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OSCILLATION OF SYMPLECTIC DYNAMIC SYSTEMS
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Abstract

We investigate oscillatory properties of a perturbed symplectic dynamic system on a time
scale that is unbounded above. The unperturbed system is supposed to be nonoscillatory,
and we give conditions on the perturbation matrix, which guarantee that the perturbed
system becomes oscillatory. Examples illustrating the general results are given as well.

1. Introduction

We consider the symplectic dynamic system

zA = S(t)z, (1.1)

that is, S is a symplectic and rd-continuous 2n x 2n matrix-valued function and zA is
the delta derivative of z (see Section 2 below and [5,6,14]), along with its perturbation

zA = (S(t) + S(t))z, (1.2)

which is also supposed to be symplectic. Recall from [12] that <S is called symplectic
if

ST(t) J + JS(t) + fi(t)ST(t)JS(t) = 0 for all t e J, (1.3)

where T is the time scale under consideration, J = ( °, '0) and the superscript T

stands for the transpose of the matrix indicated. Since we are concerned with the
oscillatory behaviour of the systems (1.1) and (1.2), we assume that T is unbounded
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18 Martin Bohner and Ondfej Dosly [2]

above. After a short introduction in Section 2 on time scales calculus for those readers
unfamiliar with that topic, we collect in Section 3 the main properties and definitions
connected with symplectic systems. Section 4 is then devoted to the main results of
this paper. Assuming that (1.1) is nonoscillatory, we give conditions that imply that
the perturbed system (1.2) is oscillatory. The concluding Section 5 contains some
examples illustrating the main results of the paper.

Our results are quite general as systems (1.1) contain a variety of important sys-
tems as special cases, for example, linear Hamiltonian differential systems, linear
Hamiltonian difference systems, Sturm-Liouville differential equations (of any order),
Sturm-Liouville difference equations (of any order), self-adjoint matrix differential
systems, self-adjoint matrix difference systems and symplectic difference systems.
Our oscillation criteria presented in Section 4 are new even in many of these special
cases, as will be seen in the last section.

2. Preliminaries about time scales

In this short section we give some preliminaries on time scales for those readers
unfamiliar with the calculus recently developed by Stefan Hilger [14] (see [5, 6]). A
time scale T is an arbitrary nonempty closed subset of the reals (unbounded above for
the purpose of this paper), and the associated forward jump operator a : T -> T and
the graininess yu : T —>• [0, oo) are defined by

o(t) := inf[s € T : s > t] and /x(f) = o(t) - t.

A point t el with cr(t) = t is called right-dense while t is referred to as being right-
scattered if a (t) > t. The backward jump operator and left-dense and left-scattered
points are defined in a similar way. A function/ : T —> \SL is said to be rd-continuous,
denoted by / 6 Crd, if it is continuous at each right-dense point and if there exists a
finite left limit in all left-dense points. The (delta) derivative f A of/ is defined by

= Urn / ( 0 ( ^ / ( 5 ) , where U(t) = J \ (a(r)}.

The derivative and the shift operator are related by the useful formula

f=f+nfA, where f:=foa.

We will also make use of the following product and quotient rules for the derivative of
the product / g and the quotient f/g (where gg" ^ 0) of two differentiable functions /
andg:

VV and {Ly =
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[3] Oscillation of symplectic dynamic systems 19

For a, b e J and a differentiable function / , the Cauchy integral of / A is defined by

f
Ja

f\t)At=f{b)-f{a),

and improper integrals are defined as

/ / (s) As = Urn / / (s) As.
Ja '^°°Ja

Note that rd-continuous functions possess antiderivatives and hence are integrable.
Hilger's existence theorem for initial value problems with first-order linear equations
says that, given an rd-continuous and regressive (that is, / + ix(t)P(t) is invertible
for all t 6 T) matrix-valued function P, there is exactly one solution of the dynamic
system zA = P(t)z that satisfies a given initial condition z(h) = Zo-

EXAMPLE 2.1. In case T = l w e have

Cb fb

o(t) = t, M(0 = 0, fA=f, f(t)At = f(t)dt,
J a J a

and symplectic (differential) systems (1.1) are of the form (note /x(t) = 0 in (1.3))

z' = U(t)z, where JU is symmetric, that is, JU = UT JT

(these are the so-called linear Hamiltonian differential systems). In the case when
T = Z we have (where we denote the forward difference by A/ (r) = / (r +1) —/ (0)

/ '
Ja

and symplectic difference systems (1.1) are of the form (note /x(t) = 1 in (1.3))

z(t + 1) = S(t)z(t), where S is symplectic, that is, STJS = J.

Note that while these two examples nicely exhibit the unification feature of time
scales calculus, the extension feature of this calculus can be seen from using an
arbitrary nonempty closed subset of the reals as the time scale, for example, the set of
all nonnegative integer powers of a number q > 1 (note that a(t) = qt in this case,
and dynamic equations on such time scales are called ^-difference equations), a union
of closed intervals, the Cantor set, the set of all squares (or roots or cubes etc.) of
nonnegative integers, the set of all integer multiples of a number h > 0, the set of all
harmonic numbers, and many more.
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3. Basic properties of symplectic systems

In this section we recall some basic facts concerning symplectic dynamic systems
(1.1). As mentioned in the previous section, a symplectic dynamic system is a first-
order linear dynamic system whose coefficient matrix satisfies (1.3). This identity
implies that the matrix / + fx(t)S(t) is symplectic for each t e T, that is,

holds on T. This last identity is equivalent to (7 + /xS)J(I + fxS)T = J, so
a symplectic dynamic system can be also characterised as a system (1.1) whose
coefficient matrix satisfies

S(t) J + JST(t) + (u,(t)S{t)JST(t) = 0 for all t € T. (3.1)

If we write S = (CD) w i t n n x n matrix-valued functions A , B, C and D, then (1.3)
and (3.1) read

C-CT + /j,(ATC- CTA) = 0, C-CT + n(CDT - DCT) = 0,
BT - B+fj,(BTD- DTB) = 0, BT-B + /j,(ABT-BAT) = 0, (3.2)
AT + D + fi(ATD - CTB) =0 , A + DT + ̂ ADT -BCT)= 0.

Next, if Z and Z are two In x n matrix-valued solutions of (1.1), then Z7 JZ is a
constant n x n matrix (this is a so-called Wronskian-type identity). A solution Z is
said to be a conjoined basis if rank Z = n and Z7 JZ = 0. Oscillatory properties of
(1.1) are defined using the concept of focal points. A 2n x n matrix-valued solution
Z of (1.1) has no focal point in the interval I = ( a , i ] c l if X(f) is invertible at all
dense points t el and if

KerXa(t) c KerX(r) and X(t)(X"(t))fB(t) > 0

on XK (here, t denotes the Moore-Penrose generalised inverse). The system (1.1)
is called disconjugate on X if the solution Z = ( y) given by the initial condition
X(a) = 0 and U(a) = I (the so-called principal solution of (1.1) at a) has no focal
points in X. System (1.1) is called nonoscillatory if there exists T e J such that it
is disconjugate on (T, T\\ for every 7} > T, and it is said to be oscillatory in the
opposite case.

In our treatment we will also need the concept of the principal and nonprincipal
solution of (1.1) at oo as introduced in [11] and studied in [3]. System (1.1) is said to
be eventually controllable if the trivial solution z = (£) = ((})isthe only solution for
which x = 0 eventually. If (1.1) is eventually controllable and nonoscillatory, then
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the first component X of any conjoined basis Z = ( ^ ) is eventually nonsingular, and
for every T e T there exists h > T such that the matrix

f (Xayl(.r)B(r)(XTrl(r)Ax
JT

is positive definite whenever t > t\. Among all conjoined bases of an eventually
controllable and nonoscillatory symplectic dynamic system one can distinguish the
so-called principal solution at oo, which is the conjoined basis Z = ( | ) with the
property that

for any conjoined basis Z — ( *) for which the (constant) matrix ZT JZ is nonsin-
gular. Any conjoined basis Z = (*) for which Z7 JZ is a nonsingular matrix is
called a nonprincipal solution at oo. Note that the principal solution at oo is uniquely
determined up to a right multiplicative constant nonsingular n x n matrix factor, and
that (3.3) is equivalent to

- l

= 0. (3.4)

When investigating oscillatory properties of (1.1), a fundamental role is played by
the so-called Reid roundabout theorem, which relates oscillatory properties of (1.1)
to solvability of a certain associated Riccati-type equation and to positivity of the
quadratic functional

\ a, b) := / zr(r) {ST(x)K + /GS(r) + ^(T)5r(r)/C5(r)} Z(T) AT
Ja

with /C = ( ? ° ) ' o v e r t n e c l a s s °f P a ' r s z = (1) s u c h m a t fcz* = K,S(t)z and
x(a) = x(b) = 0. This roundabout theorem for (1.1) was established in the recent
paper [16]. Here we use only a part of this roundabout theorem, which is formulated
in the next proposition (in a slightly modified form; compare with [12] or [16]).

PROPOSITION 3.1. Suppose that for every T e T there exists a pair z = („) such
thatx 6 Cld[T, oo), u e Crd[7\ oo)piecewise, * A = A(t)x + B(t)u, suppx C [T, oo)
(that is, x (T) = 0 and there exists Tx > T such that x (f) = Ofor t > T{) and

/•OO

T(z\ T, oo) = / ZT(T){STK, + KS + ixSTJCS}(x) z(r) AT < 0.
JT

Then (1.1) w oscillatory.
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Note also that for S = (£ £) and z = („) the functional T(z,a,b) takes the form

We conclude this section with a result concerning a certain transformation of
(1.1); see [12]. Let H, K : T -» [Rnx/I be C/d-matrices such that H is nonsingular
and HTK = KTH, that is, the matrix % ~ (" {W?r,) is symplectic. Consider the
transformation z = Hz of the symplectic dynamic system (1.1), which transforms (1.1)
into the system

z* = S(t)z with S=(l ?-), (3.5)

which is again symplectic, and the matrices A, B, C and D are given by the formulas

~ -BK-HA)

C = (K")T(HA -AH - BK) - (Ha)T(KA - CH - DK)

D = (HA- DTH" - BTK")T(HT)-1.

Consequently, if (^ ) is a solution of (1.1) such that X is nonsingular, setting H = X
and K = U, we have A = 0 and C = 0 (this is obvious) and D = 0 (this follows
from the fact that (3.5) is again symplectic, that is, (3.2) hold for A, B, C and D).

4. Oscillation criteria

Throughout we assume that the perturbation matrix S from (1.2) is of the form

= \W(I+fiA) ixWBj'

Let us briefly explain why we choose <S of the form (4.1). First we require that the
admissibility equation for the quadratic functional corresponding to (1.2), JCzA =
K,(S + S)z, is independent of S, that is, KSz = 0 and hence S = (I I)- This
requirement is perhaps not strictly necessary, but it is reasonable from the application
point of view as we will see in the last section. Another requirement is that the
perturbed system (1.2) is again a symplectic dynamic system, that is, (1.3) and (3.1)
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must hold. This means that

CT(I + nA) = (I + txA)TC,

(I + fiA)CT = fiBDT,

23

(4.2)

/xDr) - (/ + /xD)CT = - CDT),

DT(I

If fj, = 0, then obviously D = 0 and C = W is a symmetric matrix. Now suppose
ix ^ 0. Then the fact that / + fiS is symplectic implies

(/ +ixA)(I +nD)T -fj,2BCT = 1 and rank(7 + fiA, fiB) = n.

Hence, since (7 + fiA)fiBT = /xB(/ + fiA)T,

Now, the second identity in (4.2) implies that

that is, there exists a n n x n matrix W such that

W and Cr = W.

Substituting this into (4.2), we find that W must be symmetric, and then all identities
in (4.2) are satisfied.

Now we are ready to present our oscillation criteria for systems (1.2). We first
give conditions that imply, assuming nonoscillation of (1.1), that the perturbed system
(1.2) is oscillatory.

THEOREM 4.1. Suppose that (1.1) is nonoscillatory and eventually controllable,
and let ( ^) be its principal solution at oo. If

W(t) < 0 for large t e J

and if there exists a pair (^ ) : T —» OS2" such that

i e C ; d , ueCri, x* = (X°i

and

I = - o o ,

(4.3)

(4.4)

(4.5)

then (1.2) is oscillatory.
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PROOF. Consider the transformation z — Hz of (1.2) with Ti = (£ (X?r> )• This
transformation preserves the oscillatory behaviour of (1.2) and transforms (1.2) into

where 5 = (X°)-lB(XTyl and W = (Xa)T WX". To prove that (4.6) is oscillatory
(and hence that (1.2) is oscillatory), according to Proposition 3.1 it suffices to construct
for every T e T a pair z = (I) such that xA = Bu, x e Cr'd, u e Crd piecewise
on [T, oo), suppx C [T, oo) and F(x, u) < 0, where

Define the pair (£) by

0 * ' ^ '
C) if* e[r ,f ,]
C5) if te[tut2]

0 if'̂ ft.

where 71 e T is arbitrary, r3 > t2 > h > T will be specified later and (*') and (*2)
are solutions of xA = Bu satisfying xx{T) = 0, x\{t^) — i(fi), x2(h) = x(t2) and

= 0> that is,

= (7
B ( T ) A T

-1

x(t2).
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Note that controllability of (1.1) implies that j ' T B(x)Ax is really invertible if / is
sufficiently large. Then

F(x, u)= [l {u\Bux + (x°)rWx°) (r) AT + [* {uTB~u + (x'fWx"} (r) AT

f ' {uT
2~

Jt2

Bu2 + (x°2)
T Wx°} (r) Ar

B(r)Ar) x(tx)+iT(t

{uTBu + (xa)TWxa}(r)Ar.
.

Here we have used (4.3). Now let e > 0 be arbitrary and tx > T be fixed. According

to (4.5), t2 > t\ can be chosen in such a way that

f {uT

Finally, since (^) is the principal solution of (1.1), we have

( f zF(r)ArJ =([ {(X")-1B(XT)-1}(T)AT\ -*• 0 as t -> oo,

and hence r3 can be chosen such tha t i 2
r ( r 2 ) ( /^ B(r) Ar)~ x2(t2) < s. Summarising

the previous computations we see that !F{x ,u)<0ifT<t\ < t2 < h are chosen as

above, and hence (4.6) is oscillatory. This means that (1.2) is oscillatory as well.

Our next result offers another oscillation criterion for (1.2).

THEOREM 4.2. Suppose that (4.3) holds and let (^) and Q) be as in Theorem 4.1;
however, instead of (4.5) we assume that the integral

f°° _ _
/ {uTBu+{xa)TWx"){T)Ax

is convergent. Moreover, we suppose that

£(r)Arj x(t) - • 0 as t -> oo. (4.7)

f,00 \uTBu + (i")7^*"} (T)AT
limsup^—i ^ — i-i-i < - 1 , (4.8)

" B(r)ArYli(t)
then (1.2) is oscillatory.
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PROOF. First note that the lower limit of integration in the integral in the denom-
inator of (4.8) is not important. Indeed, since ( / ' B(z) Ax)~ -*• 0 as t -*• oo and
(4.7) holds, we find for any a, b eJ

'-*~Jcr(O(/,,'fl(r)AT) Jc(f)

We use the same (*) as in the proof of Theorem 4.1. Using the computation given
there, we have

F(x,u)<xT(t{)(( B(T)ATJ x(h)+xT{t2)(l B(X)AT\ x(t2)

+ / {uTBu + (DTWia}(r)Ar
Jt,

where

f'2 [uTBu + (x")TWxa\ (T)AT
F] := — — —. and . ^ . _ _ .

JfT(/,)(/; B ( T ) A T ) " jc(r,) xT{t,)(j'; B(T)AT)"!*(r,).

Now, let £ > 0 be such that the limit superior in (4.8) is less than — 1 — 3s. The point
ti > T is now chosen such that

f^° {uTBH + (x")TWx"} (r)Ar

and r2 > t} such that

/ | {r T } (T)AT/,| { ( ) } ( )

Finally, we take r3 > r2 such that

This is possible since (/r ' 5 ( T ) A T ) —> 0 as t —> <X). Altogether, for these

t2 > h > T we have .F(JC, M) < 0 and hence (1.2) is oscillatory.
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If instead of the principal solution of (1.2) at oo we use its nonprincipal solution at
oo, then we get the following result.

THEOREM 4.3. Suppose that (4.3) holds, let (*) be a nonprincipal solution o/ (1.1)
at oo, and let (!) be as in Theorem 4.2. Moreover, we suppose that

\imxT(t)([ 5 ( T ) A T ) jc(r) = oo. (4.9)

[ T ~ BuT~Bu + (x°)TWx") (T)AT
^ ±^ < - 1 .T(t)(f™ B(T)AT)~ x(t)

then (1.2) is oscillatory.

PROOF. First of all note that since (*) is the nonprincipal solution of (1.2) at oo,
the matrix integral

J B(T)AT = J

is really convergent [11]. We use again the computations from the proof of Theo-
rem 4.1. For the pair (*) defined in the proof of that theorem we have

x(tl)+xT(t2)(J
iB(z)Ar\ x(t2)

TWx°){x)AT

i(r2){i + r3 + r4} ,
\Jl2 /

where

/ ; { 5 B 5 + ( x ) W J c } ( T ) A T
1 3 ' • = = i a n d 1 4 : =

l B(r)Ar)"'x(r2)

Let 11 > T be fixed and e > 0 be such that the limit superior in (4.10) is less than
— 1 — 3s. By (4.9) and (4.10), t2 > t\ can be chosen in such a way that

/(|
2 {uTBu + (x")T Wx"} (T)AT
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and

Finally, we take t3 > r2 such that

JtJ {urBw + (xa)r Wx") (T) AT
T3 = —'— :—r-= —;

and also

Consequently, for these r3 > f2 > î > T we have j^(x, M) < 0 and hence (1.2) is
oscillatory.

5. Examples and applications

In this section we present some corollaries and examples for applications of our
general oscillation criteria given in the previous section.

(i) The formulation of Theorems 4.1-4.3 simplifies if the pair (*.) appearing in these
theorems is of the form (JJ), where v e E* is a constant vector. We formulate this
simplification for Theorems 4.1-4.2; Theorem 4.3 simplifies accordingly.

COROLLARY 5.1. Suppose that (4.3) holds and let (*) be as in Theorems A.l-A.2.
If there exists v 6 OS" such that

coo

~W(z)v AT = -co

/

°° _ J~V'W(T)VAT
v W(T)VAT > — oo and limsup—'• = - j —

' -~ vT(f'B(T)Ax) v

or
roo

then (1.2) is oscillatory.

PROOF. The statement follows immediately from Theorems 4.1-4.2 taking into
account that (4.7) is satisfied for x{t) = v due to the fact that (^) is the principal
solution of (1.1).
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(ii) Here we consider the case T = K, that is, \i = 0. In this case (1.2) is the linear
Hamiltonian system

(5.1)

with symmetric matrices B, C and W. Oscillatory properties of (5.1) in the case
when A = 0 (using the variational method presented in Section 4) were investigated
in [8]. In that paper only the possibility Q) = Q with a constant vector v e K" was
considered, so the results of Section 4 are new even for linear Hamiltonian differential
systems.

(iii) The higher-order Sturm-Liouville differential equation

v=0

with rn(t) > 0 can be written (using a suitable substitution) as the linear Hamiltonian
system

x' = A(t)x + B(t)u, u = C(i)x -AT{t)u

with

I I if ; = / + 1, 1 < i <n- 1

0 otherwise

and B(t) = diag (0 ,0 , . . . , 0, l/rn(r)} and C{t) = diag {ro(r),... , rB_,(r)}. Oscil-
latory properties (with applications in the spectral theory of differential operators) of
the equation

L(y) + q(t)y = Q (5.2)

viewed as a perturbation of the nonoscillatory equation L(y) = 0 were investigated
in several recent papers, see for example [9, 15] and the references given therein.
Writing (5.2) as a linear Hamiltonian system (5.1), the perturbation matrix W is of
the special form W = diag (0 ,0 , . . . , 0, q). Using our method, one can investigate
oscillatory properties of the equation

m

L(y) + M(y)=0, where M(v) = £ ( - l ) v (qv(t)y
M)M

with qm(t) > 0 and m < n. In this case the perturbation matrix W is

W = diag fob, . . . ,qm,0,0,... , 0 } .
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If the order of the operator M is higher or equal to that of L, that is, m > n,
then this perturbation does not fit into our setting. However, in applications, the
perturbation operator is usually of lower order than the original one, and it is also a
partial justification why the perturbation matrix S is of the form as considered here.

As an example of the application of this general idea to fourth-order differential
equations we give the following oscillation criterion.

COROLLARY 5.2. Consider the fourth-order differential equation

y"" - (qdt)y')'+ qo(t)y = 0 (5.3)

with q\ (t) < 0 and qo(t) < 9 / (16f 4 ) eventually. If there exist C i , c 2 e K such that

J J9I(T)(/»'(T))2 + (qo(r) - ^ ) h\r)\dr = -oo, (5.4)

where h(t) = c^3'^^2 + c2t
3l2, then (5.3) is oscillatory.

PROOF. AS the "unperturbed" nonoscillatory equation we take the fourth-order
Euler equation

>""-i?>=0- <5-5>
Equation (5.5) has solutions

v\ ^ r , ;y2(r) =

By a direct computation one can verify that

x-(* yA u-f-y"' -rf
U y'J' U ' y'

is the principal solution of the linear Hamiltonian system corresponding to (5.5), and
(5.3) can be written as a system (5.1) with

-(° l\ B-(° °\ c_(9/(16r<) 0\
-\o o)' B-\o ij' c - \ o o)

and

We take x(t) = c and w(f) = 0 with c = (£) and apply Theorem 4.1. Then

* r W * = cTXTWXc = (c,/, + c2^)2
9 l + (c,y, + Cz^)2 Uo -

and (4.5) reduces to (5.4).
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Note that for the sake of simplicity in the previous corollary we used Theorem 4.1
(with the special choices x = c and u = 0). Computing explicitly the expressions

\ (T00 { } )"*and cr (jT00 {X-^C*')-1} (r))"* c
with

(the functions y\ and y2 are given in the previous proof), one can also formulate
oscillation criteria which are special cases of Theorems 4.2-4.3. These reformulations
yield new results even for the special equation (5.3).

(iv) Now we deal with the discrete case T = 2. In this case, (1.2) reduces to the
symplectic difference system

zt+i = V + Sk)zt. (5.6)

Basic properties of solutions of (5.6) (for example, the Reid roundabout theorem)
have been established in [1, 2]. However, oscillation criteria for general symplectic
difference systems (in terms of the coefficient matrices I + A, B, C and I + D
of (5.6)) have not been established yet; so the results of Theorems 4.1-4.3 are also
new for systems (5.6). We refer here to the papers [4, 7, 10, 13, 15, 17] and the
references contained therein, where oscillatory properties of special cases of (5.6) like
discrete Hamiltonian systems or higher-order Sturm-Liouville difference equations
are investigated.
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