantage is that it is possible to get most of

the expected equalities between module expressions ‘for free’, whereas in CMS they

must be proved in a possibly involved way. In summary, the emphasis in Wells &

Vestergaard (2000) is much more on equational reasoning, while typing aspects and

parametricity w.r.t. the core language are not investigated.

The module calculus in Machkasova & Turbak (2000) serves as a framework

for link-time compilation (a model of compilation that lies in the expanse between

whole-program compilation and separate compilation). The calculus is stratified into

three levels. The first level is the core calculus (following our terminology), which is

assumed here to be call-by-value lambda calculus (as in Wells & Vestergaard (2000),

parametricity w.r.t. the core level is not considered). The second level, called the core

module calculus, consists of basic modules, which are of the form

[l1 7→ C1, . . . , ln 7→ Cn]

where l1, . . . , ln are labels and C1, . . . , Cn are expressions of the first level, that is,

core expressions (the calculus does not support nested modules, i.e. modules as

components). Labels are distinct from variables and correspond to our component

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

128 D. Ancona and E. Zucca

names, even though they can be either visible or hidden. Hidden labels play the role

of our local variables: indeed, in Machkasova & Turbak (2000), labels can be directly

used inside (core) expressions exactly as variables. There are three reduction rules

for the core module calculus: propagation of a core step, substitution of a label with

the associated expression and elimination of useless labels. The third level, called the

full module calculus, introduces two module combinators (link, which corresponds to

the sum of CMS, and renaming of labels) with the corresponding reduction rules.

As in Wells & Vestergaard (2000), and differently from us, the authors provide

more module level reduction rules than just those corresponding to elimination of

module combinators. However, differently from both Wells & Vestergaard (2000)

and us, their calculus does not include an explicit selection operator, which is not

necessary in the context of link-time compilation. Another remarkable difference

is that the calculus in Machkasova & Turbak (2000) is not confluent; indeed, the

authors show an example, inspired by Ariola & Klop (1997), where application of

the substitution reduction rule to mutually dependent module components leads

to two different terms that can never meet at a common term. This problem does

not arise in CMS simply because there is no substitution rule, whereas in Wells &

Vestergaard (2000) the problem is circumvented by allowing substitution only in the

absence of mutual dependency. However, the authors show that a restricted form

of confluence with respect to evaluation holds which is enough for establishing the

Observational Equivalence Property (if two terms are equivalent in the calculus, then

they are observationally equivalent).

8 Conclusion

We have presented CMS, a simple and powerful calculus for module systems

equipped with a confluent reduction semantics and a type system enjoying progress

and subject reduction. Moreover, we have illustrated that it can be actually used as

a primitive kernel in which to encode various existing mechanisms for combining

software components. We have also implemented an interpreter for the untyped

CMS, parametric in the interpreter of the core calculus.7 As already pointed out in

the Introduction, this parametric interpreter allows the user to define core calculi

where modules are first class values, thus breaking the stratification imposed by the

formalism defined here, which, therefore, turns out to be less flexible than the pro-

posed implementation. We leave to further investigation the possibility of defining a

parametric framework able to express mutual dependency between the two calculi.

A point which deserves discussion is the treatment of type components in modules,

hence mutually recursive type definitions that span module boundaries, as one would

have, e.g.instantiating module operators of CMS on a ML-like core language.

The primitive calculus CMS presented in this paper does not have a distinguished

notion of type components since we are mainly interested in defining a set of

both powerful and simple primitive module operators for the manipulation of open

7 See http://www.disi.unige.it/person/AnconaD/Java/UPCMS.html.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 129

fragments, which could be source fragments combined by operators at the language

level as well as code fragments combined by a generalization of a traditional

linker. In particular, CMS could be safely instantiated on a core language of type

expressions. However, the instantiation on a core language supporting a two level

type system (type expressions having kinds and value expressions having types)

requires some refinement of the framework. A standard approach based on the

notion of phase distinction (see Harper et al. (1990)) has been adopted in Glew &

Morrisett (1999), and indeed can be applied to CMS as well; in this case, a CMS

basic module would consist of a pair <M1,M2> of modules, where M1 is a basic

module of type components independent of M2, whereas M2 is a basic module of

value components depending on M1. As a consequence, the CMS module operators

need to be extended.

In Ancona & Zucca (1998b), where we have provided a denotational (categorical)

semantics, parametric in the core level, for the three primitive operators (excluding

selection) defined in this paper, we have also already formally defined a refined

version of the operators which treats appropriately type components. Defining the

analogue of CMS , that is, a true calculus equipped with a reduction semantics, for

this refined version has still to be done and is an important subject of further work;

we expect more additional ingredients than those required in this paper to be needed

at the core level, e.g. a syntax for type definitions, or for type constraints (Ancona,

1999) if we want to take into account a more flexible approach allowing types to be

‘partially’ specified.

In the direction of the application to concrete languages, we have already applied

the module language presented in this paper to core languages supporting type

definitions; notably, to a simple functional language with sum and product types

in Ancona (2000) and to a Java-like language with class types in Ancona & Zucca

(2001). Moreover, an extension of Caml with mixin modules based on CMS is under

development (Hirschowitz, 2000).

Still concerning type aspects, another issue for further work is the introduction

of more complicated type systems, e.g. including recursive module types and/or

polymorphism.

Another interesting research direction is that related to the definition of an

operational semantics (hence an observational equivalence) and the study of further

properties of the calculus: for instance, the Observational Equivalence Property (if

two terms are equivalent in the calculus, then they are observationally equivalent).

of non-standard As mentioned in section 7, proving the Observational Equivalence

Property could imply some effort that in other similar calculi (Wells & Vestergaard,

2000; Machkasova & Turbak, 2000) is, in some sense, avoided by directly including

some equivalences at the level of the reduction relation.

Finally, an important topic we would like to study in the future is how to express

in the framework of module calculi properties which involve different module

languages, as typically happens in compilation, where source modules and binary

modules are both involved. This is especially relevant in languages like Java, where

bytecode modules retain relevant type information in order to make possible dynamic

loading of classes, hence the combination of modules at the binary level is not trivial;

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

130 D. Ancona and E. Zucca

also, to express safe code transformations in compilers. As mentioned in section 7,

some preliminary steps in this direction are in Drossopoulou et al. (1999) and

Machkasova & Turbak (2000). However, we think that much work remains to be

done on this subject.

Acknowledgments

We warmly thank Xavier Leroy and Eugenio Moggi for many useful suggestions

on a preliminary version of this calculus. In particular, Xavier provided interesting

hints about the encoding of λ-calculus during his visit in Genova in September

1998, and Eugenio Moggi strongly encouraged and helped us to adopt the current

formulation based on explicit substitutions.

We are grateful to Lyn Turbak and Joe Wells for the interesting discussions about

the topics of this paper. Concerning the proof of CR, we are in debt with Jan Willem

Klop, whose help avoided us many (other) troubles.

Finally, many thanks also to Zino Benaissa, Mark Jones and Walid Taha, and to

the anonymous referees for their careful reading and the number of corrections and

suggestions which provided invaluable help in improving this paper.

References

Abadi, M. and Cardelli, L. (1996) A Theory of Objects. Monographs in Computer Science.

Springer.

Ancona, D. (1998) Modular formal frameworks for module systems. PhD thesis, Dipartimento

di Informatica, Università di Pisa.

Ancona, D. (1999) An algebraic framework for separate type-checking. In: Fiadeiro, J.

(editor), WADT’98 (13th Workshop on Algebraic Development Techniques): Lecture Notes

in Computer Science 1589, pp. 1–15. Springer-Verlag.

Ancona, D. (2000) MIX(FL): a kernel language of mixin modules. In: Rus, T. (editor),

AMAST 2000 – International Conference on Algebraic Methodology and Software Technol-

ogy: Lecture Notes in Computer Science 1816. Springer-Verlag.

Ancona, D. and Zucca, E. (1997) Overriding operators in a mixin-based framework. In:

Glaser, H., Hartel, P. and Kuchen, H. (editors), PLILP ’97 – 9th Intl. Symp. on Programming

Languages, Implementations, Logics and Programs: Lecture Notes in Computer Science 1292,

pp. 47–61. Springer-Verlag.

Ancona, D. and Zucca, E. (1998a) An algebra of mixin modules. In: Presicce, F. P. (edi-

tor), Recent Trends in Algebraic Development Techniques (12th Intl. Workshop, WADT’97 –

Selected Papers): Lecture Notes in Computer Science 1376, pp. 92–106. Springer-Verlag.

Ancona, D. and Zucca, E. (1998b) A theory of mixin modules: Basic and derived operators.

Mathematical Structures in Computer Science, 8(4), 401–446.

Ancona, D. and Zucca, E. (1999) A primitive calculus for module systems. In: Nadathur, G.

(editor), PPDP’99 – Principles and Practice of Declarative Programming: Lecture Notes in

Computer Science 1702, pp. 62–79. Springer-Verlag.

Ancona, D. and Zucca, E. (2001) True modules for Java classes. In: Knudsen, J. L. (editor),

ECOOP 2001 – Object-Oriented Programming: Lecture Notes in Computer Science 2072,

pp. 354–380. Springer-Verlag.

Ancona, D., Lagorio, G. and Zucca, E. (2000) Jam: A smooth extension of Java with

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

A calculus of module systems 131

mixins. In: Bertino, E. (editor), ECOOP’00 – Object-Oriented Programming: Lecture Notes

in Computer Science 1850, pp. 154–178. Springer-Verlag.

Ariola, Z. M. and Klop, J. W. (1997) Lambda calculus with explicit recursion. Information &

Computation, 139(2), 154–233.

Banavar, G. (1995) An application framework for compositional modularity. PhD thesis, De-

partment of Computer Science, University of Utah.

Banavar, G. and Lindstrom, G. (1996) An application framework for module composition

tools. ECOOP ’96 – Object-Oriented Programming: Lecture Notes in Computer Science 1098,

pp. 91–113. Springer-Verlag.

Bono, V., Patel, A. and Shmatikov, V. (1999) A core calculus of classes and mixins. In: Guer-

raoui, R. (editor), ECOOP ’99 – Object-Oriented Programming: Lecture Notes in Computer

Science 1628, pp. 43–66. Springer-Verlag.

Bracha, G. (1992) The programming language JIGSAW: Mixins, modularity and multiple inher-

itance. PhD thesis, Department of Computer Science, University of Utah.

Bracha, G. and Cook, W. (1990) Mixin-based inheritance. ACM Symp. on Object-Oriented Pro-

gramming: Systems, Languages and Applications 1990, pp. 303–311. ACM Press. (SIGPLAN

Notices, 25(10).)

Bracha, G. and Griswold, D. (1996) Extending Smalltalk with mixins. OOP-

SLA96 Workshop on Extending the Smalltalk Language. (Electronic note available at

http://www.javasoft.com/people/gbracha/mwp.html.)

Bracha, G. and Lindstrom, G. (1992) Modularity meets inheritance. Proc. International Con-

ference on Computer Languages, pp. 282–290. IEEE Computer Society.

Cardelli, L. (1997) Program fragments, linking, and modularization. ACM Symp. on Principles

of Programming Languages 1997, pp. 266–277. ACM Press.

Cook, W. (1989) A denotational semantics of inheritance. PhD thesis, Department of Computer

Science, Brown University.

Crary, K., Harper, R. and Puri, S. (1999) What is a recursive module? PLDI’99 – ACM Conf.

on Programming Language Design and Implementation.

Curien, P.-L., Hardin, T. and Levy, J.-J. (1996) Weak and strong confluent calculi of explicit

substitutions. J. ACM, 43(2).

Drossopoulou, S. & Eisenbach, S. and Wragg, D. (1999) A fragment calculus – towards a

model of separate compilation, linking and binary compatibility. Proc. 14th Ann. IEEE

Symp. on Logic in Computer Science.

Duggan, D. and Sourelis, C. (1996) Mixin modules. Intl. Conf. on Functional Programming,

pp. 262–273. ACM Press.

Duggan, D. and Sourelis, C. (1998) Parameterized modules, recursive modules, and mixin

modules. 1998 ACM SIGPLAN Workshop on ML, pp. 87–96. ACM Press.

Findler, R. B. and Flatt, M. (1998) Modular object-oriented programming with units and

mixins. Intl. Conf. on Functional Programming 1998.

Flatt, M. and Felleisen, M. (1998) Units: Cool modules for HOT languages. PLDI’98 – ACM

Conf. on Programming Language Design and Implementation, pp. 236–248.

Flatt, M., Krishnamurthi, S. and Felleisen, M. (1998) Classes and mixins. ACM Symp. on

Principles of Programming Languages 1998, pp. 171–183. ACM Press.

Glew, N. and Morrisett, J. G. (1999) Type-safe linking and modular assembly language. ACM

Symp. on Principles of Programming Languages 1999, pp. 250–261. ACM Press.

Harper, R. and Lillibridge, M. (1994) A type theoretic approach to higher-order modules

with sharing. ACM Symp. on Principles of Programming Languages 1994, pp. 127–137. ACM

Press.

Harper, R., Lillibridge, M. and Moggi, E. (1990) Higher-order modules and the phase

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

132 D. Ancona and E. Zucca

distinction. ACM Symp. on Principles of Programming Languages 1990, pp. 341–354. ACM

Press.

Hirschowitz, T. (2000) Modules mixins : typage et compilation. Rapport du DEA

Programmation: Sémantique, Preuves et Langages. INRIA Rocquencourt. http://

cristal.inria.fr/ hirschow/.

Klop, J. W. (1987) Term rewriting systems: a tutorial. Bull. EATCS, 32, 143–182.

Klop, J. W., van Oostrom, V. and van Raamsdonk, F. (1993) Combinatory reduction systems:

introduction and survey. Technical report CS-R9362, CWI.

Leroy, X. (1994) Manifest types, modules and separate compilation. ACM Symp. on Principles

of Programming Languages 1994, pp. 109–122. ACM Press.

Leroy, X. (2000) A modular module system. J. Functional Programming, 10(3), 269–303.

Limberghen, M. Van and Mens, T. (1996) Encapsulation and composition as orthogonal

operators on mixins: A solution to multiple inheritance problems. Object Oriented Systems,

3(1), 1–30.

Machkasova, E. and Turbak, F. A. (2000) A calculus for link-time compilation. European

Symposium on Programming 2000: Lecture Notes in Computer Science 1782, pp. 260–274.

Springer-Verlag.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. The MIT Press.

Reddy, U. S. (1988) Objects as closures: Abstract semantics of object-oriented languages.

Proc. acm Conf. on Lisp and Functional Programming, pp. 289–297.

Riecke, J. G. and Stone, C. A. (1999) Privacy via subsumption. Theory and Practice of Object

Systems. (To appear.)

Russo, C. V. (1998) Types for modules. PhD thesis, Department of Computer Science, Univer-

sity of Edinburgh.

van Oostrom, V. (1994) Confluence for abstract and higher-order rewriting. PhD thesis, VU,

Amsterdam.

Wells, J. B. and Vestergaard, R. (2000) Confluent equational reasoning for linking with

first-class primitive modules. European Symposium on Programming 2000: Lecture Notes in

Computer Science 1782, pp. 412–428. Springer.

https://doi.org/10.1017/S0956796801004257 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004257

