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A Geometric Approach to
Voiculescu-Brown Entropy

David Kerr

Abstract. A basic problem in dynamics is to identify systems with positive entropy, i.e., systems which

are “chaotic.” While there is a vast collection of results addressing this issue in topological dynamics,

the phenomenon of positive entropy remains by and large a mystery within the broader noncommu-

tative domain of C∗-algebraic dynamics. To shed some light on the noncommutative situation we

propose a geometric perspective inspired by work of Glasner and Weiss on topological entropy. This is

a written version of the author’s talk at the Winter 2002 Meeting of the Canadian Mathematical Society

in Ottawa, Ontario.

1 Introduction

Entropy has been very successful in topological dynamics (as in measurable dynam-
ics) as a numerical invariant measuring the complexity of a dynamical system (see,

e.g., [9, 15]). Topological entropy was introduced by Adler, Konheim, and McAn-
drew in [1] with a definition based on open covers. Equivalent definitions in terms
of separated and spanning sets with respect to a metric were given by Bowen [4]
and Dinaburg [10]. Much more recently Voiculescu introduced a notion of entropy

for automorphisms of unital nuclear C∗-algebras based on local approximation [36],
and Brown subsequently extended this to automorphisms of exact C∗-algebras using
nuclear embeddability [5]. By [36, Prop. 4.8] the topological entropy of a homeo-
morphism of a compact metric space coincides with the Voiculescu-Brown entropy

of the induced automorphism of the C∗-algebra of functions on the space, and so
Voiculescu-Brown entropy is an extension of topological entropy to the noncommu-
tative domain (indeed Voiculescu and Brown refer to their invariants as “topological
entropy,” but we have refrained from this terminology to avoid confusion). However,

because Voiculescu’s idea of using local approximation constitutes a fundamentally
reconceptualized approach to defining entropy (as necessitated by its analytic con-
text, which does not allow for any kind of direct analogue of an open cover with
which a genuine dynamical invariant may be obtained), Voiculescu-Brown entropy

ultimately requires tools of a completely different formal and technical nature for its
study.

To date this study has focused on three aspects: computations for canonical ex-
amples (see, e.g., [8, 3, 11, 12]), behaviour under taking crossed products [5, 31] and
reduced free products [7], and the variational principle in the presence of a strategic

amount of commutativity [26, 19, 20]. See [33] for a survey. The methods for obtain-
ing non-zero lower bounds in computations have been invariably rooted in classical

Received by the editors February 11, 2003; revised March 15, 2003.
AMS subject classification: Primary 46L55; Secondary 37B40.
c©Canadian Mathematical Society 2004.

553

https://doi.org/10.4153/CMB-2004-054-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-054-2


554 David Kerr

considerations. Indeed they have involved either (i) relating the system to a topolog-
ical dynamical system which is a priori known to have positive topological entropy,

or (ii) appealing to measure-theoretic invariants like Connes-Narnhofer-Thirring or
Sauvageot-Thouvenot entropy, which themselves use classical measurable partitions
in their definitions. Thus the fundamental problem of identifying systems with posi-
tive entropy (i.e., systems which exhibit “chaotic” behaviour), in however specific or

general a setting, has not been addressed from a broad noncommutative viewpoint,
and so the phenomenon of positive entropy has remained a mystery beyond the scope
of commutativity (and even there a considerable degree of mystery persists, as we do
not have a “topological” proof of the equality of Voiculescu-Brown entropy and the

topological entropy of the induced homeomorphism on the pure state space in the
separable unital commutative case, which was established in [36, Prop. 4.8] using
the classical variational principle and continuity properties of Connes-Narnhofer-
Thirring entropy). As a consequence Voiculescu-Brown entropy has played a rather

isolated role in C∗-dynamics, in contrast to the pervasive presence of topological en-
tropy in topological dynamics.

In fact the theory of C∗-dynamical systems has been much more concerned with
questions of C∗-algebraic structure and classification than with the strict investiga-

tion of long-term behaviour that is at the heart of topological dynamics and for which
entropy is a key tool. Symptomatic of the difficulties in analyzing the long-term be-
haviour of noncommutative systems is the typical lack of discrete data that can be
workably assembled to yield a meaningful statement about some aspect of the dy-

namics. This is starkly illustrated by the collection of automorphisms of the rotation
C∗-algebras Aθ associated to a given matrix in SL(2,Z) with eigenvalues off the unit
circle: for a subset of θ ∈ [0, 1) of full Lebesgue measure the canonical tracial state
is the unique invariant state [25], while in the “degenerate” case θ = 0, in which we

recover the corresponding hyperbolic toral automorphism on the pure state space,
there is a rich supply of periodic points in terms of which much about the system
can be expressed, including the entropic growth (see, e.g., [15]). We can also make
a comparison here with the viewpoint of semiclassical analysis, which, as opposed

to directly extending topological dynamics to incorporate the noncommutative case,
extracts discrete spectral data from within the matrix framework associated to the
values θ = 1/n (“quantization”) and performs an asymptotic analysis thereupon,
with the possibility of establishing a correspondence with classical information in

the limit n → ∞. See the introduction to [40] for a discussion and [22, 23, 24] for
some recent results.

The purpose of this article is to introduce a geometric perspective that yields some
insight into the mechanisms behind positive Voiculescu-Brown entropy. Our inspi-

ration lies in the link between topological dynamics and the geometric theory of Ba-
nach spaces that was established by Glasner and Weiss in one of the two proofs they
gave in [13] for the following striking result.

Theorem 1.1 ([13, Theorem A]) If a homeomorphism from a compact metric space

X to itself has zero topological entropy, then so does the induced homeomorphism on the

space of probability measures on X.
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Since the Voiculescu-Brown entropy agrees with the topological entropy on the
pure state space for automorphisms of separable unital commutative C∗-algebras,

Glasner and Weiss’s result is equivalent to the assertion that zero Voiculescu-Brown
entropy for such an automorphism implies zero topological entropy for the induced
homeomorphism on the state space. We have shown that this assertion in fact holds
for automorphisms of any separable unital exact C∗-algebra, and we can additionally

drop the assumption of a unit by replacing the state space with the quasi-state space
in the general exact setting (Theorem 4.2). Full details of this result can be found
in [18]. The key geometric tool is the asymptotic exponential dependence of k on n

given an approximately isometric embedding of ℓn
1 into the C∗-algebra Mk of k × k

matrices. This geometric fact also has the consequence that the presence of a certain
supply of dynamically generated subspaces approximately isometric to ℓn

1 is suffi-
cient to obtain positive Voiculescu-Brown entropy (Proposition 2.2). In particular
we can show, without relying in any way on classical dynamical concepts, that certain

C∗-dynamical systems constructed in an operator-theoretic manner have positive en-
tropy. We also obtain some information about the behaviour of Voiculescu-Brown
entropy under taking extensions.

The main body of the paper consists of three sections. Sections 2 and 4 revolve

around the results described above involving positive entropy and approximately iso-
metric embeddings of ℓn

1 into Mk at the C∗-algebra and state space levels, respectively,
while in Section 3 we apply our geometric perspective in a complementary way with a
look at the free shift on C∗

r (F∞) as an example of subexponential dynamical growth.

2 Entropy and Embeddings of ℓn
1 into Mk

We begin by recalling the definitions of topological entropy and Voiculescu-Brown

entropy. Let X be a compact metric space and T : X → X a homeomorphism. For a
finite open cover U we set

htop(T,U) = lim
n→∞

1

n
log N(U ∨ T−1

U ∨ · · · ∨ T−(n−1)
U)

where N(·) denotes the smallest cardinality of a subcover and the join U1∨· · ·∨Um of
a finite collection U1, . . . ,Um of open covers is the set of all non-empty intersections

U1 ∩ · · · ∩ Um with Ui ∈ Ui for each i = 1, . . . ,m. The topological entropy of T is
defined by

htop(T) = sup
U

htop(T,U)

where the supremum is taken over all open covers U. We can alternatively express
the entropy in terms of separated and spanning sets. A set E ⊂ X is said to be (n, ε)-

separated (with respect to T) if for every x, y ∈ E with x 6= y there is a 0 ≤ k ≤ n − 1
such that d(Tkx,Tk y) > ε, and (n, ε)-spanning (with respect to T) if for every x ∈ X

there is a y ∈ E such that d(Tkx,Tk y) ≤ ε for each k = 0, . . . , n − 1. We write
sepn(T, ε) and spnn(T, ε) to denote the largest cardinality of an (n, ε)-separated set

and the smallest cardinality of an (n, ε)-spanning set, respectively. We then have

htop(T) = sup
ε>0

lim sup
n→∞

1

n
log sepn(T, ε) = sup

ε>0

lim sup
n→∞

1

n
log spnn(T, ε).

https://doi.org/10.4153/CMB-2004-054-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-054-2


556 David Kerr

The fundamental prototypical example is the shift on {1, . . . , d}Z, with entropy log d.
For general references on topological entropy see [9, 15].

Turning now to the noncommutative domain, we let A be an exact C∗-algebra and
π : A → B(H) a faithful representation. By [21] exactness is equivalent to nuclear
embeddability, and the latter guarantees, for every finite Ω ⊂ A and δ > 0, the
non-emptiness of the collection CPA(π,Ω, δ) of triples (φ, ψ,B) where B is a finite-

dimensional C∗-algebra and φ : A → B and ψ : B → B(H) are completely positive
contractive linear maps such that the diagram

A

φ ��>
>

>
>

>
>

>

π
// B(H)

B

ψ

==zzzzzzzz

approximately commutes to within δ on Ω, i.e., ‖(ψ ◦ φ)(x) − π(x)‖ < δ for all
x ∈ Ω. As shown in the proof of [5, Prop.1.3], the infimum of rank B over all

(φ, ψ,B) ∈ CPA(π,Ω, δ) (with rank referring to the dimension of a maximal com-
mutative C∗-subalgebra) does not depend on the particular faithful representation
π; we denote this quantity by rcp(Ω, δ). We point out that the above C∗-algebras B

may in fact be taken to be full matrix algebras, since a finite-dimensional C∗-algebra

B can be embedded in the matrix algebra Mk where k = rank B, in which case the
identity map on B factors as the composition of the inclusion B →֒ Mk with a con-
ditional expectation Mk → B. We also note that if A is nuclear (in particular, if A is
commutative) we can alternatively define rcp(Ω, δ) by substituting the identity map

on A for π in the above and taking the corresponding infimum. Furthermore, if A is
unital then in both this nuclear reformulation and the more general exact setting we
will obtain the same value of entropy in the last line of the display below if we assume

that the φ and ψ in our approximately commuting diagrams are unital completely
positive maps, although rcp(Ω, δ) as we have defined it may not always be equal to its
unital version (see [5]). For an automorphism α of A we then set

ht(α,Ω, δ) = lim sup
n→∞

1

n
log rcp(Ω ∪ αΩ ∪ · · · ∪ αn−1

Ω, δ),

ht(α,Ω) = sup
δ>0

ht(α,Ω, δ),

ht(α) = sup
Ω

ht(α,Ω),

with the last supremum taken over all finite sets Ω ⊂ A. We call ht(α) the Voiculescu-

Brown entropy of α. For some computations see [36, 8, 3, 11, 12] and for a survey see
[33].

Postponing momentarily the presentation of examples (to which we will turn at
natural points as our discussion evolves), we first make the general remark that it
is not at all clear from the definition of Voiculescu-Brown entropy how exponen-
tial growth (i.e., positive values) might be produced, even for commutative systems.
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This is in striking contrast to topological entropy, for which the mechanism behind
exponential growth is manifest in an example like the shift on {1, . . . , d}Z.

In fact, in every case to date in which positive Voiculescu-Brown entropy has
been established, the argument has ultimately hinged on the use of some measure-
theoretic entropy, whether it has involved an appeal to Connes-Narnhofer-Thirring
entropy or Sauvageot-Thouvenot entropy or to the equality of Voiculescu-Brown en-

tropy and the topological entropy on the pure state space in the separable unital com-
mutative setting (whose only known proof relies on properties of Connes-Narnhofer-
Thirring entropy and the classical variational principle [36, Prop. 4.8]). It is thus nat-
ural to ask if we can avoid measure-theoretic entropies altogether and obtain a direct

geometric explanation for the production of exponential growth.
To approach this problem, let us first examine how the kind of mixing that pro-

duces positive topological entropy is reflected geometrically at the C∗-algebra level.
Consider the right shift T on X = {−1, 1}Z and the associated automorphism α of

the C∗-algebra C(X) of complex-valued functions on X given by α( f ) = f ◦T for all
f ∈ C(X). Define the function f ∈ C(X) by

f ((ak)k∈Z) = a0

for all (ak)k∈Z ∈ X. Now given any n ∈ N, for every γ ∈ {−1, 1}{0,...,n−1} there
is some x ∈ X such that, for each k = 0, . . . , n − 1, the function αk( f ) takes
the value γ(k) at x. This implies that any map sending the standard basis of ℓn

1 to
{ f , α( f ), . . . , αn−1( f )} extends linearly to an isometric isomorphism of the real lin-

ear spans. This simple example illustrates that, in general, a high degree of dynamical
mixing will produce real linear subspaces which are isometrically isomorphic to ℓn

1 in
a canonical way with respect to the iterates of one or more suitably chosen real-valued
functions.

Now suppose that in our shift example we have a matrix algebra Mk and com-
pletely positive contractions φ : C(X) → Mk and ψ : Mk → C(X) such that the dia-
gram

C(X)

φ ""DD
DD

DD
DD

id
// C(X)

Mk

ψ

<<zzzzzzzz

approximately commutes to within δ on Ωn = { f , α( f ), . . . , αn−1( f )}. Then this

diagram also approximately commutes to within δ on the entire unit ball of the real
linear span X of Ωn by virtue of the fact that Ωn forms a standard basis for a copy
of ℓn

1 . It follows that if δ < 1 then φ(X) is (1 − δ)−1-isomorphic to ℓn
1 , i.e., the

Banach-Mazur distance

d(φ(X), ℓn
1) = inf{‖Γ‖‖Γ−1‖ : Γ : φ(X) → ℓn

1 is an isomorphism}

is at most (1−δ)−1. Now we know that the Voiculescu-Brown entropy agrees with the
topological entropy on the pure state space, whose positive value of log 2 is captured
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in the dynamical mixing that produces ℓn
1 via the iterates of f . Thus, taking a Banach

space viewpoint, we might suspect that, in general, for a fixed K ≥ 1, the presence of

a subspace K-isomorphic to ℓn
1 within the real linear space of self-adjoint elements of

Mk implies an asymptotic exponential dependence of k on n. This is indeed the case,
as demonstrated by the following key proposition, for which I am grateful to Nicole
Tomczak-Jaegermann. For simplicity, in the proposition statement and thenceforth

(with the exception of Proposition 2.4 below) we will take our spaces to be over the
complex numbers, as this will only affect our statements up to a fixed isomorphism
factor; for example, in the above situation the (1− δ)−1-isomorphism between φ(X)
and ℓn

1 extends to a 2(1 − δ)−1-isomorphism between the complex linear span of

φ(X) and the complex scalar version of ℓn
1 , where by a D-isomorphism we mean an

isomorphism Γ : Y → Z between Banach spaces which satisfies ‖Γ‖‖Γ−1‖ ≤ D.

Proposition 2.1 Let X be an n-dimensional subspace of Mk (with the C∗-algebra

norm) which is D-isomorphic to ℓn
1 . Then

n ≤ aD2 log k

where a > 0 is a universal constant.

The proof, which can be found in [18], is based on a comparison of the type 2

(Rademacher) constants of the spaces involved. The required estimate on the type 2
constant of Mk, in particular, can be obtained using bounds on the type 2 constants
of the Schatten p-classes which follow from Tomczak-Jaegermann’s work in [35].

With Proposition 2.1 at hand we can now make the following general statement

yielding positive Voiculescu-Brown entropy as a conclusion.

Proposition 2.2 Let α be an automorphism of an exact C∗-algebra A. Suppose there

exist a finite subset Ω ⊂ A, a D ≥ 1, and subsets In ⊂ {0, . . . , n − 1} × Ω satisfying

lim supn→∞ |In|/n > 0 such that for each n ∈ N some (equivalently, any) map from

the standard basis of ℓIn

1 to {αk(x) : (k, x) ∈ In} linearly extends to a D-isomorphism.

Then ht(α) > 0.

Proposition 2.2 is a direct consequence of Proposition 2.1, as the latter shows
that if

lim sup
n→∞

|In|/n ≥ µ > 0

then for any 0 < δ < D−1 we have

ht(α,Ω, δ) ≥ µa−1D−2(1 − Dδ)2 > 0.

Note that if the hypotheses of Proposition 2.2 hold for an automorphism α, then
they also hold for any automorphism β of a C∗-algebra B such that there is a surjec-

tive ∗-homomorphism γ : B → A satisfying γ ◦ β = α ◦ γ (as is easily checked using
the contractivity of γ), so that every such C∗-dynamical extension β of α has positive
entropy. We thus obtain some information about the behaviour of Voiculescu-Brown
entropy undertaking extensions, which in general has remained a mystery.
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As a concrete illustration of Proposition 2.2, consider the following operator-
theoretic examples from [18]. We start with a sequence γ ∈ {−1, 0, 1}Z in which

every finite string of −1’s and 1’s occurs. Setting Ei = {k ∈ Z : γ(k) = i} for each
i = −1, 0, 1, we define the operator x ∈ B(ℓ2(E−1 ∪ E1)) by specifying

xξk = γ(k)ξk

on the set {ξk : k ∈ E−1 ∪ E1} of standard basis elements of ℓ2(Z). Next take the

direct sum of x with any self-adjoint operator of norm at most one on B(ℓ2(E0)),
which yields an operator y on B(ℓ2(Z)) ⊃ B(ℓ2(E−1 ∪ E1)) ⊕ B(ℓ2(E0)). Now if α
is an automorphism of an exact C∗-subalgebra A of B(ℓ2(Z)) which restricts to the
inner automorphism of B(ℓ2(Z)) arising from the canonical bilateral shift on ℓ2(Z) as

applied to y and its iterates, then ht(α) > 0 by Proposition 2.2, since it is readily seen
from our choice of sequence γ that for every n ∈ N any map from the standard basis
of ℓn

1 to {y, α(y), . . . , αn−1(y)} linearly extends over R to an isometric isomorphism,
and hence over C to a 2-isomorphism. Without addressing here the general question

of the existence of exact C∗-algebras admitting an automorphism α as above, we
point out in particular that if a is a diagonal operator then we obtain from the shift
on ℓ2(Z) a positive entropy automorphism of the unital commutative C∗-algebra A

generated by a and its iterates. Note than we can thus obtain positive topological

entropy without having a topological description of the system at hand.

Problem 2.3 Under what conditions does the converse of Proposition 2.2 hold?

For homeomorphisms of the Cantor set we can show that the converse of Propo-
sition 2.2 is valid, and even in a stronger form:

Proposition 2.4 Let T : X → X be a homeomorphism of the Cantor set. Then

htop(T) > 0 if and only if there is a continuous function f : X → R and subsets

In ⊂ {0, . . . , n − 1} with lim supn→∞ |In|/n > 0 such that for each n ∈ N the set

{ f ◦ Tk : k ∈ In} forms a standard basis for a copy of ℓIn

1 inside the real Banach space

C(X,R), i.e., any map from the standard basis elements of ℓIn

1 to { f ◦ Tk : k ∈ In}
extends linearly over R to an isometric isomorphism.

Proof In view of Proposition 2.2 we need only prove the “only if” implication. Sup-
pose then that htop(T) > 0. We will begin by showing the existence of a 2-element
clopen partition U of X such that htop(T,U) > 0 (cf. the first part of the proof of

Proposition 1 in [2]). Since the topology of X is generated by the clopen sets, there
is a finite clopen cover V = {V1, . . .Vn} of X such that htop(T,V) > 0. We may
assume that V is in fact a partition of X by suitably refining it if necessary. For each
k = 1, . . . , n denote by Vk the clopen partition {Vk,X \Vk}. Since V1 ∨ · · · ∨Vn is a

refinement of V we then have

0 < htop(T,V) ≤ htop(T,V1 ∨ · · · ∨ Vn) ≤
n∑

k=1

htop(T,Vk).
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Thus for some k = 1, . . . , n the 2-element clopen partition Vk satisfies htop(T,Vk) >
0, as desired. Rewrite this clopen partition as U = {U1,U−1}.

Next set f = χU1
− χU

−1
∈ C(X,R) where χU1

and χU
−1

are the characteristic
functions of U1 and U−1, respectively. For each n ∈ N denote by Wn the clopen

partition U∨T−1U∨· · ·∨T−(n−1)U and by En the set of all γ ∈ {−1, 1}{0,...,n−1} such

that
⋂n−1

k=0 T−kUγ(k) ∈ Wn. By the Sauer-Perles-Shelah lemma (or more specifically
the consequence thereof formulated as Lemma 2.2 in [13]) there are a c > 0 and an
n0 ∈ N such that for all n ≥ n0 there is a subset In ⊂ {0, 1, . . . , n − 1} satisfying
|In| ≥ cn and En|In = {−1, 1}In . Now if n ≥ n0 then for every γ ∈ En|In there is

a point x ∈ X such that ( f ◦ Tk)(x) = γ(k) for every k ∈ In. As in the example of
the shift on {−1, 1}Z, this implies that any map sending the standard basis of ℓIn

1 to
{ f ◦Tk : k ∈ In} extends linearly over R to an isometric isomorphism, and thus since
lim supn→∞ |In|/n ≥ c > 0 we are done.

In this section we have used only the Banach space structure of the C∗-algebras
in question. For a stark illustration of how the operator space structure can come

into play, consider the shift uk 7→ uk+1 on the full group C∗-algebra C∗(F∞) of
the free group on a countable set of generators with associated unitaries {uk}k∈Z.
For each n ∈ N the set {u1, u2, . . . , un} forms a standard basis for a copy of ℓn

1 ,
but the C∗-algebra C∗(F∞) is not exact and for n ≥ 2 any isomorphism between

span{u1, u2, . . . , un} and a subspace of a matrix algebra has completely bounded
isomorphism constant at least n(2

√
n − 1)−1 (see [30]). In the next section we will

discuss the analogous shift on the reduced group C∗-algebra C∗
r (F∞), which from a

geometric viewpoint is drastically different.

3 The Free Shift

Here we apply our geometric perspective to the example of the free shift on the re-
duced group C∗-algebra C∗

r (F∞) of the free group on a countable set {gk}k∈Z of
generators. This automorphism, which we will simply refer to as the free shift, arises
from the shift k 7→ k + 1 on the index set Z. It can be regarded as a quantized

version of the shift k 7→ k + 1 on Z compactified with a fixed point at infinity,
whereby orthogonality in ℓn

∞ (for which the characteristic functions of the single-
tons {1}, . . . , {n} ⊂ Z form a standard basis) is replaced by orthogonality in ℓn

2 (for
which the unitaries associated to the elements g1, . . . , gn ∈ F∞ form a standard basis

up to 2-isomorphism). While this analogy makes little sense from the perspective
of free probability (in terms of which reduced free products actually exhibit parallels
with tensor products [37]), it is the appropriate one for our dynamical context, as we
will see. In the noncommutative case, however, we must also take the operator space

structure into account. Indeed our “quantization” is not unique and we could also
consider for example the analogous free shift on the Cuntz algebra O∞ [6] (see the
second paragraph below).

It was shown in both [11] and [6], via different arguments, that the free shift has
zero Voiculescu-Brown entropy. Correspondingly, the compactified shift on Z has
zero topological entropy, as is readily computed directly from the definition.

https://doi.org/10.4153/CMB-2004-054-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-054-2


A Geometric Approach to Voiculescu-Brown Entropy 561

In [33] Størmer describes the free shift as the “most noncommutative” situation
and accordingly asserts that highly noncommutative systems tend to have small en-

tropy. The phenomenon underlying this statement appears in fact to have less to
do with noncommutativity per se than with the relation of orthogonality, which is
being considered here in its quantized Hilbert space sense (cf. the discussion in the
introduction of [34]) but is equally well associated to zero entropy (in fact, arith-

metic dynamical growth) in the classical commutative situation. It is hardly a coin-
cidence that the matrix algebra Mn accommodates both ℓn

∞ (down the diagonal) and
ℓn

2 (across any row or down any column), giving us a hint that the dynamical growth
is subexponential, and hence that the entropy is zero, for both the compactified shift

on Z and the free shift. This hint leads directly to a proof of zero Voiculescu-Brown
entropy for the compactified shift on Z at the C∗-algebra level. On the other hand, in
the noncommutative case we have to be more careful as a result of the operator space
structures involved, and indeed the situation for the free shift is subtler and more so-

phisticated arguments are required [11, 6]. In fact the closed subspace spanned by the
unitaries in C∗

r (F∞) corresponding to the generators of F∞ is completely isomorphic
to the closed subspace spanned by the elements e1i ⊕ei1 in the direct sum R⊕C of the
row and column Hilbert spaces in B(ℓ2) [14] (see also Section 8.3 of [28]). Actually,

if we take the operator space structure of a matrix algebra into consideration then
the geometric hint from above applies precisely and directly in the noncommutative
case if we switch to the nuclear setting of the Cuntz algebra O∞ (which can be viewed
as an infinite reduced free product of Toeplitz algebras—see Chapter 1 of [38]) and

consider the automorphism defined by shifting the index on the canonical isometries
{sk}k∈Z [6], for then arithmetic dynamical growth and hence zero Voiculescu-Brown
entropy, at least at the local level of the canonical isometries, is readily seen by com-
bining the fact that the closed subspace spanned by {sk}k∈Z is canonically completely

isometric to the column Hilbert space in B(ℓ2) (see Section 1 of [29]) with a result
of Pop and Smith that permits us to use general completely contractive linear maps
in the definition of Voiculescu-Brown entropy [31] and an appeal to Wittstock’s ex-
tension theorem which permits us to extend completely contractive linear maps into

B(H) for any Hilbert space H (see [27]).
Størmer furthermore expresses surprise in [33] that the free shift has zero en-

tropy in view of the fact that it is extremely ergodic, in the sense that its exten-
sion to the weak operator closure admits no proper globally invariant injective von

Neumann subalgebra except for the scalars [32]. However, extreme ergodicity in
topological dynamics (i.e., the non-existence, at the function level, of proper glob-
ally invariant unital C∗-subalgebras besides the scalars) is associated with an extreme
lack of recurrence, which results in arithmetic dynamical growth and hence zero en-

tropy. Moreover, this behaviour is manifested precisely in our classical example of
the compactified shift on Z. Indeed if f ∈ C(Z ∪ {∞}) belongs to a proper unital
C∗-subalgebra of C(Z ∪ {∞}) which is globally invariant under the induced C∗-
algebra automorphism, then with T denoting the compactified shift we obtain from

the Stone-Weierstrass theorem the existence of two distinct points m, n ∈ Z ∪ {∞}
such that f (T j(m)) = f (T j(n)) for all j ∈ Z, from which we infer by the continu-
ity of f that f (k) = f (∞) for all k ∈ Z, i.e., f is constant. Thus the only globally
invariant unital C∗-subalgebras are the scalars and C(Z ∪ {∞}) itself.
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By viewing the free shift as a quantization of the compactified shift on Z it there-
fore seems natural to expect zero Voiculescu-Brown entropy in light of the above

geometric and topological considerations. We will not delve here into a rigorous
explanation for zero entropy, referring again to [11, 6] for proofs.

Along the same lines, we might also regard a reduced free product of C∗-algebra
automorphisms as a quantized version of a disjoint union of homeomorphisms or of

a direct sum of C∗-algebra automorphisms. Indeed by [7] we have the formula

ht(α ∗ β) = max(ht(α), ht(β))

for reduced free products with amalgamation over a finite-dimensional C∗-algebra,
paralleling the behaviour of disjoint unions with respect to topological entropy or
direct sums with respect to Voiculescu-Brown entropy.

Thus the world of freeness, while inexhaustibly rich from a free probability view-

point (see [38, 16]), is associated with a high degree of determinism in C∗-dynamics.

The discussion of this section vividly illustrates the idea, promoted by Weaver in
[39], that the notion of quantization is at essence about Hilbert space, with noncom-
mutativity appearing as a technical consequence.

4 Induced Dynamics on State Spaces

We will indicate in this section how Proposition 2.1 can be applied in a more system-
atic way to obtain a noncommutative analogue of Glasner and Weiss’s result (Theo-

rem 1.1) that zero topological entropy implies zero entropy on the space of probabil-
ity measures. Full details can be found in [18].

The proof of Proposition 2.1 in [13], which involves a functional-analytic appli-
cation of the combinatorial Sauer-Perles-Shelah lemma, can be adapted to establish

the following result. Here Cn
1 denotes the space of n × n matrices with the trace class

norm.

Lemma 4.1 Given ε > 0 and λ > 0 there exist n0 ∈ N and µ > 0 such that, for

all n ≥ n0, if φ : Crn

1 → ℓn
∞ is a ∗-linear map of norm at most 1 such that the image

of the unit ball of Crn

1 under φ contains an ε-separated set of self-adjoint elements of

cardinality at least eλn, then rn ≥ eµn.

Whereas Glasner and Weiss apply information about the possible size of subspaces
of ℓn

∞ and ℓn
1 which are approximately isometric to ℓk

2, for the proof of Lemma 4.1 we

must alternatively appeal to Proposition 2.1, which addresses the matrix situation.

Now let A be an separable exact C∗-algebra and α an automorphism of A, and
denote by Tα the induced homeomorphism ω 7→ ω ◦α of the quasi-state space Q(A)
(i.e., the convex set of positive linear functionals φ on A with ‖φ‖ ≤ 1, equipped
with the weak∗ topology, under which it is compact). Suppose that Tα has positive

topological entropy (this actually implies that the entropy is infinite—see [18]—but
this is not of consequence for the present discussion). Then by metrizing Q(A) by
taking the supremum of the absolute values of the differences of two given elements
under evaluation on a compact and total subset K of self-adjoint elements of A, we
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can apply the separated set definition of topological entropy and push everything
down to the level of the matrix algebras involved in the definition of Voiculescu-

Brown entropy to permit an application of Lemma 4.1, with the required ∗-linear
map from Crn

1 to ℓn
∞ constructed by evaluating a suitable finite subset of K on the

relevant elements of Q(A) as modeled at the matrix level. Lemma 4.1 guarantees
exponential growth in the rank of the matrix algebras, and so we obtain the following

result.

Theorem 4.2 Let A be a separable exact C∗-algebra and α an automorphism of A. If

α has zero Voiculescu-Brown entropy, then Tα has zero topological entropy.

If A is unital then in the statement of the thereom we can also replace Tα with its
restriction to the state space.

Since topological entropy is non-decreasing under passing to subsystems, Theo-
rem 4.2 shows in particular that if the induced homeomorphim Tα on the quasi-state
space has positive topological entropy, then every C∗-dynamical extension of α has
positive Voiculescu-Brown entropy (cf. the second paragraph after the statement of

Proposition 2.2). More generally:

Corollary 4.3 Let A and B be separable exact C∗-algebras and α : A → A and

β : B → B automorphisms. Suppose that the homeomorphism of the quasi-state space of

A has positive topological entropy, and suppose that there exists a surjective positive con-

tractive linear map γ : B → A such thatα◦γ = γ◦β, or an injective positive contractive

linear map ρ : A → B such that β ◦ ρ = ρ ◦ α. Then β has positive Voiculescu-Brown

entropy. More generally, the same conclusion holds whenever α can be obtained from

β through a finite chain of intermediary automorphisms intertwined in succession by

maps of the same form as γ or ρ.

In the other direction, we can draw from Theorem 4.2 some topological-dynami-

cal conclusions such as the following proposition, which holds in view of the fact that
the free shift on C∗

r (F∞) (see Section 3) has zero Voiculescu-Brown entropy [11, 6].

Proposition 4.4 The homeomorphism of the state space of C∗
r (F∞) induced by the

free shift has zero topological entropy.

Finally, we ask:

Question 4.5 Does the converse of Theorem 4.2 hold?

Possible candidates for counterexamples to the converse of Theorem 4.2 can be found
among the collection of automorphisms of the rotation C∗-algebras Aθ associated to

a given matrix S ∈ SL(2,Z) with eigenvalues off the unit circle. For every θ the
automorphism of Aθ defined via S has positive Voiculescu-Brown entropy [17], but
we have not been able to determine the topological entropy on the state space for
irrational θ. See [18] for details.
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