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ABSTRACT 

It is shown that under certain conditions hydrostatic equilibrium becomes un­
stable in a conducting medium in the presence of a magnetic field containing a 
neutral point if the gas pressure is less than a limiting value. 

The motion resulting from breakdown of hydrostatic equilibrium in the solar 
chromosphere above complex sunspot groups could produce solar flares and 
cosmic ray particles. 

I . INTRODUCTION 

Cowling [l] has pointed out that, if solar flares were due to Joule heating 
and cosmic ray particles due to electric fields in the chromosphere, electric 
current sheets of no more than a few metres thick would have to be set up. 
Dungey [2] indicated that the field near a neutral point is unstable and would 
constrict itself to produce current sheets of the narrowness required. This 
effect provided the germ of the ideas in the present paper although it is 
shown that the gas pressure and conditions far from the neutral point, 
neglected by Dungey, play essential parts in the development of the high 
currents. 

2. THE MECHANICAL FORCES DUE TO A DISTORTED 
FIELD W I T H A N E U T R A L POINT 

Consider the fields in Fig. 1, the lines offeree being directed in the #y-plane 
and are independent of the z-coordinate. Introduce a vector potential 
(o, o, A), so that A = constant on a line offeree. It is supposed that the 
electric currents producing the field are situated below PQ,. The two regions 
bounded by the lines A = A2 in Fig. 1 may be regarded as the original fields 
due to the currents in regions A and B, and the field outside as the common 
field resulting from the partial interpenetration of these fields. 

123 

https://doi.org/10.1017/S0074180900237704 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900237704


Suppose the current systems A and B are displaced towards each other 
by an appreciable fraction of their initial separation. The medium below 
PQ,is taken to be a perfect conductor, and the normal flux, and hence the 
value of A, at every point of PQ,in each region A and B remain unaltered. 

Fig. i. Potential field of two bipolar systems. 

A B 
Fig. 2. Potential field of displaced systems. 

If the medium above PQwere a non-conductor the two systems would 
suffer a further interpenetration and the value of A at the neutral point 
would increase to values Az, A4, etc., according to the extent of the 
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A B 

Fig. 3. Field of displaced systems in perfectly conducting medium. 

A B 
Fig. 4. The difference field. 
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displacement, as in Fig. 2. No currents are induced above PQand the field 
here is called the equivalent potential field. 

If, on the other hand, the medium is a perfect electrical conductor the 
lines of force through the neutral point move with the medium and the 
two fields A and B do not interpenetrate further. The fields may be said 
to collide. The value of A at the neutral point remains unaltered and the 
field is of the general form represented in Fig. 3. It is not unique as it depends 
on how the medium moves during the displacement. It has, however, the 
same normal components on P Q as the equivalent potential field. The 
latter is uniquely determined by these components, hence the colliding 
field, which has a different value of A at the neutral point, can under no 
circumstances be potential. The magnitude of the resulting currents will 
now be investigated. 

Let (o, o, A') and (o, o, A") be the vector potentials for the colliding 
field and the equivalent potential field, respectively, above P Q , and con­
sider the function A = A'-A". Therefore A = o on P Q , and A*A' = A*A. 
The lines through the neutral point of the colliding field, A' = A2 in Fig. 3, 
connect regions A and B on P Q . The lines through the neutral point of the 
equivalent potential field, A" = A4 in Fig. 2, also connect regions A and B. 
The latter lines intersect P Q at points lying within the pairs of points of 
intersection of A' = A2 with P Q i n each of the regions A and B. The lines 
A" = A±, A' = A2 must therefore intersect at least one point M. Therefore 
AM = A2 — A4. With the sense of the field as in Figs. 1, 2 and 3 Ar decreases 
with increasing r, hence A2 > A4 and we may write 

dm&x>A2-At = o(H0L), (1) 

where H0 and L are typical values of the field strength and linear dimensions 
of the field. 

The analysis that follows was suggested by some of the classical work of 
Picard[3]. There is no loss of generality in supposing that there is only a 
single maximum in A. The system of lines A = constant is then of the general 
form shown in Fig. 4. 

AM may be expressed as follows: 

A*=~(f ]n(rJr)A*A*dS, (2) 
27T J J i/2-plane 

where dS is an element of area of the #y-plane at a point X and rand r2 are, 
respectively, the distances of X from M and from the mirror image, M1? 

of M in PQ, the integration being carried out over the half-plane above 
P Q . In (rjr) is in fact the Green's function for this region. There are by 
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definition no currents above PQ, other than those induced by the displace­
ment. The principal contribution to AM therefore arises in some region D 
whose dimensions, and in particular whose farthest point from Ml5 do not 
exceed a value of order L. From (2) it is then seen that 

^ M = - ^ / J D l n ( r 1 / r ) A ^ x ^ , (3) 

where A = o (i). A is a maximum at M, therefore A2A < o in a neighbourhood 
of M; let Dx be the region within D formed from all points at which A2 A < o. 
Hence A r r 

^ M < ^ J L l n ( r i / r ) | A M x l ^ ' (4) 

therefore | AM |max > *nAu 

AJ^ln(rilr)dS (5) 

But the denominator on the right-hand side of (5) cannot exceed a value of 
the order of magnitude Z,2, hence, using (1), (5) shows that 

\^A\mx>X1H9IL, (6) 
where A2 = o (1). The current density in the z-direction is given, in gaussian 
units, b y ^ — cA2Aj^ny therefore 

3w*>ckxHJlwL. (7) 
The mechanical force Fem exerted by the current is jH'jc where H' is 

the field strength. If the currents exceed the limit in (7) over a region with 
dimensions comparable with Z,, there must be points in the region where 
H' = o(H0). Hence p^^x^l^L, (8) 

where A2 = o( i ) . This inequality holds a fortiori when the currents are 
concentrated into a smaller region. 

Consider now the hydrostatic pressure P required to maintain equi­
librium with the force Fem. In hydrostatic equilibrium 

grad P = - A2A' grad A'lyr. (9) 
P and A2A' are therefore functions of A', and (9) may be integrated to give 

P*-P*=~\^t*A'dA'. (10) 

This shows that at all points X in a region D2 where the current exceeds 
the limit in (7), . „ , ,, ,, , 

4.nL ' * ' 
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If D 2 has dimensions of order L, X can be chosen far enough from M so that 
^M - ^ x = ° (#oL) • (1 1) then shows that 

P M >A 3 #§/47T, (12) 

where A3 = o (1). Alternatively, suppose D 2 is narrow in one of its dimen­
sions, corresponding to a current sheet of thickness h <̂  L and of width 
/ = o(Z). Then taking D = D 2 in (3), 

AM> A I AM Uax J J D j In (rjr) ^ / 2 T T = A4 | AM |m a x ft, (13) 

where A4 = o (1). Hence 
|AM| f f i a x = o(JM//A). (14) 

Let X be a point on the boundary of D 2 near M, then 

AM-A^ = o(h* I AM |max) -o(ilM*/Z). (15) 

Therefore ^ ~ ^ X = ^M -A^ + o(Auhll). (16) 

If M does not coincide with the neutral point of the equivalent potential 
field the sign of A^ —A^ can be changed by taking X on the boundary of 
D 2 opposite to the original point selected. A point can therefore be chosen 
such that A' A' -\ A LIJ t _\ 

i 4 M - i i x > V M / f i (17) 
where A5 = o (1). If M coincides with this neutral point then 

A^-A"x = o(h*AJL*) (18) 

and (17) still holds. Finally, on applying (17) and (14) to (10), 

PK-O{AUP)=O{HS), (19) 

the same result as in (12). (12) holds a fortiori when both dimensions of 
the current region are small. 

In all cases, therefore, PM must exceed a value of order H% if hydrostatic 
equilibrium is to be possible without additional external forces. In applying 
the above criteria it must be remembered that the forces immediately 
below PQrequired to force the current systems A and B together are them­
selves of order H\\L. In a continuous system, therefore, the forces immedi­
ately above PQmay also be of this order of magnitude. The criteria would 
apply, however, whenever the scale height of the forces below PQis small 
compared with L. This certainly obtains in the case of sunspot fields. For 
spot fields the gravitational forces and the gas pressures in the chromosphere 
fall far short of the limits in (8) and (12). Hydrostatic equilibrium would 
therefore break down over a complex spot group in which, along a line of 
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minimum resultant field strength, the field was much smaller than the 
typical value,* and in which the components of the group were moving 
relative to each other. 

3 . P H Y S I C A L I N T E R P R E T A T I O N OF THE 
EQUILIBRIUM CRITERIA 

As the displacements in the photosphere proceed the magnetic field trans­
mits the sub-photospheric force to the chromosphere. The resulting dis­
tortion in the chromospheric field will be greatest where the field is weakest, 
i.e. near the neutral line. The field there will tend to flatten, the effect 

Fig. 5. The collision layer, (a) Field in neighbourhood of current sheet, (b) Field across 
current sheet, (c) Idealized hydrodynamic model. 

being analogous to the flattening of a motor tyre when loaded. A limit is 
reached when hydrostatic equilibrium breaks down. A thin collision layer 
of gas is then formed as in Figs. 5 (a) and (b). There is an inward magnetic 
pressure at the boundaries approximately equal to Hl/Sn where Hx is the 
field strength there. This is uncompensated along the middle line of the 
layer where the field strength is small. Hydrostatic equilibrium then 
requires a gas pressure of approximately H\j%n in the middle of the layer, 
and since the layer is effectively open at its ends this means that the gas 
pressure surrounding the layer must be of the same order of magnitude. 
For large sub-photospheric displacements / /1 = o(//0), and the criterion 
in (12) follows. 

* Such lines are generalizations of the neutral lines in the present two-dimensional 
analysis. 
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4- THE DYNAMICS OF THE COLLISION LAYER 

An exact treatment of the motion is not considered in the present paper. 
Instead, an analogy in pure hydrodynamics is considered. Consider two 
parallel rigid plates, as illustrated in Fig. 5 (c), with infinite extension in the 
z-direction. Let the distance h between the plates be small compared with 
their length 2/. The region between the plates is occupied by gas and the 
surrounding gas pressure is taken to be negligible. Suppose the plates are 
being forced together by a constant force F per unit z-length. The gas 
offers little resistance to the plates until sufficiently compressed. After this 
a quasi-steady state is set up in which gas flows out from the ends of the 
layer and the plates approach each other with a velocity that is small 
compared with the gas velocities along the layer. Take axes centred at the 
mid-point of one plate with the #-axis along the plate and the y-axis directed 
toward the other plate. Let the gas velocity be (u> v, o) and the downward 
velocity of the upper plate be V. The flow is nearly steady and is almost 
one-dimensional so that the pressure P, the density p and the ^-component 
of the velocity are nearly functions of x only. The y-component of the 
velocity is given by v=~Vy\h. (so) 

The equation of continuity div p\ = o reduces to 

d In p du _ V 
dx dx h* ^ ' 

The motion is irrotational, hence Bernoulli's equation 

* - . / ; (22) 
P P ^ J 

holds, where the suffix o denotes values at the origin. For simplicity in the 
analysis isothermal flow is assumed. The results for isentropic flow do not 
differ radically from the isothermal case, so that in the circumstances the 
extra analysis involved in the isentropic case is not justified. A fuller analysis 
would in any case have to take into account the effects of radiative cooling 
and Joule heating. In flare conditions the rate of radiative cooling is 
sensitive to the temperature. This would keep the temperature low in spite 
of heavy Joule heating. Thus take 

P P0 *T 
rvrnr' (23) 

where !Tis the temperature, 3R. is the gas constant and /i is the mean mole-
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cular weight of the gas in units of the mass of the hydrogen atom. On 
solving (2o)~(23) u is given by u = q£, where q2 = 3&Tj/i and 

g(i-W) = Vxlqh. (24) 
P and p are given by p/p0 = P/P0 = e~^2. (25) 
The boundary condition at the ends of the layer, #= + 1, is determined 
by the external pressure. As this is assumed to be negligible compared with 
P0 it is therefore below the so-called critical pressure for outflow from a 
tube (see for example Prandtl[4]). In the isothermal case this pressure is 
P0IJe; the pressure at the ends is equal to this, therefore (25) shows that 
£ = 1 at x = 1. On integrating along the plates, 

^=2 r Pdx. (26) 

When reduced by means of the previous equations, this shows that 

Again, on putting x = 1 in (24), 
^ - (27) 

therefore P0 = ^ M ^ . (29) 

Equations (24), (25), (28) and (29) completely describe conditions in a 
layer of given length and thickness. The subsequent behaviour of the layer 
is considered by remembering that dhjdt= — V, hence from (28), 

dh/dt = - 2qhl$L (30) 

Further progress cannot be made until the behaviour of the length of the 
layer is known. This depends on the rate of dissipation of magnetic energy 
by Joule heating in the layer. 

5. THE ELECTROMAGNETICS OF THE 
COLLISION LAYER 

The problem will again be simplified by adopting Ohm's law in a medium 
moving with velocity (u, v, o): 

JI<r=E+(vHx-uHy)lc, (3i) 

where a* e.s.u. is the conductivity and E is the electric intensity in the 
z-direction. This neglects the effect of Hall current, but the reduction in 
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conductivity due to collisions with neutral atoms as derived by Cowling [5] 
and by Piddington [6] could be allowed for by adopting the appropriate 
value of a* once more was known about conditions in the layer. 

T r)H 
Maxwell's equation curl E = 5- can be integrated and written 

c ot 

E—^+M, (3») 
where/(/) is a function to be determined. By eliminating E between (31) 
and (32) and using the relationJ= — c A2 A fen, 

Tt = _ i b A M + ^ W + (vH*~uHv)- (33) 
In the photosphere A is independent of time by definition, there is no fluid 
velocity, and A2J/cr is supposed negligible. (33) therefore shows that 

f(t) = o. At the neutral point N H = o and (33) shows that 

dA-sldt = - c2[AM]N/47r<r = - X^c^a^j^crhl, (34) 

where \ is a dimensionless quantity of order unity. 
The value of A^ effectively determines the length of the layer. 
It is not possible to derive the precise relation on the simple analogy of 

the previous section. An empirical relation is therefore introduced in the 
f ° r m ^ N = ^ N ( O ) ( W , (35) 

where n is a positive constant and AN(o) and l0 are values at a given epoch 
t = o soon after the quasi-steady state is attained. (34) then shows that 

— = C* ( 6) 

taking Ag = 1 for definiteness. On dividing (36) and (30) and integrating, 

/ = /0cxp{A1(i/A0-i/A)}, (37) 

where h0 is the initial value of A and 

On substituting (37) into (30), 

Jt = - ^ exp {A^i/A- i/A0)}. (39) 

Thus A may be derived implicitly at any time from 

2? Jhjh. x v* J 
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The layer vanishes after a time 

M JhjK * 
The electric intensity at the neutral point is given by 

taking 4N(o) =o(H0l0). 
The rate of Joule heating is crEf,. If this is taken as typical of the whole 

layer, then the total rate of heating/cm of the layer in the z-direction is 
given by 2 „ 2 / 

J~ crEW^^^exp {(2n~i) Ax(i/A0-i/A)}. (42) 

If 2/z^ i then J -> 00 as h -> o. We therefore take 2w > i, in which case J 
has a maximum value given by 

Jmax ~ 67r(L°-gi) e x p ^2W ~ *̂  A l / A ° ~ *}' ^ 
where h = (211 — 1) Ax. (44) 

This maximum occurs at time 

*!=%•*>*• -^-> (45) 

and the time from maximum activity until the layer vanishes is given by 

H£W ^ (46) 
2<7 Jl/(2n-l) * 

The electric intensity, in the z-direction, at maximum activity, is given by 

Em**~ 3(2^-1°) c C X P ^n~ ̂  hilh-(n-i)l{2n-i)}. (47) 

6. APPLICATION TO A SOLAR FLARE 

Consider a complex sunspot group with a neutral point near the base of 
the chromosphere, and suppose that the components of the group suffer 
relative displacements that break down equilibrium and produce a colli­
sion layer of length / 0 = i o 9 c m . Take T ,= io 4°K and i / 0 = i o 3 gauss as 
further typical values. The effective value of cr, if collisions with neutral 
atoms are taken into account as in the work of Cowling [5] and Piddington [6], 
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would be of the order of magnitude io8 e.s.u. It will be seen that the precise 
value has a negligible effect on both the rate of heating and the electric 
field. The results are not sensitive, in order of magnitude, to n provided this 
is not too near 1/2. Take n= 1 for definiteness, and suppose that the flare 
operates along a line of length io10 cm in the z-direction. 

With the above values, hx = 1 -2 x io6 cm. The quasi-steady state sets in as 
soon as the layer becomes thin compared with its length. Hence, taking 
k0= io8 cm, Ax/A0<̂  1. The maximum rate of Joule heating in the whole 
flare is then practically independent of cr, and is given by 

^max= I*5X I°2 9 e rg s / s e c-
The time of duration of the flare at maximum activity is given by t~ io4 

seconds, and the total energy output from the flare is therefore of order 
io33 ergs. The electric intensity at maximum activity is given by 

■Emax = 6 volts/cm; 

this value, also, does not depend on a. The corresponding difference in 
potential between the ends of the flare is 6 x io10 volts. 

The above figures agree with the values associated with a large flare, 
to within the uncertainties of the theory. 

7. CONCLUSIONS 

The theory just developed reproduces some important features of solar 
flares. It gives a total radiation of energy and a duration of the right order 
of magnitude, and can account for the production of high-energy particles. 
It has been demonstrated conclusively that hydrostatic equilibrium can 
break down along a neutral line, and a narrow colliding layer set up in the 
ensuing motion. The theory cannot be accepted as definitive, however, 
until the hydrodynamic analogy introduced is replaced by a proper analysis 
of the dynamics of the colliding layer. 
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