
THE TORSION OF A SEMI-INFINITE ELASTIC
SOLID BY AN ELLIPTICAL STAMP

by MUMTAZ K. KASSIR

(Received 23 January, 1967)

1. Introduction. The problem of determining, within the limits of the classical theory of
elasticity, the displacements and stresses in the interior of a semi-infinite solid (z ^ 0) when a
part of the boundary surface (z = 0) is forced to rotate through a given angle co about an axis
which is normal to the undeformed plane surface of the solid, has been discussed by several
authors [7,8,9,1,11, and others]. All of this work is concerned with rotating a circular area
of the boundary surface and the field equation to be solved is, essentially, J. H. Mitchell's
equation for the torsion of bars of varying circular cross-sections.

Mindlin [5] obtains the elastic compliance of two bodies which have been pressed together
and subjected to a small torsional couple in the plane of the contact surface. In [5], the solu-
tion is derived by integrating the half-space potential functions of Boussinesq and Cerruti
(due to a point force) over the elliptical contact area in the plane z = 0. The weighting functions
(in this case, the tangential shear stresses) are assumed to be generalizations of the ones per-
taining to the limiting case of circular contact area. Such a method, unfortunately, leads to a
series of intractable integrals for obtaining the components of displacement and stress in the
interior of the half-space. A simpler method of analysis consists of writing down the solution
of the governing field equations in terms of harmonic functions which identically frees the
boundary surface z = 0 from the normal stress. These harmonic functions are, then, determined
from the mixed boundary conditions on the plane z = 0. Such a method has been used by
Lure [4] to examine the state of stress in an elastic half-space when there are prescribed shearing
stresses on the boundary surface (first basic problem). Kassir and Sih [2] use a closely related
analysis to determine the stress distribution in an infinite elastic solid containing an elliptical
crack under uniform shear stress. The solution given in [2] is also suitable for the investigation
of the state of stress in an elastic half-space, when there are prescribed tangential displacements
on the boundary surface (second basic problem). An outline of this approach is given in [3].

In the present paper, we use a slightly modified form of the solution given in [4] and a set
of orthogonal ellipsoidal coordinates to determine the local effects of the torsional distortion
of a semi-infinite elastic solid when an elliptical stamp, rigidly attached to the free boundary
surface, is forced to rotate about its normal axis. Expressions are derived, in terms of com-
plete and incomplete elliptic integrals of the first and second kind, for the components of
of displacement and stress across the boundary surface of the solid. Finally, we indicate
briefly how the solution of the first basic problem may be derived by the proposed method.

2. Method of analysis. We consider a semi-infinite elastic solid z ^ 0 with a rigid elliptical
stamp attached to the boundary surface z = 0. The base of the stamp is defined by

x2 y2
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where a and b are the major and minor semi-axes of the ellipse, respectively. The centre of the
ellipse is located at the origin of the cartesian coordinate system (x, y, z). The stamp is forced
to rotate through an angle a> about the negative part of the z-axis, which coincides with the
normal axis of the stamp.

In the absence of body forces, the field equations of the linear theory of elasticity for a
homogeneous and isotropic body assume the vector form

V2u+—!--W.u = 0. (2)
1—2v

Here v is Poisson's ratio and u the displacement vector with components (ux, uy> u2). The
gradient and Laplacian operators in three dimensions are denoted by V and V2, respectively,
while the dot indicates scalar multiplication.

The boundary conditions for the problem at hand can be written in the form

ux = a>y ") / V yj^< _ \
uy=—cox) \a2 b2= ' ) '

(3a)
(3b)

(4)

azz = 0 (z = 0). (5)

{axz, ayz, azz) denote the stresses across a surface whose normal is in the z-direction. Further,
as we are studying the eifects of localized disturbances, the displacements and stresses must all
tend to zero at large distances from the origin.

A solution of equations (2) which identically satisfies condition (5) may be obtained by
expressing the displacement components ux, uy and uz in terms of two harmonic functions
Mx, y, z) and/2(x, y, z) [4] :f

¥* (6b)

(6c)
oz

where

dx dy

t It is interesting to note that when we add the particular solution

to equations (6) above, we obtain the solution derived in [2], It can be easily verified that equations (*) give
rise to zero dilation, i.e. V.u =0, and hence the expression for the normal stress atz is identical in both solutions.
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The corresponding stress components are given by

& & £ (8a)

J * (8b)
2fi dz2 dy dz

£-.£. (80)
2/x dz

where // is the shear modulus of the material. For the mere purpose of determining the
potential functions fj (x, y, z) (j = 1, 2), the remaining stress components axx, ayy and axy are
not needed.

To determine the unknown harmonic functions/! and/2, the symmetrical form of ellip-
soidal coordinates f, r\, £ will be employed. The rectangular coordinates x, y, z of any point
may be expressed in terms of the triply orthogonal system £, rj, ( by the relations [10]

a V - & V = (a2 + S)(a2 + '7)(a2+O, (9a)

b\b2-a2)y2 = (b2+0(b2+r,)(b2+0, (9b)

a2fc2z2 = frC, (9c)
where

o o > ^ 0 ^ / ; ^ - f c 2 ^ C ^ -a2.

In the plane z = 0, I; — 0 corresponds to points inside the two-sided area enclosed by the
ellipse jc2/a2 -Vy2\b2 = 1, and r\ = 0 to the outside. The boundary of the ellipse is identified by
5 = 0 and »/ = 0.

In terms of (<!;, ?;, (), the Laplace equation assumes the form

where
(11)

A suitable solution of (10) may be taken as [3]

where

a

which can be put in the equivalent form

x2 y2 z2

(13b)
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<t>(p) is a twice differentiable function in the interval (0, 1) with finite derivatives at the boun-
daries of the interval. Upon differentiating (12) with respect to z and noting that [10]

8z
it is found that

where the prime in the integrand indicates differentiation with respect to the argument.
For r\ = 0, equation (14) gives d W\dz = 0 regardless of the form of the unknown function

<Kp). Hence, by taking

the boundary conditions (4) are automatically satisfied. The unknown functions # t and <f>2

are found from the remaining boundary conditions (3).
Equations (7) and (15) yield

in which

z(s) = [spo(s)]*, po(s) = [p(s)]z=0,

and the remaining boundary conditions (3) may be shown to be satisfied by choosing

("a,

dz dx'

Here the C} 0 = 1 , 2) are arbitrary constants and

ds
(18)

Equation (18), except for a multiplying constant, represents the gravitational potential of an
elliptic disk at an external point [6].

Equation (16) simplifies to

f°° ds
F(x,y,z) = (Cl + C2)xy\ ,. (19)
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In the plane z = 0, it is found that

(20a)

(20b)

where

J = 2 2—-=j. (21)

This elliptic integral may be evaluated by putting

(22)
,cn2r

sn w sn (
we find that

"" ,snucnuJ = dnw J

where

£(«
Jo

and the quantities sn u, en u, dn « are the Jacobian elliptic functions; sn u has real and ima-
ginary periods AK, UK' corresponding to the modulus k and the complementary modulus k'
respectively, where ak = (a2—b2)*, ak' = b (b <a).

Now, inserting equations (17), (20) in (6), we obtain from (3) a system of two algebraic
equations for the two unknown constants C\ and C2, which yields

k'2A)

'2

In equations (23), the following abbreviations have been introduced:

k2k'2A = E(k)-k'2K(k),

k2B = K(k)-E(k).

Here K(k) and E(k) are respectively, Legendre's complete elliptic integrals of the first and second
kind with the argument k.

When Cx and C2 are known, the displacements and stresses at any point of the solid can
be calculated in a straightforward manner. The higher derivatives of the function (18) are
given in [2]. Across the plane z = 0 outside the stamp (r\ = 0) the rectangular components of
displacement are
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(24a)

(24b)

1 {(ft2 + Q/(fr2 + £)}* tanh"1 {(a2 + 0/(a + OT n , ,
( 2 + £)*( 2 + 0* J' K }

where
.snucnu

Uu) = E(u) -k'2u-k2

M® = 7tt*

ami

while, for £ = 0 (under the stamp), equations (3) are recovered and the normal displacement is
given by

tanh" 1P- tanh"1
_

in which

The resulting values for the shearing stresses are

for ?/ = j

[0 for ^ = j

The torque T which must be applied to maintain the rotation is given by

yz (x, y, 0) - yvX2 (x, y, 0)] dx dy,

where E is the region bounded by the ellipse (1). Using equations (25) we find that

= l

(26)

The stress field in the vicinity of the base of the stamp is of great practical interest, mainly
because of questions of mechanical failure. It is convenient to introduce a rectangular
cartesian coordinate system n, t, z such that the origin of this system traverses the periphery of
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the ellipse. The zn-, nt-, and tz- planes are known, respectively, as the normal, rectifying and
osculating planes. In this system of coordinates the local shear stresses are foundf to be

fe' (27a)

ott = -j-=-+0{R*), (27b)

where
4/z(C1 + C2) sin 4> cos 4>

(ab)* (a2 sin2 <$> + b2 coss2

J I 2 = -

and <£ is the angle appearing in the parametric equations of the ellipse; i.e.

x = a cos 4>, y = b sin <f>.

In equation (27), /? is assumed to be small in comparison with a (or b). R is the radial distance
in the nz-plane, measured from the edge of the ellipse.

In the limiting case of a stamp with circular cross-section (a = b), K(k) — E(k) =$n,
equations (23) simplify to

C2=-C1 = ^ ! .

n

Hence, equation (19) gives F = 0, and the solution simplifies considerably to the following:

. 2coaV3/ dl

coa3 0 fdl dl

a3f d2l d2l d2l

where I(x, y, z) is given in (18) with a = b and x2 +y2 = r2. Similarly, the expressions (24)
(25) and (26), when transferred to the usual system of polar coordinates (r, 0, z), agree with the
corresponding values given by Sneddon [9].

3. Prescribed tangential stresses. In this section, we consider the problem of determining
the components of stress and displacements in the interior of a semi-infinite elastic solid
(z ^ 0) when there are prescribed tangential shearing stresses within an elliptical area of the
boundary surface 2 = 0. We will consider the case of tangential stress parallel to the x-axis

t The detailed calculations are similar to those in [2].
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only. The case of shear stress parallel to the .y-axis may be solved in a similar manner. The
following conditions must be satisfied on the boundary z = 0.

axz = t(x, y) (£ = 0), (28a)

axz = 0 (t, = 0), (28b)

* „ = *« = <> (z = 0). (29)

Here t(x, y) is the specified shearing stress within the ellipse (1). For simplicity of future
analysis let us assume that t(x, y) can be expressed as a function t(Z) of the variable Z, where

. , *2 y2

In the basic solution (8), the boundary conditions (28b) and (29) may be satisfied by
selecting

(31)

h = 0, (32)

the notation being the same as before. The boundary condition (28a) may be shownf to lead
to an integral equation of Abel type for the unknown function <£(p), which yields

(33)

and the problem is reduced to quadrature.
As an example of the use of this formula, let us consider the case

T(Z) =

where T0 is constant. Equations (31) and (33) give

ds1 7 m (B>"1)> (34)

in which T(n) is the usual gamma function. In general, the integral appearing in (34) can be
evaluated for n = i+m, where m is a non-negative integer. In the degenerate case of a = b,
solutions may be found for any n. For n = \, using equation (22), we find that

[) [ ^ ( ) ] y ^ ( ) ( j [ £ (

where L(u) is given in (24). Similarly, from equations (6), (7), (22) and (34) we obtain the
relations:

t The derivation is similar to a case considered in [3].
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+ v k2k'2u - k2E(u) + - ) [u - E(u) - L(M)]

-© (35a)

(35b)

(l-2v)t0abx(>?-0 f

where a and /J are given in (24) and

" a l o g
(1 +a) (£-

= 0), (35c)

log
1-a ,

= 0), (35d)

For ^ -»0, i.e., points (x, y) within the ellipse (1), u -* ̂ (A:), E(u) -> E(k), sn AT = 0, dnK = k
and the results agree with those given by Lure [4]. Similar calculations may be carried out for
the stresses.
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