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HARMONIC MORPHISMS BETWEEN SPACES OF
CONSTANT CURVATURE

by SIGMUNDUR GUDMUNDSSON
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Let M and N be simply connected space forms, and U an open and connected subset of M. Further let
n: U-*N be a horizontally homothetic harmonic morphism. In this paper we show that if n has totally
geodesic fibres and integrable horizontal distribution, then the horizontal foliation of U is totally umbilic and
isoparametric. This leads to a classification of such maps. We also show that horizontally homothetic
harmonic morphisms of codimension one are either Riemannian submersions modulo a constant, or up to
isometries of M and N one of six well known examples.

1991 Mathematics subject classification: Primary 58E2O, Secondary 53C42.

0. Introduction

Harmonic morphisms n:M-*N between Riemannian manifolds are maps that pull
back germs of harmonic functions on N to germs of harmonic functions on M. It was
proved independently by Fuglede [14] and Ishihara [18], that harmonic morphisms are
exactly the harmonic maps that are horizontally conformal. An alternative description
of harmonic morphisms is that they map Brownian paths on M to Brownian paths on
N. For this see [20], [6] and [11]. In a series of papers [2,3,4,5] Baird and Wood
have studied the case when M is three dimensional and N a surface. Their result, most
relevant to this paper, is given by the following theorem.

Theorem 0.1. Let M = R3, S3 or H3 and N be a surface. Further let U be an open and
connected subset of M.
(i) If n:M-*N is a harmonic morphism, then up to isometries of M, n is one of the maps
given in Examples 2.4—2.7 below, followed by a weakly conformal map.
(ii) If n:U—*N is a harmonic morphism with an isolated singularity, then up to isometries
of M, n is a local restriction of one of the maps given in Examples 2.1-2.3 below, followed
by a weakly conformal map.

Generalizations to higher dimensions have been achieved in some cases when
assuming that n has totally geodesic fibres. The following result is due to Kasue and
Washio [19] and is of global nature, that is M is complete.
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134 SIGMUNDUR GUDMUNDSSON

Theorem 0.2. Let n ^ 3 and n:Mm->Nn be a harmonic morphism with totally geodesic
fibres. Then N = W and n is an orthogonal projection, followed by a homothety.

The next two results, were given by the author in [16]. They are of local nature, i.e.
U is any open and connected subset of M.

Theorem 0.3. Let U be an open and connected subset of Um and n:U->W a
horizontally homothetic harmonic morphism, with totally geodesic fibres. Then n is the
restriction of an orthogonal projection n: Um-*R", followed by a homothety.

Theorem 0.4. Let (M, N) = (Sm, W), (Sm, N") or (Um, H") and U be an open subset of M.
Then there exists no horizontally homothetic harmonic morphism n:U-+N.

In this paper we establish a connection with the theory of isoparametric foliations on
simply connected space forms. This enables us to use a well known classification of such
foliations with totally umbilic leaves. We generalize the above mentioned results to:

Theorem 3.5. Let {M, N) = (Sm, S"), (Um, S"), (Hm, Sn), (Rm, W), {Hm, W) or (Hm, H") and
re,: Uj-*N be the corresponding harmonic morphism given below. Further let U be an open
and connected subset of M and n:U->N be a horizontally homothetic harmonic morphism.
If n has totally geodesic fibres and integrable horizontal distribution, then up to isometries
of M and N, 7r = ft,-|i/.

Together Theorems 0.4 and 3.5 give a classification of horizontally homothetic
harmonic morphisms, with totally geodesic fibres and integrable horizontal distribution,
between open and connected subsets of simply connected space forms. If n ^ 3 , then
Theorem 3.5 is true without assuming horizontal homothety. When (M,N)=(Um, W),
then n:U->N has automatically integrable horizontal distribution, so in that case the
statement of Theorem 3.5 is exactly that of Theorem 0.3. For n of codimension one we
prove:

Theorem 3.6. Let (M,N) = (Sm,Sm~l), (Rm,Sm~1), (Hm,Sm'1), (Rm,UT" l), (Hm, U"1'1)
or (Hm,Hm~l) and U be an open and connected subset of M. If n: U-+N is a horizontally
homothetic harmonic morphism, then n has constant dilation, or up to isometries of M and
N, n = ii\u, where it is one of the maps given in Examples 2.1-2.6 below.

We then show that if the dilation is constant, then the only possible cases are
{M,N) = (Sm,S") or (Rm,IRn), and if n:Sm-*S" has totally geodesic fibres, then it must be
one of the Hopf-maps.

1. Preliminaries

In the following we assume that all our objects, manifolds, maps etc. are smooth, that
is in the C1"-category. Let (Mm,<,>,V) and (N",(,}N,P) be two Riemannian manifolds
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HARMONIC MORPHISMS- 135

with their Levi-Civita connections. By KM and KN we denote their sectional curvatures,
which we assume are constant. Harmonic morphisms n:M-*N are maps that pull back
germs of harmonic functions on N to germs of harmonic functions on M. It can be
shown that if m<n, then n is constant. To exclude that trivial case we assume
throughout this paper that n:M->N is non-constant, hence m^.n.

The following result of Fuglede [14] and Ishihara [18] gives a more geometric
description of harmonic morphisms.

Theorem 1.1. A map 7r:Mm—>W such that m^n is a harmonic morphism if and only if
(1) n is a harmonic map, and
(2) 7i is horizontally conformal.

That n is horizontally conformal means that dn\x, the restriction of dn to the
horizontal spaces is weakly conformal. Its conformal factor k is called the dilation of n.
n is said to be horizontally homothetic if it is horizontally conformal and A is constant
along horizontal curves in M. It was shown by Fuglede in [15], that non-constant
horizontally homothetic maps are submersions. The next result due to Baird and Eells
[1] shows that it is of major importance whether N is a surface or not.

Theorem 1.2. Let n:M-*N be a horizontally conformal submersion with dilation
kM-*U+. If
(i) dim N = 2, then n is harmonic if and only if n has minimal fibres,
(ii) dim N^3, then two of the following conditions imply the other,

(1) 7i is harmonic,
(2) n has minimal fibres,
(3) n is horizontally homothetic.

To get the equivalence of n being harmonic and n having minimal fibres in higher
dimensions, the condition of horizontal homothety is exactly what is needed. For a
more detailed account on harmonic maps and morphisms we refer the reader to [12]
and [2,3].

In this paper we are dealing with horizontally homothetic harmonic morphisms,
which are therefore submersions. The horizontal conformality of n:M-*N is obviously
independent of homothetic changes of the metrics concerned. The same is true for the
harmonicity of n. We are studying the case of constant curvature and can therefore
without loss of generality restrict our attention to the cases when KM,KNe{ —1,0,1}.

Definition 1.3. Let Mm = Sm, Um or Hm, and / = (/,,. . . ,/„,_„): M m - R m - " be a
smooth map. / is called isoparametric if

(1) / h a s a regular value,
(2) the functions <grad(/),grad(/})>, and Afk are constant along the pre-images o f /

for all i, j , k, and
(3) [grad(/),grad(/7)] is a linear combination of grad(/1), . . . ,grad(/m_n) with coeffi-

cients being constant along the pre-images of / , for all i and j .
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136 SIGMUNDUR GUDMUNDSSON

The isoparametric foliation ^s associated to / is the decomposition of M into the
pre-images of /. # } is an n-dimensional foliation with possible singularities (focal
varieties). An isoparametric submanifold is the pre-image of a regular value of an
isoparametric map. An isoparametric submanifold L of M is characterized by the
following conditions:

(1) L has flat normal bundle, and
(2) the principal curvatures of L in the direction of any parallel normal field are

constant.

Given an isoparametric submanifold L of M the corresponding isoparametric foliation
^ } is uniquely determined. Its leaves are simply the submanifolds of M, which are
parallel to L.

The concept of an isoparametric map is a generalisation of that of an isoparametric
function, first studied by Cartan in [7,8]. The definition as above was given by Terng in
[24] after Carter and West had studied the case of codimension 2 in [9,10].

2. Examples

We now give examples of horizontally homothetic, harmonic morphisms with totally
geodesic fibres n:U<=M->N between open and connected subsets of simply connected
space forms. They have all got integrable horizontal distributions except Example 2.7.
The dilation is constant in 2.6-2.7 but non-constant for 2.1-2.5. These examples play a
major role in our classification given in the next section.

Example 2.1. Sm\S° = ({(cos(s),sin(s) • e)e U x Rm|se(0,7r) and esS"1"1}, <,>„„,+•). Let
n:Sm\S°-*Sm~l be the projection along the longitudes onto the equatorial hypersphere,
given by ft:(cos(s),sin(s)-e)i—>e. For eeSm~l the fibre of ft over e is parametrized by
arclength by ye(s) = (cos(s), sin(s)-e), where se(0, n). Along the fibres we have A2(s) =
l/sin2(s). The level hypersurfaces are small spheres S|"sii,/S)| with constant sectional
curvature Ksm.^\s) = l/sin2(s).

Example 2.2. Let ft: Rm\IR0-»Sm~1 be the radial projection, given by ft:xi->x/|x|. For
eeS1"'1 the fibre of ft over e is parametrized by arclength by ye(s) = s-e where seR+,
and along the fibres X2(s) = l/s2. The level hypersurfaces are spheres Sf"1 with constant
sectional curvature Ksm-, = 1/s2.

Example 2.3. Let Hm\H° = (B7(0)-{0},(4/(l-|x|2)2)-<,>Rm), where B?(0): =
{xeRm| |x |<l} . Let n:Hm\H0^>Sm~1 be the radial projection, given by ft:xh-»x/|x|. For
eeSm~l the fibre of ft over e is parametrized by arclength by ye(s) = tanh(s/2)• e, where
seR+, and along the fibres X2(s) = l/sinh2(s). The level hypersurfaces are spheres
STanb(s/2) with constant sectional curvature Ks%-t, 2 = l/sinh2(s).

Example 2.4. Let Hm = (Um~l x R+,(l/x2)•<,>„„,) and ft:.fr->IRm-1 be the projection
onto R"1"1 followed by a homothety, given by ft:(p,x)i—><xp, where <XE(R\{0}. For
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peUm~l the fibre of it over ap is parametrized by arclength by yp(s) = (p,e~s), where
seU, and along the fibres P(s) = <x2e~2s. The level hypersurfaces are affine subspaces
U"~.l: = {(p,e-*)eUm~l xU + \peUm~1} with constant sectional curvature KRm-, = 0.

Example 2.5. Hm = (Um-2 x U x R+,(l/x2) •<,>„„,) and Hm-1 = (Rm-2 x U+,
(l/x^!)^,),,™-!). Define a map n:Hm^Hm-1 by A:(p,x,j/)t-»(p,v/x

2 + / ) . The fibre
over (p,r) is the semicircle in [Rm~2xlR+xR with centre (p,O,0), radius r and
parallel to the coordinate plane {(0, a, b) \ a, b e M}. The fibre is parametrized by arclength by
7(p r)(s)=(p, r • tanh(s), r/cosh (s)). Geometrically this map is a projection along the geodesies of
Hm orthogonal to Hm~\ where the latter is considered as the subset Um~2 x {0} x U +

of Hm. Along the fibre X2(s) = l/cosh2(s). The level hypersurfaces are H?~1: = {
(p,r-tanh(s),r/cosh(s))6//m|pelRm"2,relR+} = Rm-2xspanR+{(0,tanh(s), l/cosh(s))}, i.e.
they are hyperbolic hyperplanes with constant sectional curvature KH^,-, = — l/cosh2(s).

Example 2.6. Let n:Um-*W be the orthogonal projection followed by a homothety,
given by 7r:(x1,...,xm)i->a(x1,..,xn), where aeR\{0}. For peW the fibre of fc over p is
parameterized by yp(s)=(p,s), where seUm~". The dilation is constant X2(s) = <x2.

Example 2.7. Let F = C, H or Ca, i.e. the complex numbers, the quaternions or the
Cayley numbers. Put (m,n):=(2dimF-l,dimF) = (3,2), (7,4) or (15,8). Define n:Fx
F = Rm+1^UxF = W + 1 by 7r:(x,y)i— (̂|x|2 — |y|2,2x-y). The restrictions of n to
SmcUm+1 are the Hopf maps. They are harmonic morphisms ft: = n\sm:Sm^-S", with
constant dilation X=2. The fibres are totally geodesic and therefore isometric to
Sm~"czSm. It can be shown that the horizontal distributions are nowhere integrable.

3. Classification

We remind the reader of the definition of the fundamental tensors of a submersion, A
and T, first introduced in [21]. For two vector fields E, F on M let

, and

TEF: =

Lemma 3.1. If n:M-*N is a horizontally conformal submersion and X,Y horizontal
vector fields, then

A V 1

AXY=-

Proof. Easy calculation, using the definition of the Levi-Civita connection, see [17].

The first part of the following Lemma 3.2 is a well known result from the theory of
conformal foliations. See for example [25].
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138 SIGMUNDUR GUDMUNDSSON

Lemma 3.2. Let Mm and N" be two Riemannian manifolds and n:M-+N a horizontally
conformal submersion. If the horizontal distribution is integrable, then any integral
submanifold L is totally umbilic in M. If n is horizontally homothetic, then KL = X2- KN.

Proof. Let X, Y be the two local horizontal vector fields. Since the horizontal
distribution is integrable we have V[X, r j = O, so AXY=-{X2/2)(X, y>-gradr(l/A

2).
Let V be a local parallel unit normal field along one of the integral manifolds L. The
corresponding shape operator Sv is given by Sv:Xh->3tf"VxV=AXV. Let {Xu...,Xn} be
a local orthonormal frame for the horizontal distribution 3tf, then

SV(X)= t <AxV,Xi}Xi=-fj <V,AxXt>Xt

This shows that Sv=(X2/2)V(l/X2)-Idje, so L is totally umbilic in M. If n is horizontally
homothetic, then n\L:L->N is a homothety, so therefore KL = A.2KN. •

Totally umbilic submanifolds L of simply connected space forms Mm have been
classified. For this see for example [23]. They have constant sectional curvature
KL^KM. It then follows from Lemma 3.2 that if M is a simply connected space form
and n is horizontally homothetic, then N must have constant sectional curvature.

It was noted by Baird and Eells in [1] that a non-constant dilation of a horizontally
homothetic harmonic morphism of codimension one is an isoparametric function. We
generalize this further to higher codimensions by the following:

Theorem 3.3. Let M and N be simply connected space forms and U an open and
connected subset of M. Let n: U-*N be a horizontally homothetic harmonic morphism with
totally geodesic fibres and integrable horizontal distribution. Further let SP^ be the
horizontal foliation, whose leaves are the integral submanifolds. Then iFjf is a totally
umbilic isoparametric foliation.

Proof. It follows from Lemma 3.2 that Le^"^ is totally umbilic in U. To show that
L is isoparametric we must prove that its normal bundle v(L) is flat, and that the
principal curvatures of L in the direction of any parallel normal field are constant. Let
V and U be two local parallel unit normal fields along L, then follows from the proof
above, that SUSV — SVSU = O. Since M has constant sectional curvature, it follows from
Proposition 2.1.2 of [22], that the normal bundle is flat. Let X be a local horizontal
vector field, then

= 0
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X )=0 .

= 0

since V is parallel and n has totally geodesic fibres. The principal curvatures of L in the
direction of any parallel normal field are therefore constant along L. •

Let M = Sm, Um or Hm and J* be an n-dimensional isoparametric foliation of M with
possible singularities (focal varieties). If the regular leaves of #" are totally umbilic in M,
then they have constant sectional curvatures, which all have the same sign. Given this
sign, the foliation is uniquely determined up to an isometry of M. 3? is known to exist if
and only if (M,/Cleaves)=(Hm, >0), (S" ,£ l ) , (R", >0), (R", =0), (//m,=0),
(Hm, e[— 1,0)). Furthermore i* has singularities exactly if Kieaves>0.

Corollary 3.4. Let (M,N) = (Sm,Sn), (Um,Sn) or (Hm,Sn), then there exists no horizon-
tally homothetic harmonic morphism n:M-*N with totally geodesic fibres and integrable
horizontal distribution.

Proof. If n existed, then it would define an isoparametric foliation on the whole of
M. But since S" has positive constant sectional curvature this is not possible. •

It follows directly from the definition, that the composition of two harmonic
morphisms n:(M,<,»-*(M,<,>#) and n:(M,<,>M)-KN,ON) is again a harmonic
morphism. It is easily checked, that if n and n are horizontally homothetic with totally
geodesic fibres, so is n = iioft. The same is true for the integrability of the horizontal
distributions. We now use these facts to construct the above mentioned unique totally
umbilic isoparametric foliations. They are given as the horizontal foliations of the
following compositions of Examples 2.1-2.6.

°H.- S"

H- S"

j/°U- Sn

. Tjm 2.4. tn>m— 1 2.6.
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140 SIGMUNDUR GUDMUNDSSON

ns:H
m H- Hm~* H- • • • H- Hn+ x H- H"

7 t g . Ira — • Ira

Theorem 3.5. Let (M,N) = (Sm,S"), (IRm,S"), (Hm,Sn), (Hm,W), (Hm,Hn) or (Um,W),
and %{. Uj-*N be the corresponding harmonic morphism given above. Further let U be an
open and connected subset of M and %\U-*N be a horizontally homothetic harmonic
morphism. If n has totally geodesic fibres and integrable horizontal distribution, then up to
isometries of M and N,n = n\ v.

Proof. It follows from Theorem 3.3 that n determines a totally umbilic isoparametric
foliation !FV on U without singularities. This foliation is up to isometries of M uniquely
determined. This means that there exists a foliation preserving isometric embedding
a:{\J,^v)-*{JUi,3'c)^ where 3FCi is the foliation given by £,:£/,—•#. a is foliation
preserving, so there exists a map a:N-*N, such that the following diagram commutes.

a

nt

a

N >N

The maps n and TC, are horizontally conformal and a is an isometry, so a is
conformal. If A? is the corresponding conformal factor, then n* Aj: [/->R+ satisfies

o*kf and A2 are horizontally constant, so n*kj is. n*X] is a pull back via n and
therefore vertically constant, so a is a homothety. If N = S" or H", then Aj is obviously 1.
But if N = W then A? can be any ae!R + . Q

Together Theorems 0.4 and 3.5 give a classification for horizontally homothetic
harmonic morphisms with totally goedesic fibres and integrable horizontal distribution
between open and connected subsets of simply connected space forms.

To see that the condition of integrability is necessary, consider the following
horizontally homothetic harmonic morphisms.

7t8: IR^IR1 2-4- U3\{0} U- S2,

and
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n9: U*\Ul H- S3\{N,S} " • S2.

They both have totally geodesic fibres, but their corresponding vertical foliations are
fundamentally different, so the maps must be different. It is the non-integrability of the
horizontal distribution of ng that is responsible for this.

From Theorem 1.2 we see that the condition of horizontal homothety on n in
Theorem 3.5 can be dropped in the case when n^3 . It also follows from Proposition 2.6
of [16], that if (M,N) = (Um, R"), then K:U^N has automatically integrable horizontal
distribution. In this case the statement of Theorem 3.5 is exactly that of Theorem 0.3.
For the case when n has codimension one we have the following:

Theorem 3.6. Let (M,N)=(Sm,Sm-1), (U^S"1'1), (H^S1"'1), (Um,Um-1), (//"Or"1)
or (Hm,Hm~l) and U be an open and connected subset of M. Ifn: U—*N is a horizontally
homothetic harmonic morphism, then n has constant dilation, or up to isometries of M and
N, n = ft\v, where it is one of the maps given in Examples 2.1-2.6.

Proof. If the dilation X is not constant, there exists a point peU, such that
grad(A2),£0 on an open neighbourhood W of p. It follows from gradjp(A2) = 0 that Jf is
integrable on W and its integral manifolds are the level hypersurfaces of A. Since n has
codimension one its fibres are totally geodesic. We can therefore apply Theorem 3.5 on
W. n is analytic and extends therefore uniquely onto the whole of U. •

Proposition 3.7. Let Mm and N" be simply connected space forms, and U an open and
connected subset of M. If n:U-*N is a harmonic morphism with constant dilation and
totally geodesic fibres, then (M,N)=(Sm,Sn) or (0T, W).

Proof. The cases (M,N) = (Sm, W), (Sm,Hn) and (Um,Hn) is excluded by Theorem 0.4.
Let X,Y€rf and Ver be local vector fields, such that |jf| = |y| = |K| = l and
{X, Y)=0. Modifying O'Neill's well known curvature equations for Riemannian
submersions (see [21]), one gets:

(1) KM(X A V) = \AxV\2,and
(2) KM(XAY)=I2-KN(XA Y)-

For this see [17]. Equation (1) now excludes the cases (M,N)=(Hm,Sn), (Hm,W) and
(Hm,Hn). If M = Um, then AxE = 0 for all EeTM, so the horizontal distribution is
integrable. This makes the case when (M, N)=(Um, S") impossible by (2). •

For the case when (M,N) = (Sm,Sn) we have the following conjecture.

Conjecture 3.8. Let U be an open and connected subset of Sm and K:U->S" a
harmonic morphism with constant dilation. If n has totally goedesic fibres, then up to
isometries of Sm and S" n = n\y, where n is one of the Hopf-maps given in Example 2.7.
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This conjecture is true if U — Sm, by the classification of Riemannian submersions
between spheres due to Escobales, see [13].
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