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Periodic gravity-capillary waves on a fluid of finite depth with constant vorticity are
studied theoretically and numerically. The classical Stokes expansion method is applied
to obtain the wave profile and the interior flow up to the fourth order of approximation,
which thereby extends the works of Barakat & Houston (1968) J. Geophys. Res. 73 (20),
6545-6554 and Hsu et al. (2016) Proc. R. Soc. Lond. A 472, 20160363. The classical
perturbation scheme possesses singularities for certain wavenumbers, whose variations
with depth are shown to be affected by the vorticity. This analysis also reveals that for
any given value of the physical depth, there exists a threshold value of the vorticity above
which there are no singularities in the theoretical solution. The validity of the third- and
fourth-order solutions is examined by comparison with exact numerical results, which are
obtained with a method based on conformal mapping and Fourier series expansions of the
wave surface. The outcomes of this comparison are surprising as they report important
differences in the internal flow structure, when compared with the third-order predictions,
even though both approximations predict almost perfectly the phase velocity and the
surface profiles. Usually, this occurs when the wavenumber is far enough from a critical
value and the steepness is not too large. In these non-resonant cases, it is found that the
fourth-order theory is more consistent with the exact numerical results. With negative
vorticity the improvement is noticeable both beneath the crest and the trough, whereas
with positive vorticity the fourth-order theory does a better job either beneath the crest or
beneath the trough, depending of the type of the wave.
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1. Introduction

Gravity-capillary (GC) waves can propagate at the surface of a fluid when both gravity
and surface tension are important as restoring forces. Usually, they first appear during the
initial generation of waves by the wind, but they may also result from almost breaking
gravity waves, rain or other millimetric- to centimetric-sized disturbances.

In view of their importance to wave energy transfer across the spectrum due to
nonlinear wave—wave interactions, and to air—sea momentum transfer as they contribute
to some extent to the ocean surface stress, and to remote sensing of the ocean surface
as their wavelengths (from 2 mm to 2 dm) contribute to a large extent to the sea-surface
backscattering of electromagnetic microwaves in the X-band (centimetre range) and the
Ku-band (subcentimetre range), they have been the subject of many studies. In fact,
understanding their properties has been of utmost importance during the last decades
with the advances of imaging airborne and spaceborne radars. The present investigation,
however, is restricted to the problem of periodic GC waves steadily travelling on water of
finite depth with a linear shear current.

Generally, methods used to solve problems related to periodic GC waves of arbitrary
amplitude can be divided in two main types. One is based on perturbation expansion
methods and the second category is purely numerical. The first to investigate GC waves
was Harrison (1909) who obtained a third-order Stokes-type solution to the problem of
periodic GC waves steadily travelling on water of infinite depth in irrotational flows. This
work was extended to fifth order by Wilton (1915), who also found that the classical Stokes
expansion method breaks down for a countable set of critical wavenumbers. For the largest
of these critical wavenumbers Wilton showed that two different solutions could exist, the
so-called Wilton ripples. One of the profiles is gravity-like having a phase speed that
increases with the amplitude, while the other is capillary-like having a phase speed that
decreases as the amplitude increases. The phenomenon of Wilton’s ripples was further
analysed by Pierson & Fife (1961) and Nayfeh (19705), who found valid solutions when
the wavenumber is near the first critical value and second critical value, respectively.

These works based on perturbation expansions culminated in the higher-order
extensions by computer with the seminal reference works of Hogan (1980, 1981), using
the methods pioneered by Schwartz (1974) for gravity waves. On extending Pierson & Fife
(1961), the phenomenon of Wilton’s ripples was resolved by Hogan (1981), who showed
how to modify the perturbation scheme to avoid the non-uniformity in the ordering of the
Fourier coefficients of the surface profile, which occurs when the wavenumber is both at
and near singular values. In finite depth the classical perturbation method was carried out
by Nayfeh (1970a) and Barakat & Houston (1968) to third and fourth order, respectively.
Wilton ripples were also found to exist in finite depth, and Wilton-like solutions were
derived at second order by Barakat & Houston (1968) and at third order by Nayfeh (1970a).

Though much attention has been given to GC waves at the free surface of irrotational
flows, rather few studies have been made in the case when the flow is rotational. While
irrotational flows are suitable for waves travelling into still water or over a uniform current,
non-uniform currents usually give rise to water flows with vorticity. Quite apart from
the difficult questions of existence, uniqueness and analyticity of small amplitude GC
waves in the case of a rotational flow with finite depth (readers interested by these issues
may read Martin (2013), Martin & Matioc (2013) and references therein), a brief, and
certainly incomplete, review of the literature shows that the vast majority of existing works
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concerning GC waves on rotational currents assume that the waves are two-dimensional
and the background current is linearly varying with depth, as these assumptions simplify
the analysis, and thus the flows have constant vorticity.

In contrast with the case when surface tension is neglected, studies devoted to the
computations of travelling periodic GC waves in the presence of a linear sheared current
are very limited. One can refer to the paper by Brantenberg & Brevik (1993) who used
a two-layer model for the background current, the constant vorticity being confined in
an upper layer on top of an infinite irrotational layer, and a third-order Stokes expansion
for the GC waves propagating on the surface of the upper layer. Subsequently, Hsu et al.
(2016) derived a third-order Stokes-like solution for periodic steady waves which includes
the effects of capillarity and constant vorticity, assuming a single layer model.

Using numerical methods, inclusion of surface tension effects in rotational flows with
constant vorticity has also been considered by Kang & Vanden-Broeck (2000), but the
focus was more on pure solitary waves and the so-called generalized solitary waves that
are characterized by oscillatory tails in the far field. Most recently, in the same vein, Guo
et al. (2014) have carried out numerical studies on the unsteady dynamics of GC solitary
waves, using the same time-dependent conformal mapping technique introduced by Choi
(2009) for pure gravity waves in a background linear sheared current.

Recently, there has been a renewed interest in several aspects of the dynamics of GC
waves in the case of constant vorticity and finite depth. Following Chabane & Choi (2019)
who analysed, for irrotational flows, the interactions of three distinct GC modes that are
not necessarily collinear, Ivanov & Martin (2019) derived the amplitude equations to study
three-wave resonant interactions of one-directional propagating GC waves in the presence
of a linear sheared current. Moreover, from multiple scale expansion of the primitive
equations in finite depth and classical expansions series of the unknown variables, Hsu
et al. (2018) derived a third-order nonlinear Schrédinger equation to study the stability of
weakly nonlinear uniform GC wavetrain to one-dimensional disturbances. By analysing
the effect of vorticity on the stability diagrams of the problem, Hsu et al. (2018) concluded
that the properties of modulational instabilities (side-band disturbances) of a uniform
GC wavetrain depend crucially on the existence of a linear shear current. At the same
time, Curtis et al. (2018) derived a higher-order nonlinear Schrodinger equation in the
presence of surface tension, to further investigate how a linearly sheared current affects
the modulational instability properties of weakly nonlinear GC waves in deep water, with
a particular attention on the motion and mean properties of particle paths. Later on, Dhar
& Kirby (2023) extended the results of Hsu et al. (2018) to fourth order in the finite depth
case, and they showed that their results exhibit considerable deviations from those obtained
with the third-order analysis. Very recently, in order to get insights in the modulational
instabilities, Gao et al. (2021) have developed weakly nonlinear theories for two particular
resonant cases, second-harmonic resonance and long-wave—short-wave interaction
between capillary-gravity waves in finite depth with a linear shear current. We should also
mention that the modulational instability has also been studied from heuristic non-local
evolution equations with both surface tension and constant vorticity, more precisely with
an extension of the heuristic Whitham equation by Hur & Johnson (2015) and with a corre-
sponding set of shallow water equations by Hur (2019) to permit bidirectional propagation.

Considering the results mentioned above and given that, to the best of the authors’
knowledge, all the existing Stokes-type solutions for GC waves with constant vorticity
in finite depth are only accurate up to the third order, we shall extend in this paper
the analysis of Hsu et al. (2016) to include the fourth-order effects. The present paper
also extends the work of Barakat & Houston (1968) who obtained, without vorticity,
the fourth-order Stokes-like solutions for periodic GC waves in finite depth. One source
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of motivation in the present study has been the discovery by Fang et al. (2023) that
experimental evidences indicate that higher-order Stokes solutions are more accurate in
describing the velocity distributions, especially in strong following currents and positive
vorticity conditions. These authors have derived a new set of fifth-order Stokes solutions
for periodic gravity-waves interacting with a linear shear current.

To assess the accuracy of the third- and fourth-order theories, we shall obtain the refer-
ence solution of the primitive equations using a numerical method based on a conformal
mapping method and Fourier series expansions of the unknowns. The differences between
the exact results and the approximations are examined in terms of surface profile, phase
velocity and interior horizontal wave-induced velocities. It should be emphasized that,
with constant vorticity and surface tension effects taken into account, previous studies
based on perturbation methods have focused mainly on the wave profiles, but rarely on
the wave-induced velocities beneath the free surface. As far as we know, only Curtis et al.
(2018) have used a second-order approximation of the interior wave-induced velocities in
infinite depth, in order to analyse the mean transport properties of weakly modulated plane
GC waves with constant vorticity. Thus, our work complements the work of Curtis et al.
(2018), and reveals that significant differences between the third-order and fourth-order
predictions exist in the wave-induced velocities below the free surface, even though both
approximations predict almost perfectly the phase velocity and the surface profiles.

The paper is organized as follows. The basic equations and the framework of the problem
is presented in § 2. In § 3, we derive the fourth-order analytical solution for these periodic
GC waves and discuss the effects of depth and vorticity on the occurrence of singularities
in the classical perturbation theory. In contrast with the analysis presented by Hsu et al.
(2016) the occurrence of singularities at any order is unambiguously elucidated as a
function of depth and vorticity. In § 4, we first introduce a numerical method to compute
exact steady GC wave solutions with constant vorticity in finite depth and, following, a
comparison between the numerical results and the analytical results is presented. Final
remarks are summarized in § 5.

2. Basic equations for steady waves

As is well known for two-dimensional incompressible flows of inviscid fluids, any pertur-
bations of a background flow with constant vorticity, either small or of finite amplitude, are
necessarily irrotational motions as a consequence of Kelvin’s circulation theorem. Hence,
letting £2¢ be the magnitude of the shear, it is possible to assume the existence of a velocity
potential function @*(x, y, t) such that the total velocity can be written as

V=[R20 + ho)li+ VO*(x, y, 1). @2.1)

With this decomposition, the vorticity of the flow equals —£2¢. In this study, we consider
the evolution of a steadily travelling periodic GC wave on the free surface of water of
finite depth %g. The undisturbed free surface is taken to the plane y = 0, where y points
vertically upwards, and the bed of the water is defined by y = —hy.

Dimensionless variables are introduced by the following transformations:

[k3 k [k
Dop* 5> @, kox— x, Vegkot —t, —0P0—> P, —OC*—>c, (2.2)
8 Prg g

where x=(x,y) and p, g, Py, ko, C,, represent, respectively, the fluid density,
gravitational acceleration, dimensional pressure, wavenumber and wave phase velocity of
a steadily travelling wave. With this scaling, the relevant dimensionless parameters are
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0= S0 Tk koh 2.3)
iy —) K=—, /"L = k0", .
v &ko P8
where T represents the surface tension coefficient, and (2.1) can be expressed as
V=[2G +wli+Ve(x,y,1). (2.4)

Since the wave-induced motions are irrotational, the velocity potential @ (x, y, t) satisfies
the Laplace equation

Dy +Pyy=0 for —pu<y<o(x, 1) (2.5)

where y ={(x, t) represents the dimensionless surface elevation, and the boundary
conditions are

O, =0 at y=—h, (2.6)

Qy =4+ [P+ 2@+ wee at y=24(x, 1), 2.7
1 2 1 2 92 2
i+ 310y + 2+ WP 5O+ = QY = -+

— k(40D = F0) a y=c 0. 28)
Here v is the harmonic conjugate function of @, and f(¢) is an arbitrary function of time
t, which can be set to zero without loss of generality or absorbed into the definition of @.

To seek steadily travelling waves of the above equations, it is also convenient to choose
a frame of reference moving with the dimensionless phase velocity c. Hence, we make the
following change of variables:

E=x—ct, n=y, 1T=I, (2.9)
so that the governing equations become
Pee + Py =0, —pu<n<E®), (2.10)
D, = (P +RE - C)Eg, n=E(§), (2.11)
(@5 + RE—C)P? —C*+ @ +2F
—2%Ege(1+E) TP =K, n=E®), (2.12)
®,=0, n=-—u, (2.13)

where @(&,n)=@(x,y,t), E&)=¢(x,t), the Bernoulli’s constant K =22y +
Q2E? —2Q{E(c— R2u)}and C =c¢ — 2p.

3. Asymptotic solutions
In order to solve (2.10)—(2.13), we use the classical Stokes expansion method and take
€ =koay as a small parameter, where a; represents the amplitude of the first harmonic.
Like Hsu et al. (2016), we consider the following expansions for the unknown quantities
@&, m), EE), Cand K:

PE M=) DuEm), EE =) En¢), C=) €"Cn, K=Y Kn,
m=1 m=1 m=0 m=0

3.1

where the quantities @,,, E,, and K,, are assumed to be of order €. By definition, the
quantities C,, do not depend on € and so the leading-order term is m = 0, whereas each
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term in the series of the velocity potential @ (&, ) and the surface elevation amplitude
E (&) depend on the amplitude parameter €, the subscript indicating its order. Substituting
(3.1) in the system of equations (2.10)—(2.13) and then equating coefficients of different
powers of € on both sides, we obtain the approximations for consecutive orders of the
nonlinear problem.

To the first order in the expansion parameter €, we obtain the velocity potential and the
surface elevation,

_ Coe cosh[(n + )]

D18, n)= pu W sin(§), (3.2)
E(§) =€ cos(§), (3.3)
K{=0, (3.4

as well as the linear dispersion relation connecting frequency and wavenumber of the
primary wave

Cl+0CoR=0(1+x), (3.5)

where o = tanh(kohg). Equation (3.5) is the same as equation (3.7) of Hsu et al. (2016)
and equation (38a) of Kang & Vanden-Broeck (2000) by returning to dimensional form.
Setting £2 = 0 §2/Cy, the linear dispersion relation (3.5) can be rewritten like

CC+2)=0(l+x), (3.6)

which shows that in any case £2 > —1. As we shall see, using £2 and ¥ =«/ (an),
introduced for convenience, we have obtained compact formulae for the higher-order
coefficients.

Calculation of the higher orders is quite standard and therefore omitted here to improve
readability. The analytical work was done with Mathematica. In the following we present
only the novel fourth-order equations and corresponding solutions. Since we have found
few misprints in some formulae of Hsu et al. (2016), both at second order and third order,
the intermediate results are given in appendices A and B.

Next, we discuss the occurrence of resonant cases taking into account vorticity and
finite depth effects. Notice that the misprints found in the formulae of Hsu et al. (2016)
have no consequences on the expressions of the first two critical values x| and k> (see
appendices A and B). Actually their expressions are identical to ours, when their (B, X)
are replaced by our (k, £2). When k = k1, the second-order solutions and the third-order
solutions are found to be singular, whereas when k =7 singularities occur only at
third order. Hsu et al. (2016) have discussed the dependency of these critical values on
depth and vorticity, but their interpretation is ambiguous. We shall therefore clarify this
discussion herein this study.

3.1. Approximate solution of the fourth order
To the fourth order in €, we obtain the sequence of equations given by

Pyee + Payy =0, —u<n<0, (3.7

1
Pan + CoEag = —E1P3yn — E2Poyn — E3Pryy — EE%‘pﬁmn — E\Ex@uiyy
1
- 8E13‘151;mnn + (P1e + LEDE3; + (P2 + E1Puzy + 2E2 — C2) En,
1
+ (@3 + E1 oy + ExPrey + S E{Pregy + 2E3 = C)Eie, =0 (38)
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1
CoPss — (1 = CoS2)E4 + Kk Egee = 3 ((D%S + (p22;7> + P P3s + D1, D3y
1
+ E1(@ 15 Pogy + Pox Pigy + Puy Py + P2 Puyy) + 5 B} (‘Plzgn + @i Pugny
1
+ @+ D1y Pra ) + E2(P1sPrcy + D1y Pryy) + 52 (E3+2E4E5)

1
+ 2 (E1<P35 + Ex®Py + E3Pis + E%szgn +2E1ExPigy + EE%CPlg,m)

1 1
—Co (El‘i’ssn + ExPogy + E3®@iey + EEf‘Pzw + E1ExDigpn + gE?GDISnnn)

3
—C3 (@15 + .QE]) —C ((Pzg + RQE; + E1<P1g,7) + EKEIZSEZSS

1
+3KE1§E2§E1§§ — §K4:0, n=0, 3.9
By =0, 5=—p. (3.10)

Classically, we seek the solutions for the fourth-order potential and elevation amplitude
in the form

. cosh[4(n+ )] . cosh[2(n + )] .
Dy, n) = A44W sin(4§) + A42W sin(2§), (3.11)
E4(&) = agq cos(4€) + aqp cos(2£). (3.12)

Then by inserting (3.11)—(3.12) into the boundary conditions (3.8)—(3.9) and using the
first-, second- and third-order solutions, after tedious algebra we obtain

3¢ (14602 +0%) - ) 4
Agq = 1430692 +2(1 —30° —20
*T8[6+00) —15k(1+02)] 03(1+302) [( )82 +2( )
_ Coe (14 60%+0%)
+ 15k02(1+3 Z]A +
K3 A 51 o) — e 1 0D] o
X [52 + {2+ 157(72} 2+ - 02) + 15702] asz
Coe? (14602 +0%

7681 — 3072 [(5402) — 15k(1 +0?)] !0

x [356 +{3(9 t40?) +45702} §5+{12(9 1302 4+ 0% + 1870221 + 1102)} o
n {3(81 — 1402 4+ 210%) + 9% 2(149 + 6802 + 195™) + 270264 (1 + 02)} o

+ {12(27 — 2902 +216* — 46%) + 180> (139 + 1802 + 416%)

+ 2720 (51 — 3402 + 110—4)} 2+ {3(81 — 19202 + 1690* — 825%) + 9%

x (273 — 11002 +2530* — 126%) 4 54K%0* (47 — 8402 + 156%) — 3240;308} 2

+ (81 — 34202 +4320* — 3020° + 1316®) + 6K62 (171 — 17762 + 3590* — 2830 %)

+ 144204 (12 — 3802 + 430 — 59407308] : (3.13)
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3¢ (1402

As = 1430622 +2(1 —o*) +3kc2(1 +362) | A
2T 41 =30 o3(1 + 30 2)[(+U) 2=+ K“(+(’)] 33
€ (14+0?) ) . et (14+02)
2 +2(1— 302 | Ay —
YIS0 o0 [ 2 =a+ ‘”] TR =302 o6

X [53 + {(5+202) +3E02}§2+ {3(34_02) +6E02(2+02)}§
Coe* (1402

48(1-3k)2 o6

+{3(25+02)+45 2}:2 +{39(3—02)+18702(7—02)+54_2 4}9

4 6—02—0*) + 370 (5—0)]C2+ [1853

+ (63 — 5202 + 136*) + 3k0>(31 — 230%) + 907204] , (3.14)
tanh(4 ) A + 3¢ A + (_Q + Dass 4+ et 1
ag4 = ———— — — a —_———
44 Co Mo, 3T 1921 —30)2 o7

x [355 F 122402 + {9(9 602 4 o) + 1882 (1 + 62)} 2

+ {12(12 702 4 20%) + 18702 (5 + 04)} Fo {3(45 41202 4 130% — 20

+ 180 2(9 — 802 + 30*) — 216K%0 6} 24227902 +27c* = 316°)

+ 128629 — 2102 + 280%) — 396720—6] : (3.15)

and, furthermore,

tanh(Z;L)A N 3e PR €2 (Cran)+ e 1
a. = _— _— a -
42 Co 2C BT 2c, N T o P T 2401 = 3%) o3
x [952 + {3(9 o)+ 18?02} 2+ (27 —1962) + 30702] , (3.16)
Coe — Cie —» — 4 Cie* 1
Ki= Y (@+DA3+ L2 +02— — e CyCy+ —0°
4= (£2+ DAz + 02( + o%)az — € Co 2+32(1—3/<)2 g

x [56 L4242 + {4(7 +402 + 0% + 6802(1 + 0 )}

+ {2(27 + 802+ 90%) + 128623 — 202 + 04)} o

+ {12(5 — 202 4 50%) + 12862 (7 — 1402 + 20%) + 920 *(1 — 1002 + 04)} o

n {12(3 — 502 490 — 260) 4 6k (15 — 5302 4+ 270% — ) + 36x%04 (1 — 602)}

X 2 +(9—360%4780* —400° 4+ 908) + 12k0%(3 — 1502 + 120* — 46%)

1361204 (1 — 902 + 204)] : G.17)
C3=0. (3.18)

Equations (3.13)—(3.18) constitute the main analytical results of this study and extend
the third-order analysis initiated by Hsu et al. (2016). In the next section we shall use
these relations to describe the improvements gained with the fourth-order approximation
by analysing not only the surface profiles but also the internal flow velocities.
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Not surprisingly, the fourth-order approximation is found to be invalid when « equals
another critical value, k3, the root of the following equation:

(540202

= — — . (3.19)
1514+ 2)+5Q2+32)02 —o*
Without vorticity, (3.19) becomes
5+ 0202
L A 3.20
BT 1 + 1002 — o* (3.20)

in agreement with the results of Barakat & Houston (1968). This latter equation reduces
in deep water (o = 1) to the other well-known value «3 = 1/4.

2. Critical wavenumbers

Since the pioneering works of Harrison (1909) and Pierson & Fife (1961), it is well known
that the application of the Stokes expansion method for the periodic steady irrotational
GC wave problem, either in deep water or finite depth, is not legitimate when « is close
to the critical values «;, (n > 1), which form, when they exist, an infinite discrete set of
critical values. At these critical values, it is observed that there is a lack of uniqueness in
the linear solution. Physically, it can be explained by a resonance mechanism due to the
fact that infinitesimal waves of wavenumber k¢ and nko have the same phase velocity when
K =K.

For irrotational GC waves on finite depth, Barakat & Houston (1968) remarked that
the nth approximation obtained with the classical Stokes expansion method breaks down
when « = k1, the roots of the following equations:

n tanh yu — tanh(n )

~ n2tanh(np) —ntanh n 2 3-21)
In deep water these roots have the well-known values «,_; = 1/n (n > 2). Solutions that
bifurcate from these critical values are the so-called Wilton ripples, which correspond to
resonances between the fundamental and the nth harmonic. For n = 4, with some algebra
one can show that (3.21) corresponds to (3.20).

If the dependence between the dimensionless parameters x and p is not considered,
graphs of k, versus ;© may be misleading with respect to the interpretation of the influence
of the depth of the fluid layer. It should be realized that the critical numbers are the roots
kn—1 of the following equations for n > 2:

K [n2 tanh (/%) — n tanh(/cl/zfz)] - [n tanh(c /%) — tanh(nxl/zfz)] -0, (3.22)

obtained from (3.21) and the relation = «'/2h, where h=kcho and k.= /pg/T.
Numerical calculations were performed for water (T = 74 dynes cm ™! ), by using a variant
of the Newton—Raphson method to solve (3.22) for x. The results for the first three critical
values are shown in figure 1 as a function of h. The dotted lines represent the well-known
asymptotic values of k, (n =1, 2 and 3) for irrotational GC waves in deep water. The thin
solid lines are drawn to show the dependency of the dimensionless number « on the depth
layer h for fixed values of 1. The thin solid lines of figure 1 are drawn for 4 = 10, 2 and 1.
As shown in figure 1 the critical values k, decrease rapidly with decreasing 4, and
eventually disappear when i < h. = /3. It is noticed that these results match those of
figure 2 in Barakat & Houston (1968). For water &, = /3 corresponds to the particular
water depth kg ~ 4.76 mm. In fact, when the surface tension is large, or equivalently, the
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Figure 1. Variations of i, k2, k3 as a function of depth for water for irrotational GC waves. In any case
k1 > k2 > k3. The dotted lines represent the corresponding deep-water values. Using a separate y-axis, the
relation 1 = «'/?/1 is plotted for = 10, 2 and 1 (from the right to the left).

fluid depth is sufficiently small so that i < h,, the phase velocity is strictly a monotonic
function of the wavenumber, and thus no resonances are possible. In other words, when
h < h, the asymptotic expansion of the solution is regular to any order, as demonstrated
by Nayfeh (1970a) who considered the limit <« 1. In contrast, when h>he.=+3
resonances between the fundamental and the nth harmonic are possible. Figure 1 also
indicates that using the asymptotic theory with a constant value of w, the fundamental
dimensional wavenumber ko being kept fixed, the first three singularities are found at the
intersections between the corresponding thin solid line and the curves in thick solid lines. It
should be emphasized that for a given u each critical value of the wavenumber corresponds
indeed to a different physical depth of the fluid layer. Nonetheless, for /1 > 5, the effects of
the depth are negligible and the GC waves may be regarded as deep-water phenomena.

It is possible to generalize the approach of Barakat & Houston (1968) to the case of
GC waves with constant vorticity in finite depth. Namely, for steadily travelling periodic
waves it is expected that the nth-order approximation obtained with the classical Stokes
expansion method will break down when the wavenumber ko satisfies the following
relation:

Ci (ko) = C(nko) (3.23)

or equivalently in dimensionless form, considering only forward propagating modes,

2 Qa1 2 Qa, )\ )
_Eal + - + (14 x)ay :—?an—i— > + (1 +n°k)a,, ((3.24)

where no, =tanh(np). With elementary relations for hyperbolic functions and some
algebra, it can be shown that (3.24) yields the equations (A12), (B12) and (3.19) when
n=2,3 and 4 (respectively), and therefore represents the extension of (3.21) in the
presence of current shear. Introducing £2 = £20/+/gk. and using the relation £2 =k ~1/4 2,
one can see that (3.24) defines a nonlinear equation for « for fixed values of the two
intrinsic dimensionless parameters, 2 and £2. It should be emphasized here that in the
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Figure 2. Variations of «1, k2, k3 as a function of depth for water for different values of the shear parameter:
(a) 2 ==£0.5; (b) £ ==0.9. In any case k| > k2 > k3; dashed lines correspond to positive values of 2,
dash—dotted lines to negative ones and thin solid lines are drawn for = 10, 2 and 1 (from the right to the left).

analysis carried out by Hsu et al. (2016) the fully implicit definition of the critical
wavenumbers was not properly recognized. More explicitly, the relation £2 = k ~1/4§2 was
not taken into account when solving for the roots of (B11) and (B12). This gives rise to
ambiguous results, as for instance the doubling of the critical wavenumbers at second and
third order when §2 < 0 for a given fixed ‘physical’ dimensionless depth / (see figure 2 in
Hsu et al. (2016)). Though the plotted results in figure 2 of Hsu et al. (2016) are correct,
their interpretation may be misleading.

Numerical calculations were also performed for water (7' = 74 dynes/cm) to solve (3.24)
for k. The results for the first three critical values are shown in figure 2 as a function of
with four different values of the shear parameter £2. In any case it is seen that there is still
a critical depth, /1, below which resonances are not possible, although it depends on the
value of the vorticity. When resonances are possible, namely when h > hy, we always have
K1 > k3 > k3 and their values are, of course, different from the irrotational case. Figure 2
shows that these critical values increase (decrease) with increasing positive (negative)
vorticity. Interestingly, given that x1 decreases with increasing (negative) vorticity when
h> fz*, the interval [k, oo[, over which the asymptotic theory is regular, also increases.

Actually the dependency of /1, on the shear parameter §2 can be analysed with the
analytical results obtained by Martin (2013). As far as we are concerned with the forward
propagating mode, we can use his Lemma 3 to write the appropriate relationship in
dimensionless form, as

. .- . 9222 Oh
W2 =34 Qhy | byt hys + 4*—7*

(3.25)

Figure 3, in which the solution of (3.25) is plotted as a function of $2, shows that /1, > /3
when £2 > 0 and &, < +/3 when 2 < 0. In the region below the solid curve plotted in this

figure, namely when / < ., resonances are not possible and thus the asymptotic theory is
regular for any wavenumber. Notice that Gao et al. (2021) have also described the effects
of vorticity on the properties of the dispersion relation and obtained identical results for
the forward propagating mode. Actually the first case in their inequalities (13) correspond
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Figure 4. Variations of k1, k2, 3 for different values of h for water as a function of the shear parameter Q:
(@) h/3=2; (b) h/~/3=0.9. In any case k| > k» > k3. The dotted lines represent the corresponding well-
known values in deep water.

to the region in figure 3 where / < h, which they have named shallow-water regime.
Figure 3 also reveals that for any given value of the physical depth, or equivalently 7,
there exist a threshold value of £2 above which there are no resonances. This particular
value is positive when h> \/3, but negative when h < /3. This is further illustrated in
figure 4, where the critical values «,_1 (n =2, 3 and 4) are plotted as a function of 2 for
two particular values of the depth.

4. Numerical results

In this section we first present the numerical method used to compute steadily travelling
wave solutions of the Euler equations with surface tension and constant vorticity in finite
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depth. Then, by comparison, we study the validity of the third and fourth-order solutions
in two cases, namely, (i) GC waves without vorticity and (ii)) GC waves on linear sheared
currents.

In the most general case, a family of steadily travelling wave solutions lies on a region of
a four-parameter space, which involves a quadruplet of dimensionless parameters, either
(k, u, $2,¢€) or (k, fz, Q, €). We shall use the former quadruplet in this section, like in
the recent works of Hsu et al. (2018) and Dhar & Kirby (2023) concerning the stability
analysis of GC waves in finite depth and constant vorticity within the framework of
envelope equations. It is worth noting that with our choice of scaling the two quadruplets
are equivalent only when x = 1. As explained in § 3.2, when « # 1 the latter quadruplet
(with € = 0) is preferable to analyse unambiguously the effects of depth and vorticity on
the occurrence of critical values of « for the perturbation scheme.

4.1. Fully nonlinear solutions

To compute steadily travelling periodic GC waves with constant vorticity in finite depth,
we shall use a numerical method based on a conformal mapping method and Fourier series
expansions of the unknowns, such as given by Guo et al. (2014) and Choi (2009) for two-
dimensional GC solitary waves and gravity waves, respectively. It is emphasized here that,
though these authors established the governing equations for GC waves in finite depth with
constant vorticity, the numerical computations were carried out only in the deep-water
case. The formulation of the governing equations in the transformed plane (a canonical
strip) is well documented by these authors, and therefore needs not to be reproduced here.
To be concise and consistent, however, we present the transformed governing equations
used in our study and adopt the same notations as Ribeiro et al. (2017) except for the
coordinates in the canonical domain. Namely the conformal map is defined as Z(c,0) =
f((;, %) + if’({, ¥) and the surface elevation as z = n(X) = Y (¢) where X = f(({, 0) and
Y=Y (¢, 0). After performing similar calculations as those presented in Choi (2009),
we can show that the free surface kinematic and dynamic boundary conditions can be
combined into a single pseudodifferential equation for the free surface elevation Y (¢),

2 2 L[+ Y ) = (Y +b ¥
LEHve[r+h 1)) (cJ+y<Y+b>(1—C[Y;]))+,;XcYc:J;/ffX“ — B, (41

where J = X ? +7 ;2 is Jacobian of the conformal map evaluated at the free surface.
According to our choice of scaling (see § 2), we have ¢ = C /. /i, K = K/t y = —J 82,
and B is the Bernoulli constant. As explained in Ribeiro ef al. (2017), b is a free parameter
that determines the choice of the reference frame, or equivalently the depth at which the
Eulerian mean horizontal velocity is zero in the limit of small amplitude waves. Since
the governing equations have the property of Galilean invariance, the parameter b affects
neither the shape of the wave nor the streamlines in the frame of reference travelling with
the wave. For the comparison with the analytical results derived in § 3 we shall take » = 0.
Equation (4.1) contains three additional unknowns, the phase velocity ¢, the Bernoulli
constant B and the conformal depth d, the latter being embedded in the pseudodifferential
operator C, defined as C[ f] = F —1[ coth(kc?) fk] where fk = F[f] and F represents the
Fourier transform operator. Accordingly, we also have the relation

X;=1-C[Y]. (4.2)
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To obtain a closed system of equations for the unknowns, (4.1) must be supplemented by
three additional equations. We choose to impose a zero-mean level in the physical space,

L/2
/ YX d¢ =0, (4.3)
0
and, assuming the wave crest is at £ =0, we fix the dimensionless wave height through
Y(0)-Y(L/2)=H, (4.4)
as well as the depth condition
- 1 L/2
d=1+—/ Ydg. 4.5)
LJ 1y

A Fourier spectral discretization for the unknown function Y (¢) allows one to obtain
an efficient numerical method with fast Fourier transform, wherein all derivatives and
pseudodifferential operators are calculated via Fourier multipliers while the nonlinear
terms are computed pseudospectrally (with dealiasing). Hence, we consider a truncated
Fourier series with N modes,

N/2 ,
Y@= ) %"t Y=o, (4.6)
n=—N/2

and assume that the solutions are periodic with a wavelength L =27/ equal to the
dimensionless wavelength in the physical space. Note that Yo, = )A’,;" since the surface
elevation is a real function. Taking N even and considering only symmetric waves, we
discretize (4.1) at N/2+ 1 collocation points uniformly distributed over a half-period,
¢(j=({ —1L/Nwith j=1,..., N/2+1,toobtain N/2 + 1 equations for the unknown
values Y; =Y (¢;), j=1,..., N/2+ 1. Performing the discretization of the additional
equations, (4.3)—(4.5), we can close the system for the N/2 4+ 4 unknowns ¢, B , dand Y i
j=1...,N/2+ 1.

To solve the resulting nonlinear system of algebraic equations, we use the Levenberg—
Marquardt algorithm implemented in the fsolve function of the Optimisation Toolbox of
MATLAB. As an initial guess for this iterative procedure we use the first-order solution
presented in § 3,

é=Co/1t, B=0, d=1, Y(¢) = H cos <2T”g) 4.7

where H = ¢ /q with our choice of scaling and € is small. Unlike Ribeiro et al. (2017), who
used the mean absolute residuals errors for the whole system of equations, our stopping
criterion is based on the infinite norm of the residuals of (4.1). In our practice, with N =
128 or 256 both errors were found to be of the order 10712,

The following numerical results were obtained by natural numerical continuation in
the parameters space, using the prior converged solution as the initial guess to a new
solution. Owing to the number of dimensionless parameters characterizing branches of
solutions, it is obviously a difficult task to give a thorough description of the bifurcation
diagrams. Even in the simpler case of irrotational flows in deep water, namely with 2 =0
and u = oo, Shelton et al. (2021) have shown that the bifurcation space of the GC problem
is certainly non-trivial, rendering difficult to observe any clear structure. Crucially, this
is due to the existence of multiple solutions, the so-called Wilton ripples or combined
waves, which emerge from resonant interactions between two modes. On account of this
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Figure 5. Plot of phase velocity C against € for © =10, £2 =0 and some values of « = 1.0, 0.80, 0.58,
0.42, 0.30 (from top to bottom): solid lines show the numerical results, dashed lines the analytical results
and the boxed number indicates the type of the waves.

difficulty, we take p and k as constants on a branch of solutions and vary §2 and € over
their admissible range in most of the cases studied here.

4.2. Gravity-capillary waves in irrotational flows

We first study irrotational flows with u = 10 and several values of «. The values k =1
and 0.8 are taken to verify the correctness of the analytical solutions for GC waves, in
which the effects of both gravity and capillarity are equally important, whereas the values
of Kk =0.58, 0.42 and 0.30 are used to determine the behaviour of the weakly nonlinear
solutions close to the critical wavenumbers.

The variations of phase velocity C as a function of € for £2 =0 and several values of
k are shown in figure 5. The solid lines represent the numerical solutions of the Euler
equations, and the dashed lines correspond to the approximate solutions. According to the
asymptotic theory, the phase velocity decreases with the increase of € for x =1, 0.8 and
0.58 much like pure capillary waves, whereas it increases with € for k =0.42 and 0.30
much like pure gravity waves. For k =1 and 0.8 the approximate solution agrees fairly
well with the exact numerical solution over the range of € values shown here. In contrast,
with k = 0.58, 0.42 and 0.30 the approximate solution matches the exact solution only for
small values of the amplitude parameter €.

To better understand the meaning of the curves in figure 5, it should be realized that
in general there is no unique branch of solutions for a fixed «, in the neighbourhood or
not of the critical wavenumbers. This was demonstrated numerically by the seminal work
of Schwartz & Vanden-Broeck (1979) in the deep-water case. With our numerical method
and continuation in either the amplitude parameter € or the surface tension parameter «, we
find that this is also the case in finite depth, as illustrated by figure 6 where the variations
of the squared phase velocity C? with « are shown.

In this figure three branches of numerical solutions with © = 10 and € = 0.10 are plotted
with solid lines, as well as the corresponding weakly nonlinear solution (dash—dotted line
obtained with (B11)) and the linear solutions for infinitesimal waves with (dimensional)
wavenumber nkg for n =1, 2 and 3 (dashed lines obtained with (3.5)). According to
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Figure 6. Plot of C 2 against « for u =10, € =0.10 and £2 = 0. Solid line, numerical solutions; dash—dotted
line, weakly nonlinear analytical solution; dashed lines, infinitesimal wave solutions.

the classification of the different branches of solutions proposed in Schwartz & Vanden-
Broeck (1979), the types 1, 2 and 3 are represented in this figure, and correspond to the
number of observed ’dimples’ or inflexion points on a (half-) wave profile. Like in the
deep-water case, for much of the figure the type number is seen to increase with C?
for given «. For this value of the amplitude parameter, € = 0.10, the branches of types
1 and 3 follow the linear solution closely as « increases from the critical values x1 and
k7, respectively, whereas the wave profiles become indistinguishable from a sinusoid with
wavenumbers 1 and 3 (in units of ko), respectively. In contrast, the branch of type 2 reaches
a limiting configuration, as « increases, through the trapping of a bubble (not shown). As
k < k1 decreases, all the branches reach a limiting configuration through the trapping of
one or more bubbles (not shown). As expected, the approximate solution for C2, the dash—
dotted line in figure 6, breaks down as x approaches the critical value 1. An interesting
feature of this curve, however, is that for decreasing values of k < «1 it approaches first the
branch of type 2, and matches almost perfectly the branch of type 3 when 0.25 <« < 0.38.

Knowing that initialization of the numerical continuation method with the linear
solution with « in the open intervals [«1, oo] and [«,, k,—1] (With n > 2) yields numerical
solutions corresponding to the branch of type n, one can realize that, in figure 5, the
branches with k =1, 0.8 and 0.58 correspond to waves of type 1, while the branches with
k = 0.42 and 0.30 correspond to waves of the type 2 and 3, respectively. This analysis is
supported by the examination of typical surface profiles for several values of € and «, as
shown in figures 7 and 8.

Figure 7 shows that the trough becomes deeper and narrower as x decreases from 1 to
0.8 and € increases from 0.1 to 0.3. It is to be noted that it displays only wave profiles
corresponding to the type 1. For these waves where surface tension balances gravity, we
observe that the fourth-order analytical solution provides better results than the third-order
solution for predictions of the surface elevation and is in good agreement with the exact
numerical solution when € < 0.2.

Figure 8 shows for smaller values of € the surface profiles of near resonant waves with
k =0.58, 0.42 and 0.30. For waves with x = 0.58, figure 8(a) shows that the troughs tend
to sharpen with the increase of €, whereas the crests tend to flatten, which is typical of

1010 A55-16


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.318

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.9, on 21 Nov 2025 at 22:32:02, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2025.318

Journal of Fluid Mechanics

E(§)

0.2 0.4 0.6 0.8 1.0
&/2m

(b)

E &)

0.3

02t
0.1}
0
—0.1}
021
031
041

Z'\_/":‘ |

-0.5
0

0.2 0.4 0.6 0.8 1.0
&/2m

Figure 7. Comparison of surface profiles between third-order (dotted line), fourth-order (dashed line) and exact
numerical solutions (solid line) for £2 =0, u = 10 and some values of € = 0.3, 0.2, 0.1 (from top to bottom);
(a)k=1,(b)x=0.8.
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Figure 8. Comparison of surface profiles between third-order (dotted line), fourth-order (dashed line) and
exact numerical solutions (solid line) for £2 =0, ;= 10 and some values of € = 0.1, 0.05, 0.025 (from top to
bottom); (a) k = 0.58, (b) k =0.42, (¢) k = 0.30.

0 010203 04 05 06 07 0.8 09 1.0

the waves of type 1. For the largest amplitude, € = 0.1, it is observed that the fourth-
order solution makes a somewhat better job than the third-order solution, in the sense
that it does not predict the formation of a crest dimple. Quantitatively, however, there is
no significant improvement, neither near the crest nor near the trough. For waves with
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Figure 9. Comparison of horizontal velocity profiles between third-order (dotted line), fourth-order (dashed
line) and exact numerical solutions (solid line) for the waves plotted in figure 7(a). The profiles beneath the
crest are plotted in (a), (c) and (e), and beneath the trough in (b), (d) and (f); and the steepness increases as
(a,b) e =0.1, (c,d) e =0.2 and (e,f) e =0.3.

k =0.42 the numerical solution indicates the presence of a secondary maximum on the
surface profile with a trough between the two maxima, which is typical of the waves of type
2 (see figure 8b). For the largest amplitude, € = 0.1, neither of the asymptotic solutions
is in agreement with the numerical solution. In fact, the fourth-order solution incorrectly
predicts the occurrence of a crest dimple that is absent in the profiles of the third-order and
numerical solutions. With x = 0.30, the plots of figure 8(c) show that when the amplitude
increases, the numerical solution takes the appearance of a primary sine wave with a
relatively small 3-cycle perturbation superimposed upon it, which is typical of the waves
of type 3. Similarly, neither of the asymptotic solutions is in agreement with the numerical
solution for the largest amplitude considered here, though they predict qualitatively waves
of type 3. It is noteworthy that when « is close to «1, like in figures 8(a) and 8(b), the
fourth-order approximations fail more importantly than the third-order ones for the larger
steepness, due to the fact that the associated small divisors in (3.13)—(3.17) are found to be
squared in the fourth-order coefficients.

For further insight into the differences between the third- and fourth-order solutions, we
have also compared the predictions of the interior flow with the numerical solutions. The
method for the computation of the interior flow is explained in Ribeiro et al. (2017) and,
therefore, need not be detailed here. To illustrate the differences in the interior flow, we
have focused on the wave-induced horizontal velocities beneath the crest and the trough
of the waves plotted in figure 7(a), where x =1 is not close to x; and € =0.1, 0.2 and
0.3. Figure 9 shows the comparison between the asymptotic solutions and the exact results
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over the dimensionless range y = —1 to the free surface. Note that the bottom is located at
y = —10, where the wave-induced velocities vanish (not shown).

For the smallest steepness, it is found that the fourth-order predictions are closer to
the exact results both beneath the crest and the trough. However, for the larger steepness
the differences between the third-order and the fourth-order are much more important
beneath the crest than beneath the trough. Actually, below the trough it is observed that
those differences increase with the steepness and the fourth-order predictions are closer
to the exact results. Beneath the crest, those differences also increase with the steepness,
but neither such approximations are close to the exact results in the near surface region.
Nonetheless, as the depth increases the fourth-order solutions are found to be better than
the third-order ones. These results can be explained, noting that, firstly the local slopes
at the trough are in closer agreement with the exact results than they are the crest, and
secondly that a binomial expansion has been used in the dynamic boundary condition
to approximate the nonlinear term related to the surface tension. Only two terms in
this binomial expansion are required for the third-order approximation, but three terms
are necessary for the fourth-order approximation. Due to this approximation there is
a mismatch between the approximate wave-induced horizontal velocities and the exact
results, though the differences in the phase velocity are very small over the range of
steepness considered here (see figure 5, the case k = 1).

4.3. Gravity-capillary waves in flows with constant vorticity

Like in the previous subsection, we start by analysing the nonlinear dependency of the
phase velocity on the wave steepness for the same different values of « but with different
values of the vorticity parameter §2. According to the numerical solutions the dependency
of C on € is strongly affected by the vorticity whatever the value of «, as shown in figure 10.
In comparison with the case of irrotational flow (see figure 5), not only the values of
C in the small amplitude limit are modified, but also the type of the waves depending
on the value of k. In figure 10 the solid lines represent the numerical solutions of the
Euler equations, and the dashed lines correspond to the approximate nonlinear dispersion
relation presented in §3. As expected from the linear dispersion relation (3.5), it is
observed that in the limit of small amplitude increasing negative vorticity (§2 > 0) reduces
the phase velocity, whereas increasing positive vorticity enhances it. In this limit the
analytical results are in excellent agreement with the exact results whatever the value of k.

When £2 > 0, figures 10(a) and 10(b) show that for each value of «, the phase velocity is
a decreasing function of the steepness. Except for the two lowest values of «, namely
0.30 and 0.42, the agreement between the asymptotic theory and the exact theory is
excellent over the range of steepness considered here, namely 0 < € <0.25. In any case,
the exact results, as well as the corresponding approximations, show that the phase
velocity is a decreasing function of steepness. This suggests that the waves are capillary-
like. For the calculations with ¥ = 0.30 and 0.42, it appears that the mismatch between
the approximations and the exact results is reduced with the increase of £2, the curves
becoming closer to each other over a larger range of steepness. In contrast, when §2 < 0 the
phase velocity is an increasing function of steepness for all ¥ values, except for the branch
of solutions with ¥ = 1 and £2 = —0.5 that is plotted as shown in figure 10(c). In this figure,
the exact branches of solutions with k =1 and 0.8 agree with the approximations only
when € < 0.1. In figure 10(d), §2 = —0.9 and the agreement between the approximations
and the exact results is very satisfactory over the range of steepness shown here, namely
0<e<0.25.
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Figure 10. Plot of phase velocity C against € for u = 10 and some values of k¥ = 1.0, 0.80, 0.58, 0.42, 0.30
(from top to bottom): solid lines show the numerical results, dashed lines the analytical results and the boxed
number indicates the type of the waves; (a) 2 =0.5, (b) 2 =0.9, (¢) 2 =—0.5 and (d) £2 =—-0.9.

To identify the type of waves for each branch of solutions plotted in figure 10 we may
adopt the reasoning used in §4.2 for the GC waves in irrotational flows. This in turn
requires us to determine the critical values of « for given values of the intrinsic parameters
h and £2. In our case 1 = 10 and we have seen in § 3.2 that these critical values are mainly
affected by the vorticity, the depth effects being negligible when 7 > h,.. For each value
of ¥ and £2 used in figure 10, we have computed the first height «,. These values are
reported in table 1. It should be emphasized that for given values of x and £2, the intrinsic
parameters & and §2 have different values that depend on the value of k. The last column of
table 1 indicates the type of the branch of solution for each triplet (u, «, £2) considered in
figure 10. Solutions are of type n 4+ 1 when the values of « falls in the interval [k,41, kp]
for n > 1. Waves of type 1 have wavelengths such that « > kj, where « is the largest
critical wavenumber.

For several values of k and a fixed wave steepness, € = 0.10, we have also compared the
surface profiles and the wave-induced horizontal velocities in the presence of a linear shear
current with p = 10. Figure 11 shows the comparison between the analytical solutions and
the exact results for waves of different wavelengths, namely « =1, 0.80, 0.58, 0.42 and
0.30, and a vorticity parameter §2 = 0.5. According to table 1 all the waves are of type 1,
since their wavelength is such that ¥ > k1. Except for the longest wave with x = 0.30, there
is a remarkable agreement between the analytical results and the exact ones, the fourth-
order results being more accurate than the third-order ones. As expected, neither such
approximations is valid for the waves with k = 0.30, a value that is very close to k1 &~ 0.27.
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K 2 h 2 K1 %) K3 K4 Ks K6 K7 Kg type

1.00 0.50  10.00 0.50 021 013 0.09 0.07 006 0.05 0.04 0.03 1
0.90 090 0.08 0.05 0.03 0.02 0.02 001 001 0.01 1

—0.50 —-050 092 063 048 039 033 029 026 023 1

—0.90 —090 134 092 071 059 050 044 039 0.36 2

0.80 0.50 11.18 047 022 014 010 0.08 0.06 005 0.04 0.04 1
0.90 0.85 0.09 0.06 0.04 0.03 0.02 0.02 001 0.01 1

—0.50 —-047 090 061 047 038 032 028 025 023 2

—0.90 —-0.85 128 0.88 0.68 056 048 042 037 034 3

0.58 0.50 13.13 044 024 015 011 008 0.07 0.06 0.05 0.04 1
0.90 079 011 0.07 0.05 003 003 002 0.02 0.01 1

—0.50 —044 086 059 045 037 031 027 024 022 3

—0.90 -0.79 121 083 0.64 053 045 039 035 032 4

0.42 0.50 1543 040 025 016 012 009 007 006 0.05 0.05 1
0.90 072 013 0.08 0.05 0.04 003 003 002 0.02 1

—0.50 —-040 083 057 043 035 030 026 023 021 4

—0.90 -072 115 079 0.61 050 042 037 033 030 5

0.30 0.50 18.26 037 027 017 013 010 0.08 0.07 0.06 0.05 1
0.90 0.67 014 0.09 0.06 0.05 004 003 003 0.02 1

—0.50 -037 080 055 042 034 029 025 022 020 5

—0.90 -0.67 109 075 057 047 040 035 031 0.28 8

Table 1. Values of & and §2 for given values of « and £2. Here ;2 = 10 for each wave. The deep-water values of
the first eight critical «,, are also reported, as well as the type of each wave.

The same comparison has been carried out with £2 = —0.5, and the results are shown in
figure 12. According to table 1, each wave is of a different type. The type number is seen to
increase with increasing wavelength. The shortest wave (k = 1) is the only capillary-like
wave, in the sense that it belongs to a branch of solutions with decreasing phase velocity
with increasing steepness (see figure 10c), and it is of type 1 as shown in figure 12(a).
Again, for this value of « that is close to the «1 ~0.92, both the third-order and fourth-
order solutions differ significantly from the exact results, the disagreement being larger
near the crest than near the trough. For the wave of type 2 shown in figure 12(b) we
have k¥ = 0.80, which falls near the middle of the interval [k3, k1] = [0.61, 0.90]. Looking
at the wave-induced horizontal velocities, it is found that the fourth-order theory does
a better job than the third-order one beneath the trough, and that the situation is reversed
beneath the crest. Nonetheless, both analytical solutions fail to match with the exact results
in the near surface region. Actually, these differences between the exact results and the
approximations are expected in view of figure 10(c), which shows that there is mismatch
in the prediction of C for the waves with x =1 and 0.80.

In contrast, for the gravity-like waves with k = 0.58, 0.42 and 0.30, figure 10(c) shows
an excellent agreement between the exact phase velocity and the approximate one when
€ =0.1. Not surprisingly, when the value of x is close to one of the first three critical
values «,, both approximations fail to reproduce the near surface horizontal velocities (see
figures 12¢ and 12d). However, when « = 0.42 we have |k — k2| =0.15, |k — k3| =0.01,
and although the approximate surface profiles are almost indistinguishable from the exact
solution, it is found that there are important differences in the internal flow structure.
Figure 12(d) shows that the fourth-order theory does a better job than the third-order one
beneath the trough, the situation being reversed beneath the crest. As shown in figure 12(e),
the surface profiles and the wave-induced horizontal velocities are indistinguishable from
the exact solution for the wave with « = 0.32, which is in the interval [«5, k4] and far
enough the smallest critical value of either the third-order or fourth-order approximations.
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Figure 11. Comparison of surface profiles and wave-induced horizontal velocity profiles under crest (u.) and
trough (u,) for waves with u =10, 2 =0.5, € =0.10 and several values of «. Third-order solution (dotted
line), fourth-order solution (dashed line) and numerical solution (solid line): (a) k = 1; (b) k =0.80; (¢) k =
0.58; (d) k =0.42; (e) k =0.30.

Finally we present the results of a similar comparison for steeper waves with u =
10, 2 ==40.5 and € =0.2. The four different waves have been chosen so that the
approximation of the phase velocity is still in very good agreement with the exact solution.
In view of the results of figures 10(a) and 10(c), we consider x =1 and x« = 0.8 with
2 =0.5, whereas with £2 = —0.5 we choose k = 0.42 and « = 0.30. For the waves with
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Figure 12. Same legend as in figure 11 but with £2 = —0.5.

£2=0.5, k is quite far from the first critical value x1, and we observe that the third-
and fourth-order surface profiles are almost indistinguishable from the exact solution.
However, in each case the approximations fail to describe the wave-induced velocities
close to the surface. Nonetheless it should be noticed that the fourth-order solution
performs better than the third-order one, though this improvement is lessened beneath the
crest. For the waves with £2 = —0.5 and « = 0.42, which falls in [x4, k3] =[0.35, 0.43],
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Figure 13. Comparison of surface profiles and wave-induced horizontal velocity profiles under crest (#.) and
trough (u,) for waves with u =10, € =0.20. Third-order solution (dotted line), fourth-order solution (dashed
line) and numerical solution (solid line): (@) k =1, £2 =0.5; () k =0.80, 2 =0.5;(c) x =0.42, 2 =-0.5;
(d) k =0.30, 2=-0.5.

figure 13(c) shows that nonlinearity has become sufficiently important to reveal the defect
of the fourth-order theory in comparison with the third-order theory and the exact results
(see also for comparison figure 12d). For the longest wave with « = 0.30, shown in
figure 13(d), the approximate surface profiles are in very good agreement with the exact
results. In this case the coefficients of the asymptotic series are well ordered, ¥ being
O (¢) far from «1 =0.80, k3 =0.55 and «3 = 0.42, though they fail to predict the wave-
induced velocities close to the surface beneath both crest and trough. Actually there is no
improvement using the fourth-order theory and its results are very similar to that obtained
with the third-order theory.

5. Conclusion

In this paper we have derived a fourth-order asymptotic solution for weakly nonlinear GC
waves with constant vorticity in finite depth, and thereby, the works of Barakat & Houston
(1968) and Hsu et al. (2016) have been extended.

1010 A55-24


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.318

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.9, on 21 Nov 2025 at 22:32:02, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2025.318

Journal of Fluid Mechanics

We have shown that the determination of the critical values in the perturbation scheme,

kp (for any n > 1), should be done with two intrinsic dimensionless parameters h and £2.
It is emphasized here that, in the presence of surface tension, using instead p and £2 may
be misleading in the study of the effects of both vorticity and depth on the occurrence of
these critical wavenumbers. We have found that vorticity changes the critical depth /15,
below which no resonances are possible and, thus, the perturbation scheme is valid for any
wavelength specified with «. This critical depth increases without bound with increasing
positive values of §2 (negative vorticity). In contrast it decreases slowly with increasing
positive vorticity.

To test the accuracy of the third-order and fourth-order solutions, we have used a
numerical method of solution based on a truncated Fourier series approximation in a
conformal formulation of the problem. The fourth-order results are interesting as they
reveal important differences not only in the surface profiles but also in the internal
flow structure, when compared with the third-order predictions. With negative vorticity
(£2 > 0), the fourth-order solution improves on the third-order solution, inasmuch as the
steepness is relatively small and the dimensionless squared wavenumber is far enough the
first three critical values. With positive vorticity (£2 < 0), the outcome of the comparison
between the third and fourth order is rather surprising. Our analysis reveals that there are
important differences in the wave-induced velocities below the free surface, even though
the predicted surface profiles as well as phase velocities are in good agreement with the
numerical solutions.

Finally, we point out that we have not tested the approximations in the shallow water
limit, u < 1. We merely recall that without vorticity the classical Stokes expansion method
become less accurate when both the amplitude € and the Ursell number € /44> significantly
increases. This usually implies a severe restriction on the steepness when moving to
shallow water. How this restriction is affected, as vorticity effects become important in
the presence of surface tension, remains to be explored.
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Appendix A. Approximate solution of the second order
Equating the second power of €, we have the following sequence of equations:

Pogz + Doy =0, —pu<n<0, (AD)
Doy + CoEkre = —E1 D1y
+ (@1 +RE —CE1e, n=0, (A2)

1
Co®rs — (1 — CoR2)Ey + k Enge = 5(45125 +o7)

1
+ —.QZE% + Q¢]§El — COEl(plgr]

2
1
—C1(Pye +SZE1)—§K2, n=0, (A3)
®r, =0, n=—pn. (A4)
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Terms depending on n appearing in equations for n =0, as E1(§) @1y, and E{(§)P¢, are
obtained by using Taylor series expansion given by

®E, ) 2 [DE Dy=£ + EEPE, nyly=£ + E*E[PE n)yy/2y= . (AS)

Using the second-order Laplace equation (A1) and the boundary condition (A4) we
obtain the expressions for second-order potential and surface elevation in a similar way

h[2
Ba(E, 1) = Az% sin(2), (A6)
E2(8) = a cos(26). (A7)

Using (A6)—(A7) and the first-order solutions in the boundary conditions (A2)-(A3), we
get the coefficients as follows:

_ Coe*(1+0?) o 250 4 e
Az_m[g +3(1+2)+307 (k2 + 2k — 1], (A)
2
2.2
Ky = —COZ [(1+2)*—07], (A10)
20
C,=0. (A1D)

Classically, the nonlinear correction of the phase velocity is unknown at this order and
must be determined at the next order.

As found by Hsu et al. (2016), the expressions of A> and a given by (A8) and (A9)
are found to be singular when « equals k1, given implicitly as the root of the following
equation:

o2

K=—_.
B3—-02)+3R

Without vorticity (2 =0), (A12) reduces to the expressions obtained by Barakat &
Houston (1968) and Djordjevic & Redekopp (1977). In deep water (o = 1) without
vorticity, it further reduces to the well-known value k1 =1/2.

(A12)

Appendix B. Approximate solution of the third order

To derive the third-order approximate solution, we proceed in a similar manner and obtain
the following sequence of equations:

B3ee + D3y =0, —pu<n<0, (B1)
1
@3y + CoEse = —E 1 ®ayy — Ex Py — EE%CDWM + (@15 + RE1)Ex
+ (P2 + E\P1ey+ RE>, — C))E1g, n=0, (B2)

1
CoP3e — (1 = Co2)E3 + Kk E3ee = —C (E1¢zgn + Er®Pigy + EE%¢1§7]77>

+ (Pi1g + LE)(Poe + E1 Py + R2Ey — Cp) + @1y (P2y + E1DP1yy)

+§KE1g§E1§—§K3, n=0, (B3)
@3, =0, n=-—pn. (B4)
1010 A55-26


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.318

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.9, on 21 Nov 2025 at 22:32:02, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2025.318

Journal of Fluid Mechanics

Solving (B1)-(B4) we get the expressions for velocity potential and surface elevation
amplitude as follows:

h[3 h
O35, m) = A33%?3;)M)] sin(38) + Agl%(;)’”] sin(®)  (BS)
E3(§) = a33 cos(3§) + azy cos(§). (B6)

The derivation for obtaining the following results involves some algebra. On substituting
(B5)—(B6) and using the first and second-order solutions into the boundary conditions
(B2-B3), we obtain

B Coe’ (1430?)
S 64(1-3R)[1-%B+02)] o

n {(15 —02) + K243+ 1902)} IR

Ass [54 + {2(3 tod)+ 8702} 2

n {2(9 — 802 — 0*) 4 12802 (7 + 02) + 245264 (1 + 02)} Q

+(9 = 2202 +130*) + k0260 — 3202 — 130*) + 32 * (16 + 502)] , (B7)
Crel Co C0€3 1 1—3 9 =2
Az = S04y — =0 1 [.(2 5420002
31 +—as 81 3%) o +(5+207%)
+ {3(3 +02) +3k02(1 + 0—2)} 2+ (6-0%)+3k022 - 02)] . (BS)
tanh(3 1) el 1 1—3 7—=2
— g = A _ [9 5420002
a3z = —as| Co 33+8(1—3E)o4 + (5 +207)
+ {3(3 +02) +3k02(1 + 02)} 2+ (6—0%—20%) + 3022 + 02)] . (BY)
K3=0. (B10)
Co 1

= —= Yoa 2y 4 32 2] 52
C2= 220 2>+ 1365 301 5
? 8(S2+2)(1—3E)o4[ +2B 407 +{ (5+07) +3k0"( +g)}

n {2(9 — 202 4 o) + 128021 — 02)} 24 (9— 1002 + 95
13k (4 — 802 — o) + 9?256] . (B11)

At third-order approximation the first non-vanishing nonlinear correction of the phase
velocity C» is given by (B11) that matches (3.32) of Hsu et al. (2016), who first obtained
this analytical result. The expressions for the third-order terms in (B7) and (B9) are found
to be singular when « equals «», given implicitly as the root of the following equation:

o2

K= — —.
314 2)+ 0282

(B12)

Taking £2 =0 in (B12) yields ko = ¢?/3, in agreement with the results of Barakat &
Houston (1968). In deep water o = 1 and we obtain the other well-known value «; = 1/3.
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