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Abstract

Every directed graph defines a Hilbert space and a family of weighted shifts that act on the space. We
identify a natural notion of periodicity for such shifts and study their C -algebras. We prove the algebras
generated by all shifts of a fixed period are of Cuntz-Krieger and Toeplitz-Cuntz-Krieger type. The limit
C*-algebras determined by an increasing sequence of positive integers, each dividing the next, are proved
to be isomorphic to Cuntz-Pimsner algebras and the linking maps are shown to arise as factor maps.
We derive a characterization of simplicity and compute the tf-groups for these algebras. We prove a
classification theorem for the class of algebras generated by simple loop graphs.

2000 Mathematics subject classification: primary 46L05,47L40.
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1. Introduction

In this paper we initiate the study of a new class of C*-algebras associated with
directed graphs. There is a family of weighted shift operators associated with every
directed graph and, after identifying a natural notion of periodicity for these shifts,
we conduct an in-depth analysis of their associated C*-algebras. Specifically, we
explicitly identify the structure of the C*-algebra generated by all shifts of a given
period and the limit algebras obtained from increasing sequences of positive integers,
each dividing the next, strictly in terms of familiar objects from modern operator
algebra theory.

Our initial motivation derives from work of Bunce and Deddens [3, 4] from over
thirty years ago in which a class of C*-algebras was studied via a limit algebra
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construction that involved algebras generated by periodic weighted shift operators on
a Hilbert space. The Bunce-Deddens algebras have proved to be an extremely useful,
concrete class of operator algebras and have arisen in a number of diverse settings
[1, 2, 5, 6, 7, 8, 15, 14, 21, 22, 24, 26, 27]. We were also motivated by recent work of
the first author [14], where a generalization of this class was obtained for the setting
of Cuntz and Toeplitz-Cuntz algebras. As we show, the class of algebras studied
here contains the Bunce-Deddens algebras and the algebras from [14] as the subclass
generated by single vertex directed graphs with k loop edges (for k — 1 and k > 2
respectively).

Our investigations draw on numerous aspects of contemporary operator algebra
theory. We make use of fundamental results from the theory of graph C*-algebras
[25] and Cuntz-Pimsner algebras [9, 12, 17, 20, 23]. The theory of C*-algebras
associated with 'topological graphs', introduced by the second author and Muhly [19]
and studied further in [11, 12, 13, 20], plays a central role. We utilize the theory of
'factor maps' recently invented by Katsura [12]. Each of these tools complements our
predominantly spatial analysis.

The next section contains requisite preliminary material on graph C*-algebras.
We describe how weighted shifts arise from directed graphs E and we identify an
appropriate notion of periodicity for these shifts in Section 3. The rest of the paper
contains a detailed analysis of the C*-algebras associated with periodic shifts. In
Section 4 we prove the algebras A{ri) and B{n) generated by shifts of a given period
are of Cuntz-Krieger and Toeplitz-Cuntz-Krieger type in such a way that the explicit
connection with the underlying graph is evident. Then in Section 5 and Section 6,
we identify the corresponding limit algebras BE({nk}) as Cuntz-Pimsner algebras
O(E(oo)), where the topological graph £(oo) is defined by the path structure of E
and the sequence {nk}. In Section 7 we prove a classification theorem for the algebras
Bcj({nk}) generated by simple loop graphs Cr We compute the A'-groups for the
algebras BE{{nk}) in Section 8. We finish in Section 9 by deriving a characterization
of simplicity for BE({nk}) in terms of £(oo) and discuss the connection with E.

2. Directed graphs and their C* -algebras

Let E = (E°, E\ r, s) be a directed graph with vertices x e E°, directed edges
e 6 £ ' and range and source maps r, s giving the final and initial vertices of a given
directed edge. We shall assume E is finite and has no sources and no sinks, so that
every vertex in E° is the initial vertex for some edge and the final vertex for some
edge. The finiteness assumption is motivated by the C*-algebra setting we work in,
and the no sink assumption is motivated by our definition of periodicity. We focus on
graphs with no sources simply to streamline the presentation (see Remark 6.5).
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[3] Limit algebras and directed graphs 347

Let E* be the set of all finite paths in E and include the vertices E° in E* as trivial
paths. Given a path w in E we write w = ywx when the initial and final vertices of w
are s(w) = x and r(w) — y, respectively. For w in E* we write |u>| for the length of
w and put |JC| = 0 for every vertex x e E°. Given n > 0, let £=" be the set of paths
in E* of length n, so that E=n = {w e E* : \w\ = n}. Similarly define E-" and E<n.

There are two important C*-algebras associated with every such graph: the Cuntz-
Krieger algebra C*(E) (or O(E)) and its Toeplitz extension T(E). For a recent
survey of these algebras we point the reader to the notes [25]. Both O(E) and T(E)
can be described either as universal objects or concretely. We start by recalling their
universal properties.

Given a directed graph E, a family {Px, Se : x e E°, e e E1} of projections (one
for each vertex) and partial isometries (one for each edge) is said to be a Toeplitz-
Cuntz-Krieger E-family (or a TCK E-family for short) if it satisfies the relations

(t)

Also, such a family is said to be a Cuntz-Krieger E-family (or a CK E-family) if
equality holds in (4) whenever the set r~l (x) is non-empty.

The C*-algebra O(E) is generated by a CK £-family {px, se} and has the prop-
erty that, whenever {Px, Se] is a CK E-family inside a C*-algebra B, there is a
*-homomorphism nP<s from O(E) into B carrying px to Px and se into 5e. The
Toeplitz algebra T(E) has a similar universal property, but with TCK ^-families
replacing CK £-families.

It is also convenient to consider concrete constructions of these algebras. The details
of the construction will be important when we define the generalized Bunce-Deddens
algebras through a spatial approach.

Let HE = 12(E*) be the Hilbert space with orthonormal basis {!„ : w e £*}
indexed by elements of E*. Define a family of partial isometries on HE as follows:
for each v e E* let
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We use the convention |ul0 = 0 when r(w) j=- s(v). We shall put Lx = Px for the
vertex projections.

Evidently the family [Px, Le] form a TCK £-family. In fact, the *-homomorphism
nft determined by the left regular representation is a *-isomorphism of T{E) onto
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the C*-algebra generated by the operators {Le} [10, 25]. Thus, for our purposes, we
may identify the algebra T (£ ) with this faithful representation nP,L(T(E)). We shall,
therefore, for the sake of brevity define the Toeplitz algebra (concretely) as follows.
The Toeplitz algebra of E is the C*-algebra

T(E) == C\{LW : w e £*}) = C*({Le: e e £'})•

Let Rv, v e E*, be the partial isometries on HE determined by the right regular
representation of E*, so that Rv$w — £„,„. It is easy to see that the subspaces RXHE

are invariant for T{E).

PROPOSITION 2.1. Let ^ be the set of compact operators on 7iE. Then T(E)
contains the subalgebra of compact operators &E — (B

PROOF. By assumption E° is finite and hence T(E) is unital as / = £x e £o Px- For
all x € E°, the rank one projection %x%* onto the subspace spanned by $, satisfies

VE° / \ ee£' /

Thus, each t-x%% belongs to T(E). For an arbitrary matrix unit fuf * with s(i>) — x =
s(w) we have %„!•* = LV(££*)L*W e T(£), and it follows that T(£) contains each
fl^fl,. • •

Given a scalar z e T we may define a gauge unitary Uz e B(7iE) via

(2.2) . t/^u, = z1"1'^ for iy € £*.

Then fiz(Le) = UzLeU* — zLe defines an automorphism of T(£) . Moreover,
this automorphism leaves the ideal ^ £ invariant and hence factors through to an
automorphism on the quotient algebra T(E)/RE. It follows that there is a continuous
gauge action f$ : T -> Aut(T(£)/^£) and we obtain the following well-known result
based on the 'gauge-invariant uniqueness theorem' for Cuntz-Krieger algebras [25].

THEOREM 2.2. The quotient algebra T(E)/£.E is isomorphic to the universal
Cuntz-Krieger algebra O{E).

3. Weighted shifts and periodicity

Consider a finite directed graph £ = (£°, £ ' , r, s) with no sinks and no sources.
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DEFINITION 3.1. A family of operators (Te)eeE> that act on HE is a weighted shift
if there are scalars A = {X(w) : w e E* \ £0} such that the operators [Te : e e £ ' )
satisfy

(3.1) T£w - Hew)$ew for all e e E\ w € £*.

Now let n > 1 be a fixed positive integer. Observe that every w e E* has a unique
factorization of the form w — w{n) vk • • • v\, where v, € £ = " for 1 < / < it and
w(n) e E<n.

DEFINITION 3.2. A weighted shift T = (Te)eeE> with weights A — {X(w) : w €
E* \ E0} is period n if X(ew) = k(ew(n)) whenever e € El and sE(e) — rE(w). In
other words, Tel-W = X(ew)t-ew = k(ew(n))$ew for all e e E\ w e E*.

DEFINITION 3.3. Let A(n) be the C*-algebra generated by the 7;, e e E\ from all
Ai-periodic weighted shifts T = (Te)eeEi on HE. Let {nk}k>] be an increasing sequence
of positive integers such that nk\nk+i fork > 1. Observe that every period nk weighted
shift T = (Te)eeEi is also period nk+i. Thus,

and we may consider the (norm-closed) limit algebra AE({nk}) '•— IJA:>I A(nk). As
A(n) contains the C*-algebra TE generated by the unweighted shifts LE — (Le)eeEi,
by Proposition 2.1 it contains the compact operators £E. Let B(n) be the quotient
of A(n) by £ £ , so there is a short exact sequence 0 ->• £ £ ->• A(n) -> Bin) -+ 0.
Thus, given a sequence {«*}*>!, we have the sequence of injective inclusions

B(«i) c B(n2) c • • • c B(nk) £•••,

and we may also consider the limit algebra BE({nk}) :— [Jk>l B(nk). We refer
to BE({nk}) as a generalized Bunce-Deddens algebra.

4. The algebras A(n) and £(n)

Fix a finite graph £ with no sinks and no sources and a positive integer n > 1.
Define £*"" = {w e E* : \w\ = mn for some m > 0}.

Let£(«) = (£(«)°, £(n) : , rEM, sEin)) be the graph defined as follows. First define
£(«)° = E<n. In other words, the paths of length less than n in £ now serve as the
vertices of £(«). We use u; to denote such a path in £ or a vertex in £(«). It will be
clear from the context what the role of w is. Moreover, when we write rE(w) we refer
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to the vertex in E that is the range of the path w. This vertex can be viewed either as
a vertex of £ or as a vertex of E(n) (since E° c E(n)°) depending on the context.

Now we set E(n)x — {(e, w) e £ ' x E<n : sE{e) — rE(w)}, and the maps r£(n)

and sE(n) are defined by setting sEM(e, w) — w and

\ew if |tu| < n — 1,
rE(n)(e, w) = \

\rE{e) i f | u ; | = n - l .

We next define a TCK and a CK £(n)-family. For this we first let T(e,w), for
{e, w) e £(«) ' , be the operator on 7iE defined by

T fr _[£«"' i f w = u ; ' ( n ) '
[0 if u; ^ u; (n)

and Qw, for u; € E(n)°, be the projection onto the subspace of 7iE spanned by the
vectors £„,• with w'(n) = w; so that

Q-w = = / J Sw'Sw' — / J Swvhwv-
w'(n)=w veEP"", r(v)=s(w)

Observe that T*e w)T{e^w) = Qw. It is also straightforward to check that

r* £ -\^v if w" = eVt v ^ = w'
[0 otherwise.

Thus, T(e_w)T*e w) is the projection onto the subspace spanned by all %w« with w" = ev
for v satisfying v(n) = w. It follows that, for w0 6 E(n)°,

T T* _ f ^ o i f « > | l O 0 | > 0 ,

The index set in this sum is a singleton whenever n > |ioo| > 0.
It follows that {Qw, T(e,w)} is aTCK £(n)-family and, thus, there is a *-homomorph-

ism p from T(E(n)) into B(HE) carrying the generators of the Toeplitz algebra to
this family. Observe that every operator T(eiW) as above is the periodic weighted shift
associated to the weights A(eU)) = {X(w') : w' e E* \ E°] where

f 1 ifiy' = ev, v(n) - w,

10 otherwise.

The operators Te associated with every n-periodic weighted shift T = (Te)e€Ei can be
written as a finite sum

w)-Te= ^ k{ew)T(e
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It follows that the *-homomorphism p described above maps T(E(n)) onto A(n).
Setting S(e.w) — q(T(e_w)) and Pw — q(Qw), where q is the quotient map from

B(HE) onto the Calkin algebra, we get a CK £(n)-family. Such a family defines a
*-homomorphism n from O(E(n)) into the Calkin algebra. Since the T(e,w) gener-
ate A(n), the image of n is B{n). Of course, in principle the Pw could be zero.

LEMMA 4.1. For all w e E(n)°, Qw is an infinite rank projection, and hence

PROOF. Fix w e E(n)°. Since E has no sources, we can find paths vk e E=nk for
k > 1 such that s(w) = r(vk). Then (wvk)(n) = w for all k > 1. Thus, %WVt belongs
to the range of Qw for all k > 1. D

We may now prove the following.

THEOREM 4.2. TT is a ^-isomorphism ofO(E(n)) onto B(n).

PROOF. For z e T, let Uz be the unitary operator on HE defined as in (2.2). Setting
yz(R) = UZRU*, we get a one-parameter semigroup of (inner) automorphisms of
B{HE). For (e, w) € E(n)\ w' e E(n)° and z 6 T,

Hence yz(T(e,w)) = z T(e.w) and it follows that each y, defines an automorphism of
A(ri). Moreover, as discussed above, yz leaves £E invariant and so {yz} induces a one
parameter semigroup of automorphisms on the quotient Bin), which we shall also
denote by {yz}.

Thus we have yz(S(e<w)) = z Sie,w) for all (e, w) e E(n)1 and yz(Pw) = Pw for all
w e E(n)°. Since Pw ^ 0 for all w e E(n)°, we can now apply the gauge-invariant
uniqueness theorem [25] to conclude that n is an isomorphism. •

The corresponding result with A(n) in place of B(n) does not hold (see [16] for
an detailed exposition of this point). Nevertheless, there is a result for A(n) that is
analogous to Theorem 4.2. The inspiration for the analysis sketched below comes
from [12, Section 3] and [20, Section 7]. In the terminology of [20], the algebra A{n)
is a relative quiver algebra (see also [9, Example 1.5]), related to the relative Cuntz-
Pimsner algebras introduced in [17]. Since our main focus in this paper is on the
algebras B(n), and their direct limits, we shall only sketch the construction and the
results and leave some details to the reader. The idea is to replace the graph E(n) by
another graph, written E[n\. Using the notation of [12], E[n] is E(n)Eo. To define
it, we first let c(E°) be a copy of E° (whose elements will be written c(v), v e E°).
Then E[n]° = E{n)° u c(E°) and

:ee El,v e E°,sE(e) = v}.
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The maps sE[n] and rE[n] coincide with 5£(n) and rEW, respectively, on £ (« ) ' and

, c(v)) = c(v)

e e E(n)° if n > 1,
rE[n](e, c(v)) =

rE(e) ifn = 1.

The TCK £(n)-family {Qw, Tie,w)] defined above gives rise to a CK £[n]-family
{Gu, Rz:ue E[nf,z e £[«]'} defined by

Gu =

Qu

if U=C(V)€C(E°),

if u e E(n)°\E°
and

r>

Tie,v)(Qv - $&) if z - (e, v) 6 £(«)' , v 6 £°,

T ( e , u ) f B § ; if z = (e, c(v)), eeE\ v e E°,

T(e,w) if z = (e, w), (e, w) €

Each of the projections Gu, u e E[n]°, is non-zero and the unitaries Uz, z 6 T,
from (2.2) define a semigroup of gauge automorphisms on the C*-algebra generated
by {Gu, Rz}. Thus we may proceed as in Theorem 4.2 to show the following.

THEOREM 4.3. The algebra A{n) is *-isomorphic to O(E[n]).

5. Factor maps

Let us examine in more detail the embedding maps that determine the limit alge-
bras BE({nk}). Fix n,k eM and write itn : O(E{n)) -+ B{n) and nnk : O(E(nk)) -+
B(nk) for the ^-isomorphisms of Theorem 4.2.

Recall that the algebra A{n) is contained in A{nk). We write inkn (or, simply, /) for
this inclusion map and /„*,„ for the embedding inkn : B(n) —>• B(nk) induced by inkjl.
Letting jnk „ = n~k

l o inkn o nn we get an injective *-homomorphism

(5.1) jnk,n : O(E(n)) - • O(E(nk)).

For {e, w) e E{n)x, T^iW) is an operator from a shift of period n and

(e.w')eE(,nk)',w'(n)=w

https://doi.org/10.1017/S1446788700036168 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036168


[9] Limit algebras and directed graphs 353

Thus

(5.2) jnk,n(S(e,w)) = / J S(e,w')i
(e.w')eE(nk)1, w'(n)=w

where here S(e_w) and S(e<w-) are generators of O(E(n)) and O{E{nk)), respectively.
We now show that the map j(nk,n) is induced from a 'regular factor map' m :

E{nk) ->• E(n). Factor maps were introduced and studied recently by Katsura [12] in
the context of topological graphs whose vertex and edge spaces are locally compact
topological spaces. Here we need these concepts only for finite graphs and, thus, the
definitions can be simplified.

DEFINITION 5.1. Let F = (F°, F!,sF,rF) and E = (E°,E\sE,rE) be finite
graphs. A factor map from F to E is a pair m — (m°,ml) consisting of maps
m° : F° -»• E° and m1 : F1 -»• £ ' such that

(i) For every e e F\rE(m](e)) = m°(rF(e)) and sE{m\e)) = m°(sF(e)).
(ii) If e' e £ ' and v e F° satisfy sE(e') = m°(v), then there exists a unique

element e e Fx such that ml(e) = e' and sF(e) = v.

Such a map is said to be regular if also

(iii) (rF)~'(w) is non-empty whenever v € F° and (?"£)"1(m0(i;)) is non-empty.

We now define m = (m°, m1) : E(nk) ->• E{n) by

m°(w) — w(n) w € E(nk)° and

' o (e, w) e E(nk)].

LEMMA 5.2. The pair m = (m°, m1) defined above is a regular factor map from
E(nk) to E(n).

PROOF. First, for (e, w) e E(nk)\ w(n) is indeed in £(rc)° (as \w(n)\ < n) and
(e, w(n)) is in £(«)' (as sE(e) = r£(io) = rE(w(n))). Fix (e, w) € E{nk). Then

•yft/.)^1^, u;)) = sE(n)(e, w(n)) = win) = m°(w) = sE(nk)(e, w).

To prove a similar statement for r in place of 5 we distinguish two cases: when
\w\ < nk — 1 (and so |ui(rc)| < n — 1) and when |w| = nk — 1 (and |u>(n)| = n — 1).
In the first case

rE(n){m\e, w)) = rE(n)(e, w(n)) = (ew)(n) - m°(ew) = m°(rE{nk){e, w))

and in the latter

\e, w)) = rE(n)(e, w(n)) = rE(e) = m°(rE(e)) = m°(rEink)(e, w)).
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This establishes part (i) of the definition.
For (ii), suppose (e, w') e E(n)1 and w, e E(nk)° satisfy w' — sEW(e, w') =

mo(u>i) — w^{ri). Then {e, w{) lies in E{nk)\ as rE(wi) = rE{wx(n)) = rE{w') =
sE(e), and satisfies m'(e, w\) — (e, W](n)) = (e, w') and sEink)(e, w\) = wu proving
part (ii).

The claim that the map is regular follows from the fact that E(nk) has no sources,
since E has none. •

The following result is [12, Proposition 2.9] applied to finite graphs.

PROPOSITION 5.3. Let E and F be two finite graphs andm be a regular factor map
from F to E. Then there is a unique *-homomorphism \xm : O(E) —> O(F) such
that, for every v € E° and e e E\

(i) fin,(Pv) = Hue(mo)-Hv)P

Also, /im is injective if and only if m° is surjective.

Returning to E(nk) and E(n), together with (5.2) this result immediately implies
the following.

COROLLARY 5.4. The regular factor map m of Lemma 5.2 satisfies jnkjl — \im.

REMARK 5.5. Replacing the graphs E(nk) and E(n) by E[nk] and E[n] respec-
tively (as in the discussion leading to Theorem 4.3), one can define a factor map
q = {q°,qx) from E[nk] to E[n] where q' agrees with m' on E{nk)', i = 1,2,
q°(c(v)) — c(v) and ql(e, c(v)) — (e, c(v)). As in Corollary 5.4, the map \x.q induced
by q is the embedding of O(E[n]) into 0(E[nk]) induced by the embedding of A(n)
into A(nk).

6. BE{\nk\) as a Cuntz-Pimsner algebra

Fix a finite graph E = (E°, El,rE,sE) with no sinks and no sources and an
increasing sequence {nk}k>\ of positive integers with each nk dividing nk+i (and write
mk — nk+\/nk). We also write n0 = 1.

It will be important for us to note that every w e £* with \w\ — m can be written
uniquely as

(6.1) W = W\U>2 • • • U)k,

where

(6.2) wi € Xj s {u; e E* : 0 < |w| < «,-, |iy| = 0 (mod n,_i)}.
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Supposing that |to,| = &,/i,_i, and sokt < m,-.], we have

(6.3) \Wj\ = &,«/_i < n-, - «,_,

and m = £*=1 kitij^. Expression (6.3) holds for all w 6 Xt.
Now write X for the (compact) product space X = Xi x X2 x • • • and K for the

(closed) subset Y = {co = (to,, io2, • . .) e X : sE(wk) = rE(wk+1), k = 1,2,...}.
Also, let T : E* —> Y be the map defined by

(6.4) r(io) = Y,

where to = W ] ^ • • • wk is the decomposition as in (6.1) and (6.2). Then r is an
embedding of E* onto a dense subset of Y. We refer to Y as the {nk}-compactification
ofE*.

DEFINITION 6.1. For e e £ ' , we define odometer maps oe : De —> Re on Y as
follows. First, put De = {y = (y,, y2, ...) € Y : r£0>,) = 5£(e)} and

for some / < oo, ;y, = for all / < /
and (if / ^ oo) yt = ew' for some
|to'| = —1 (mod /z/_i).

Now, given co = (wit w2,...) in De, and recalling (6.3), write /(to) for the smallest
positive integer / such that |to,| < «, — n,_! (if there is one) or /(to) = oo if
|to,-1 = «, — n,_i for every /.

If i(w) < oo, we write oe(w) = u, where

Ui =

rE(e) for / < i(to),

ew\ • • • tol(u,) for / = /(to),

to,- for / > / ( to) .

, . . . ) •If /(to) = oo, we setae(io) =

LEMMA 6.2. For every e € £ ' ,

(i) r(eu;) = oe{x{w))for every w e E* such that sE(e) = rE(w).
(ii) The sets De and Re are compact and oe is a continuous map from De onto Re.

PROOF. Let e e E1. To prove (i), fix w e E* with sE(w) — rE{w) and let
m = /(to). Then w = w\ • • • wk (as in (6.1) and (6.2)) and |to,-| = n, — n,_i for / < m
and \wm\ < nm - «m_!. We have r(io) = (toi, t o 2 , . . . , wk, sE(w),...) and

= (rE(e),rE(e), ..., wm, wm+u . . . , wk,sE(w), ...),
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where ewt • • • wm is in the mth position. Note that \wm\ = kmnm_\ < nm — nm-\ (as
in (6.3)), and thus

\ew\ • • • wm\ = 1 + («! — 1) + (n2 - «i) + • • • + («m-i — rtm-2) + kmnm-\

= nm_, +kmnm-i < nm.

This shows that ew — rE(e)rE(e) • • • {ew\ • • • wm)wm+i • • • wk is the decomposition of
ew as in (6.1). It follows that x(ew) — oe(z(w)), and this establishes (i).

For (ii), since the topology on X is the product topology and each X, is a finite set,
every subset of X that is defined by conditions involving only finitely many coordinates
is both closed and open. Thus every subset of Y defined by such conditions is closed
and open in the relative topology of Y. This shows that De is closed and open in Y.

For every m e N U {00} we write Dm — {y e Y : rE(yt) = sE(e) and /(y) = m}.
Then each Dm with m < 00 is closed and open in Y and the set D^ = De\ [Jm<0O Dm

is a closed set in Y. We also write Rm (m e N) for

e Y
y> = rE(e) for all / < m and ym = ew'
for some \w'\ = —1 (mod «m_i)

and Roc = {(rE(e), rE(e), . . . ) } . Then each Rm (with m < oo) is open and closed in
Y and /?«, is closed. Also /?e is the disjoint union of all the flms.

Fix m < oo and define the restriction am = oe\Dm. It is easy to see that am is a
homeomorphism from Dm onto Rm; in fact, it is injective and involves a change in
only finitely many coordinates. We also know that oe maps D^ onto the (one-point)
set Roo. Thus ae maps De onto fle and its restriction to the complement of Dx is
continuous.

Suppose {*"} is a sequence in Re converging to some y € Y. If y is not in 7?,, then,
for every m < oo, only finitely many elements of the sequence lie in Rm. Thus, for
every m < oo, we can find some Km such that for every k > Km, xk is not in /?, for
/ < m. Thus, for & > Km, xf — rE(e) for all i < m. It follows that the limit, y, is
equal to (rE(e), rE{e), ...) and, thus, lies in Re. Therefore Re is closed in Y.

It is left to show that oe is continuous. In fact, it is left to consider sequences {zk} in
De converging to some z e Ax>- However, then the sequence [oe(z

k)} lies in Re. Since
Y is compact (and the topology is metric), we can find a converging subsequence. As
the argument above shows, the limit will be in Re and, in fact, it will be in R^ (since
z e Doo). Since R^ has only one point and this point is the image of z under ae, the
proof is complete. •

We now use the notation set above to introduce the topological graph £(oo), which
plays an important role in studying the algebra BE{{nk\). Recall that a topological
graph is given by a quadruple F = (F°, Fl, sF, rF) where F°, Fl are locally compact
spaces, sF : F1 —> F° is a local homeomorphism and rF : F] —*• F° is a continuous
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map. To a topological graph F one associates a graph C*-algebra, written O(F) ([11]
and [20]). We will not go into the details of the definition of O(F), but just note that it
generalizes O(F) for finite graphs and it is the Cuntz-Pimsner C*-algebra associated
with a C*-correspondence constructed from the graph. For the graph £(oo) that we
define below, the C*-correspondence will be discussed later (in Section 8).

Now we define the topological graph £(oo) as follows. Let

£(oo)° = Y, £(oo) ' = {(e, co) € E] x Y : co e De],

and for all (e, co) e £(oo) ' put sE(oo){e, co) = co and rEioo)(e,co) = ae{co). Both
£(oo)° and £(oo) ' are compact spaces, the map 5£(oo) is a local homeomorphism
(since its restriction to each [e] x De is a homeomorphism onto De) and r£(oo) is
continuous (since each ae is).

Recall now that, given n, k e M, we defined a regular factor map m from E{nk)
to E{ri) (see the discussion that precedes Lemma 5.2). With the sequence {nk} as above,
we have a regular factor map from E(nk) to E{nk_\) and we denote it by m*_ljt. We
also define, for every k e N, a pair mk — (m°k, m\) of maps where m°k maps £(oo)°
onto E(nk)° and is defined by m°k(wu w2,.. •) = w\ • • • wk e E<nk = E(nk)° and m\
maps ^(oo)1 onto E(nk)

} and is defined by ml
k(e, co) = (e, m°k(a>)), (e, co) e £(oo) ' .

These maps are continuous and satisfy

mL\.k ° m°k = mLi a n d ml-\,k ° m\ = m\-\

for all k e N. Also, it is straightforward to check that, given a sequence {w(k)} where
w(k) € E(nk)° for all k and mk_lk(w

(k)) = w^'^, there is a unique u> € £(oo) with
mk(w) = iu(i) for all A:. Similar considerations work for the edge spaces. We also
have that i£(B1)(»i{(e, if)) — w°(5£<oo)(e, u»)) for every (e, w) e £ (oo) ' and a similar
equality holds for the range maps. In fact, we see that £(oo) is the projective limit
[12] of the projective system defined by the graphs E{nk) and the maps mk_Uk (see
[12, Section 4]). Also, this projective system is surjective (in other words, each w°_ M

is a surjective map).

We may now prove the following.

THEOREM 6.3. Let E be a finite graph with no sinks and no sources and let {nk}
be an increasing sequence of positive integers with each nk dividing nk+\. Then the
algebra BE{{nk}) is *-isomorphic to the Cuntz-Pimsner C*-algebra O(E(oo)).

PROOF. By [12, Theorem 4.13], O(£(oo)) is isomorphic to the direct limit of the
algebras O{E(nk)) with respect to the maps / im t_u- Corollary 5.4 shows that the
maps nnt of Theorem 4.2 can be used to get an isomorphism of this direct limit and
the direct limit of the algebras B(nk) with respect to the maps y'nt,«(_,. This concludes
the proof since the latter algebra is BE({nk}) — limt B(nk). •
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REMARK 6.4. One can also construct a topological graph E[oo] satisfying A{ri) =
O(E[n]). It is the projective limit of the graphs E[nk] (see Theorem 4.3) with respect
to the factor maps defined as in Remark 5.5.

REMARK 6.5. Our no source assumption on E was made to clarify the presentation.
In general though, one can consider the graph E defined by E as follows:

E° = {v € E° : \{w e E" : rE(w) = v}\ = oo},

E1 = E1 nij'cfjnrj1^"),

sE — sE\El and rE = rE\Ei.

It is straightforward to check that E has no sources and no sinks (provided E has no
sinks). Also, if E has no sources and no sinks then E = E.

Then for an arbitrary finite graph E with no sinks (possibly with sources), E may
be replaced by E in Theorem 4.2 and Lemma 5.2. Further, in Theorem 6.3, O(E(oo))
may be replaced by O{E(oo)). The following result is an immediate consequence of
this generalized version of the previous theorem.

COROLLARY 6.6. IfE and F are two finite graphs with no sinks and E is isomorphic
to F {in particular, if F = E), then BE({nk}) and #F({/I*}) are isomorphic.

7. Example

Let us denote by C; a directed graph, which is a single simple loop (or 'cycle')
with j vertices. In this section we shall discuss the algebras BCj({nk}). The algebra
Bct ({«*}) is the classical Bunce-Deddens algebra associated with the sequence [nk].

Fix a positive integer j . Write vu v2,..., i>, for the (distinct) vertices of Cj and
eu e2, .. •, e-j for its edges where s(e,) = vh r(e,) = vi+\ if i < j and r(ej) = v\.

Given a positive integer n, write p for the least common multiple of n and j ,
and / for their greatest common divisor (so that Ip = jn). We write n = qj + r
for the the division of n by j , where q,r are integers and 0 < r < j . Then
gcd(y, r) = gcd(y, n) = / and, considering the equivalence relation given by addition
modulo r on {1, 2 , . . . , j}, there are / equivalence classes (each containing j/l = p/n
elements). Let Q be a fixed set of representatives, one for each equivalence class.

The graphs Cj(n) are the graphs E(n) (of Section 4) with E = Cj.

LEMMA 7.1. Let j , n be two positive integers. Then Cj(n) is a disjoint union of I
loops, each of length p. In fact,

(7.1) Cj(.n)
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where Cj (n)(l) is the loop that contains the vertex v,•,. Thus, for each i € Q there is an
isomorphism <f>in = i<pfn, (t>]n)from C\ip) to C,(M)(/), and we can write

Cjin) = dip) u C,{p) u • • • U dip),

where the right-hand side is a disjoint union of I simple loops.

PROOF. For every vertex v e E = Cj, there is a single edge ending at v and a
single edge emanating from it. It follows that the same holds for Cjin). Thus Cjin)
is a disjoint union of loops.

Now fix / € Q. Start with the vertex u,- in Cjin)0, recalling that C° c Cjin)0.
Travelling along the edges in Cjin)1 we will, after n — 1 'moves' reach a vertex
w with \w\ = n — 1 and sEiw) — u, (there is only one such w). From there the
only way to proceed is along the edge in Cjin)1 whose source is w. This edge is
(e,e(n_i), w) = (c/©(r-i)i w), where we write © for addition modulo j . Its range is

Thus, after 'moving along' n edges (starting at u,-) we reach the vertex v,er. Travelling
along n more edges we reach v2r& and so on until we get back to vt. Clearly,
{/, r © i, 2r © / , . . .} is one of the equivalence classes mentioned above. In fact, it is
the equivalence class whose representative (in £2) is / and it contains p/n elements.
Thus, this loop contains ip/n)n = p edges (and vertices) and we denote it by Cj (n)(0.
Since this argument holds for every loop, it shows that each loop contains p edges,
completing the proof of the first statement of the lemma.

The last statement of the lemma follows since all simple loops of length p are
isomorphic. D

REMARK 7.2. As mentioned in the lemma, each loop C,-(M)(0 is isomorphic to the
graph Clip). In fact, there are p different directed graph isomorphisms from C\ip)
to Cjin)(i). We wish to fix one and we do so as follows. If C° = {t>} and C\ = {e},
then a vertex in C\ip)° is of the form v or eee • • • e (with no more than (p — 1) es).
For each i e £2 we fix the only isomorphism from C\ip) to C7-(«)(0 that sends the
vertex v (in C\ip)) to the vertex u, (in the loop C,-(n)(/)). From now on, when we
write <piin — i<pfn, <Pjn), we refer to this isomorphism.

LEMMA 7.3. Let j,n,k be positive integers such that gcd(y, nk) — gcdij, n) iand
write I for this number and p for nj/l). Let m = (m°, m1) be the factor map
from Cjink) to Cjin) as in Lemma 5.2. Then, for every i e Q, m maps Cjink)(l)

into Cjin)('\ Moreover, writing (j}ink and (/>/,„ for the isomorphisms in Remark 7.2
associated with Cjink)(l) and Cjin)U) respectively, the map i<j>i.n)~

x o m o (j>ink is the
factor map from C\ ipk) to C\ ip) as in Lemma 5.2.
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PROOF. The factor map m, as defined in the discussion that proceeds Lemma 5.2,
maps E(nk) to E(n) and fixes the vertices in E° (recall that E° is contained in both
E(n)° and in E(nk)°). Thus, when E = Cj, it fixes the vertices v\, ... ,Vj and,
in particular, it fixes each u, for / e ft. So fix such an i and write the vertices
of the loop Cj(nk)(l) as {ux = vh u2, «3, . . . , upk) and the vertices of Cj(n)(i) as
{z\ = «,-, Zi, Zi,. • •, zp}. Also write fq for the edge in Cj(nk)(l) emanating from uq

and ending at uq+\ and, similarly write gq for the edge of Cj(n){i) starting at zq and
ending at zq+\ (with fpk and gp defined in the obvious way).

Asmo(H,) = zi, it follows from (i) of Definition 5.1 that s (m'(/,)) = m° («(/,)) =
m°(u\) = z\ and, consequently, ml(fx) — gx. Using Definition 5.1 again, we get
m°(M2) = m°(r(/i)) = r(ml(fx)) — r(gt) = z2 (here we used r, 5 to denote the range
and source maps for both graphs, but that should cause no confusion). Continuing in
this way we see that m maps Cj(nk)0) onto C;(n)(l). In fact, the image of m 'travels'
along the smaller loop k times.

This argument shows, in fact, that there is a unique factor map from a loop of length
pk to a loop of length p, provided we require that a chosen vertex in the first loop will
be mapped to a chosen one in the second. Since C\ (pk) and C, (p) are such loops and
the map (</>,,„)"' omo</>,• nk is a factor map from C\(pk) to C\(p) that maps the vertex v
(in C\(pk)) to v (in Cx(p)), it is the unique factor map that does so. It follows that it
equals the factor map of Lemma 5.2 (with Cx in place of E and p in place of n). •

COROLLARY 7.4. Let j , n, k be positive integers such that gcd(j, nk) = gcd(y, n)
(and write I for this number and p for nj/l). Then there are ̂ -isomorphisms

<t>n : BCi (n) - • BCl (p) 8 BCl (p) © • • • © BCl (p)

and

<$>nk : BCj (nk) -> BCl {pk) © BCl (pk) © • • • © BCl (pk)

such that, for every i e ft, j%n\Cjw^ = (<*Vr' ° ./$,, ° *nlc;(»)<'). w/iere ;n
c/n

jpip are tne maps defined in (5.1) associated with the graphs Cj and C\ respectively.
Hence £>n = (<&„,)"' o ( £ / e Q © ^ p) o <&„.

PROOF. The isomorphisms <&„ and $>nk are the ones implemented by the graph-
isomorphisms ^,-0,,n and ^2i4>i,nk, respectively (these maps are defined in Re-
mark 7.2). Since, by Corollary 5.4, the maps j % n and j ^ n are the ones implemented
by the corresponding factor maps, the result follows from Lemma 7.3. D

THEOREM 7.5. For a positive integer j and a sequence of positive integers {nk}
as above, the C*-algebra BCj({nk}) is %-isomorphic to the direct sum of I copies
of the classical Bunce-Deddens algebra Bct ({pk}) where I — max* gcd(j, nk) and

https://doi.org/10.1017/S1446788700036168 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036168


[17] Limit algebras and directed graphs 361

Pk = jnk/l. It follows that BCj ({«*}) = BCy ({n'k}) if and only (/"max* gcd(y, nk) =
max* gcd(/, n'k) (= /) and the supernatural numbers associated with {jnk/l} and
with {j'n'k/l} coincide.

PROOF. The sequence {gcd(y, «*)}£!, is a non decreasing sequence of positive
integers that are smaller or equal to j . Thus, for some kQ, gcd(j, nk) = / whenever
k > k0. Since we are interested in the limit algebra, we can, and shall, assume that
gcd(j, nk) = I for all A:.

Thus, we can use Corollary 7.4 and the fact that

BCj ({«»}) = lim (BCj (nk), j^+uJ and BCl ({/>*}) = lim (Sc, (ft), j%+ltPt)

to conclude that the family of *-isomorphisms {<t>nk} (defined in Corollary 7.4) defines a
•-isomorphism from BCj ({nk}) onto the direct sum of/ copies of BCl ({Pk}), completing
the proof of the first statement of the theorem.

Now assume that BCj({«*}) = BCj,({nk}). The C*-algebra BCl({Pk}) is the clas-
sical Bunce-Deddens algebra associated with the sequence {pk}. It is known to
be simple ([6, Theorem V.3.3]) and thus, the center of BCj{{nk}) is of dimension.
/ = max* gcdO', nk) and is generated by an orthogonal family of/ projections whose
sum is / . It then follows that max* gcd(y, nk) — max* gcd(/, n'k) (since the centers
of the two algebras are isomorphic). Also, if q is one of these central projections
in BCj({«*}) and it is mapped by the isomorphism to the central projection q' in
the other algebra, then the isomorphism maps q BCj({nk})q (which is isomorphic to
Be, ({jnk/l})) onto the algebra q' BCj({n'k}) q' (which is isomorphic to BCl ({j'n'k//})).
It follows from [6, Theorem V.3.5] that the two supernatural numbers coincide. The-
orem V.3.5 of [6], together with the first statement of the theorem, proves the other
direction. •

COROLLARY 7.6. The algebra BCj ({«*}) is simple if and only if for every k > I, we
have gcd(y, nk) = 1.

REMARK 7.7. We expect that the classification result of [14], which generalizes the
Bunce-Deddens supernatural number classification to the Cuntz case, could be used to
extend Theorem 7.5 to a broader class of graphs. More generally, we wonder for what
graphs E could a classification theorem along the lines of Theorem 7.5 be proved.

8. K -theory

In this section we derive the AT-groups of the algebra BE{{nk\), where again E is
a finite graph with no sinks and no sources and {nk} is a sequence as above. We start
with the K-theory of C(Y).
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LEMMA 8.1. Let Y be the {nk}-compactification of E*. Then

) and tf,(C(K)) = {0}.

PROOF. For every k e N write Ck for the subalgebra of all functions / in C(Y)
with the property that f(y) — f(z) whenever y, = z, for all / < k. There is a
•-isomorphism pk : C(E(nk)°) - • Ck given by pk(g)(y) = g(yiy2 • • • yk). If t*+u is
the inclusion map of Ck into Ck+i, then the map p^l, oikopk is equal to the map ^°(+i nt

defined above. Note that L)kCk is a dense subalgebra of C(Y) (by the Stone-Weierstrass
Theorem). Thus C(Y) = lim* (C(£(n*)°), 0tn4+1.»t)°).

Fix / € C(J0 with values in Z. ForO < e < 1/2 we can find k and g e C t with
11/ - g|| < e. Let f : \JneI(n - <?, n + f) -»• 2 be defined by ^l(»-f.«+o = «• Then
V̂  is continuous and so is the function g' := xjr o g. However, g' e Ck and / = g'.
Thus / € Ck.

This shows that {/ € C(Y, 1) : for some k, f € Ck] = C(K, Z). Using the notation
((M/u+i.n*)0)* for the restriction of this map to 2-valued functions in C(E(nk)°), we get

C(Y, Z) = lim {C(E(nk)°, Z), (G^,,,,,)0).)-

Since A:0(C(£(n*)0)) is isomorphic to C(E(nk)°, Z) (recall that E(nk)° is a finite set)
and ((Atnt+1,B,)°)» is the map induced from (/i,t+li,,)° on the ^o groups, we find that

(8.1) K0(C(Y)) = lim (C(E(nk)\ 1), (.(jint+unt)\) = C{Y, 1).

Since Ki(C(E(nk)
0)) = {0} for each k, the second statement of the lemma also

follows. D

Given the topological graph £(oo), one can associate with it a C*-correspondence
Z over A = C(Y) as follows (see also [11, 18, 20]). On the space C(£(oo)') one can
define a (right) C(K)-module structure by setting

(ff)(e, w) = 1r(e, w)f{w), f e C(£((»)1), / € C(Y)

and a C(y)-valued inner product by

This makes C(£(oo)') into a Hilbert C*-module over A = C(Y).
To make this module into a correspondence one defines, for / 6 C{Y),

is € C(£(oo)'), (f\jf){e, w) = f(ae(w))ijr(e, w). This defines the correspondence
associated with this graph. It will be convenient, however, to write it in a slightly
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different way. First, for e e £ ' , C(De) is a Hilbert C*-module over A = C(Y) and
can be made into a (^-correspondence by defining the left action using ae

if • g)(y) = f(<re(y))g(y), f e C(Y), g € C(De).

Now we let Z be the correspondence Z = ®eeE\C(De). We write 0Z for the left
action, that is, 0z (/)(©£<•) = ©( / ° 0e)ge-

Given \j/ e C(£(oo)') and e e £ ' , write ^c £ C(De) for the function ise(w) =
V^O, to). Then it is straightforward to check that the map ifr M> @\jre is an isomor-
phism of correspondences from C(£(oo)') onto Z. Thus, we can write Z for the
correspondence associated with the graph £(oo).

In order to state the next result, note that Z is a finitely generated Hilbert C*-
module over A and the triple (Z,<pz, 0) defines an element in KK{A, A). As such,
it defines a map on K0(A) (into itself), written [Z]. In fact, a general element
of K0(A) can be written as a difference [£t] — [£2] for finitely generated projective
modules £, over A and the map [Z], defined by (Z, <f>z, 0), will map it into the element
[£, ®A Z] - [£2 ®A Z].

Using Lemma 8.1, it follows that [Z] induces a map on C(Y, Z). To see how
this map is defined we first need the following discussion. Given a (finite) subset
B c E(nk)° for some £ > 1 and given some j > k,we form

SO) - {w € E(nj)° : w{nk) e B)

and

fi(oo) = {3; = (yi,y2,...) e Y : }

Then fi(oo) is a subset of K that is both closed and open. In fact, every subset of Y
that is closed and open is B(oo) for some k and some subset B of E(nk)°.

For such B write XB(OO) for the characteristic function of B(oo). Then Xs(oo) e
C(K, Z). Set 7B = {g € C(K) : g(y) = 0, y e y\fi(oo)}. Then 7B is a finitely
generated projective C(y)-module. Thus, it defines an element [JB] in K0(C(Y)). The
function in C(Y, I) associated with this element via the isomorphism of Lemma 8.1
is Xfl(oo)- To see this, write JB as a direct limit of JB n C, and note that JB n Cj defines
the element in K0(Cj) = C{E(rij)0, Z) that is the characteristic function of B{j). For
j > k the image of this function, under the embedding of C(£(n;)°, Z) into C(K, T)
given by the direct limit (8.1), is the characteristic function of B(oo).

For B as above and e e £°, consider the set a'^Bioo)). It is also a closed and
open subset of Y and, thus, is equal to C(oo) for some k and C c E(nk)°. We have

Jc = {£ 6 C(K) : g(y) =0, ye y\C(oo)}

= [g € C(y) : gCy) = 0, y e y\a-'(B(oo))}
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We write JB o ae for this space (here, and below, the function / o ae is assumed to
vanish outside De).

For B as above we now consider JB (g>A Z. It is straightforward to see that
this Hilbert C*-module is isomorphic to <f>z(JB)Z = @e(JB ° f«)- It follows that
[Z]([/B]) = YJJB ° oe] and, viewing [Z] as a map of C(Y, T) (via the isomorphism
of Lemma 8.1), we get [Z](xB(0O)) = YIXB(OO) oae. Since every closed and open set
in Y is of the form fi(oo), these characteristic functions span C(Y, Z). Thus

(8.2)

where / e C{Y, Z) and ( / o ae)(y) is understood to be 0 if y is not in De.
Applying a result of Katsura ([11, Corollary 6.10]) we get the following (in the

notation of [11], E{oofrg = E{oof since ^(^(^(oo)1) = E(oo)° and £(oo)° is
compact).

THEOREM 8.2 ([11]). Let Z be the correspondence defined above and [Z] be the
map it induces in K-theory. Let t° be the imbedding o/C(£(oo)°) into O(E(oo)).
Then we have the following exact sequence of K -groups:

KQ(C0(E(oo)0)) • A"o(C0(£(oo)0)) — p > K0(O(E(oo)))1 "7 "' i
KiiOiEioo))) ^— Ar,(C0(£(oo)0)) < ^ ~ K,{CQ{E{oof)).

For / e C{Y, Z) write A ( / ) = / - £ e e £ 1 / ooe, where ( / oae)(>>) is understood
to be 0 if y is not in De.

The following theorem is now a direct consequence of Theorem 8.2, Lemma 8.1
and equation (8.2).

THEOREM 8.3. The Ko and Kt groups ofBE{[nk}) are given by

K0(BE({nk})) = C(Y, 1)1 Im(A) and K, {BE{{nk})) = Ker(A).

9. Simplicity

Simplicity of C*-algebras associated with topological graphs was characterized in
[20, Theorem 10.2] and in [13, Theorem 8.12]. We apply these results to the graph
£(oo). We first need the following.

LEMMA 9.1. The graph £(oo) contains no loops.
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PROOF. Suppose /1/2/3 •••/*: is a loop in F = £(00) and let u' = sF(fj) for
1 < / < k. Recall that u' <= y and u'm is its mth coordinate. We distinguish two cases.

First suppose none of the M'S lie in r(£°). Then there is some N such that for
m > N and 1 < i, j < k,

Let g(i) = J ^ = , |w'i«2 • • • u'N\, for 1 < < < A;, where | • | is the length of an element
of£*.

Then, for 1 < i < k, g(i + 1) = g(i) + 1 > g(i) since M'+1 = ae(u') for some
e e £ ' . A similar argument shows that g(\) > g(k), yielding a contradiction.

In the second case suppose one of the M"S lies in r(£°). Say, M1 = T{V) (for
some v 6 £°). Write / = (e,-,&),) e £(oo)' (so e, € £ ' and co, e Y) and then
ul — an ooek , o- • -oCTf|(M') = x{ekek-\ • • • et), contradicting the fact that u' 6 T ( £ ° )
and T is injective.

Since, in either case, we arrive at a contradiction, £(00) contains no loops. D

Using the notation of [13], it now follows immediately that £(00) is what Katsura
calls a 'topologically free graph' and, in the notation of [20], the graph satisfies
Condition (L).

In order to discuss simplicity we need also the notion of minimality. This is defined
in both [13] and [20]. For the graph £(00) both definitions are easily seen to be
equivalent to the following.

DEFINITION 9.2. A subset B c £(oo)° = Y is said to be invariant if ae(y) e B
whenever y € B n De and there is some / e £ ' and z e DfDB such that ay(z) = y.
The graph £(oo) is said to be minimal if there is no proper, nonempty, closed invariant
subset of Y.

The following is a consequence of Lemma 9.1 and [13, Theorem 8.12] or [20,
Theorem 10.2].

THEOREM 9.3. The algebra #£({«*}) is simple if and only if £(oo) is minimal.

We would like, of course, to have a condition on £ and the sequence {nk} that is
necessary and sufficient for the minimality of £(oo). So far, we do not have such a
condition for arbitrary graphs but we present a sufficient condition below. We shall
need the following lemma.

LEMMA 9.4. Every nonempty closed {with respect to £(oo)) invariant subset
YQ C Y contains an element of the form r(w) for some u e £°. Moreover, for
such u, Yo contains every x(w)for w e £ ' with SE(W) = u.
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PROOF. Let Yo be a closed invariant subset of Y. Fix y e Yo and write it
.v = Cyi, yi, •• • )• We can write y^ = ex • • • <?, for some eu ..., ej e £ ' . Then
y = aei (e2ei, • • • ejt y2, . . . ) and the element z — (e2e^ • • • es, y2, ...) is the unique one
satisfying y = ae(z) for some e e £ ' . It follows from the invariance of Yo that z 6 Yo.
Continuing in this way and noting that y — oei o • • • o aej(sE(ej) = rE(y2), y2, ...),
we find that

yU]:=(rE(y2),y2,...)eY0.

If y[l] 6 r (£ ° ) , we are done. Otherwise, we write y2 — e\ • • • e\ for e\,... e\ e £ ' .
Note that y[l] = ae> o • • • o cr£;(r£(3'3), ^ (^3) , ^ 3 , . . . ) , and we conclude from the
invariance of Yo that

y[2]:=(rE(y3),rE(y3),y3,...)eY0.

Continuing in this way, we get a sequence y[k] in Yo with

= (rE(yk+1), ...,rE(yk+l),yk+uyk+2,...).

Since £ is a finite graph, one of the vertices, say u e E°, will appear infinitely many
times in the sequence {r£(y*+i)}. So, for some increasing sequence of positive integers
{km}, rE(ykm+[) = u for every m. It follows that the sequence y[km] converges in Y to
(M, M, . . . ) = r (M). Since Yo is closed, T(M) belongs to Ĵ -

For the last statement of the lemma, fix w € E* with sE(w) = u and write it
w = e\e2 • • • ek (with e, € £ ' and sE(ek) = u). Then T(W) — crei o on • • • o aet(r(u))
and it follows from the invariance of Yo that z(w) e Yo. D

PROPOSITION 9.5. If, for every v, u in E° and every k > 1, there is some w e E*
with sE(w) = v, rE(w) = u and \w\ is amultiple ofnk, then the algebra BE({nk}) is
simple.

PROOF. Suppose the condition in the hypothesis holds, and fix a closed invariant
nonempty subset Yo of Y. We shall show that Yo — Y. Since r(£*) is dense in Y, it
suffices to show that r(£*) c Yo. From Lemma 9.4 we conclude that there is some
u 6 £° such that z{w) e Yo whenever w e E* with sE(w) — u.

Now we fix v e £° and a positive integer k. By assumption, it follows that there
is some w[k] e E* with sE(w[k]) = u,rE{w[k]) = v and \w[k]\ is a multiple of nk.
Then y[k] := r(w[k]) has the form

y[k] — (v, v, ..., v, tut+i, wk+2, ... wm,'u, u,...),

where w[k] = vv • • • vwk+\Wk+2 • • • wm is the decomposition of w[k] as in (6.1). It
follows that y[k] -> (v, v,...) = r(u), proving that r(v) e Yo. The argument of
the last paragraph of the proof of Lemma 9.4 shows now that Yo contains every x{w')
with sE(w') = v. Since v is arbitrary, T(£*) C y0, and this completes the proof. •
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Recall that in Corollary 7.6 we showed that simplicity for the algebras BC) ({«*))
depends only on j and {nk}. This dependence vanishes when C, is slightly adjusted.

COROLLARY 9.6. Let E be a graph that consists of a simple loop with at least
one loop edge attached at some vertex. Then BE ({«*}) is simple for every choice of
sequence {nk}.
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