
Proceedings of the Edinburgh Mathematical Society (2014) 57, 631–686
DOI:10.1017/S001309151300062X

STRATIFICATION OF THE MODULI SPACE OF
FOUR-GONAL CURVES

MICHELA BRUNDU AND GIANNI SACCHIERO
1Dipartimento di Matematica e Geoscienze, Università di Trieste, Via Valerio 12,
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Abstract Let X be a smooth irreducible projective curve of genus g and gonality 4. We show that
the canonical model of X is contained in a uniquely defined surface, ruled by conics, whose geometry is
deeply related to that of X. This surface allows us to define four invariants of X and, hence, to stratify
the moduli space of four-gonal curves by means of closed irreducible subvarieties, whose dimensions we
compute.
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1. Introduction

Let X be a smooth irreducible curve of genus g and gonality γ, i.e. γ is the minimal
degree of a base-point-free linear series on X. Let Mg denote the moduli space of curves
of genus g and let Mg,γ ⊂ Mg denote the variety parametrizing the γ-gonal curves; it
is well known that Mg,γ is an irreducible variety of dimension 2g + 2γ − 5, as long as
2 � γ � 1

2g + 1 (see [1,13]).
The structure of Mg,γ is completely understood in the cases γ = 2 (hyperelliptic

curves) and γ = 3 (trigonal curves). In this paper we are interested in the study of
four-gonal curves. We briefly recall the setting in the trigonal case.

Let K denote the canonical divisor on X and let XK ⊂ P
g−1 be the canonical model

of X. From the geometric Riemann–Roch theorem, any trigonal divisor spans a line
in P

g−1; therefore, XK is contained in a rational normal ruled surface, R say. It is clear
that R is of the form P(O(m)⊕O(g−2−m)); assuming that m � g−2−m, the integer m

is uniquely determined and it is called the Maroni invariant of X.
Set Mg,3(m) to be the variety parametrizing the trigonal curves of Maroni invariant

not bigger than m. The following fact holds.

Theorem 1.1. If (g − 4)/3 � m < (g − 2)/2 (respectively, m = (g − 2)/2), then
Mg,3(m) is a locally closed subset of Mg,3 of dimension g+2m+4 (respectively, 2g+1).
(See [14, Proposition 1.2].)
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One can see that for each curve of genus g � 5 of Maroni invariant m there exists a
unique linear series g1

λ, where λ is the minimum integer bigger than 3 and λ = g −m−1.
Hence, λ is uniquely determined by m, and the above filtration of Mg,3 given by the
varieties Mg,3(m) can be rewritten in terms of λ.

In general, it seems interesting to find ‘good invariants’ arising from the geometric
properties of γ-gonal canonical curves, in order to obtain an analogous stratification of
the moduli space Mg,γ .

As in the trigonal case, one can introduce the rational normal scroll V , whose fibres
are the (γ −2)-planes spanned by the γ-gonal divisor on X. Clearly, V = P(O(a1)⊕· · ·⊕
O(aγ−1)), where a1 + · · · + aγ−1 = g − γ + 1; in this way the integers a1, . . . , aγ−2 play
the role of the Maroni invariant m in the trigonal case.

In this paper we focus on four-gonal curves. We show that in the volume V = P(O(a)⊕
O(b)⊕O(c)) there exists an (almost always) uniquely determined ‘minimal’ surface, ruled
by conics, containing XK .

Such a surface S gives rise to two other invariants: on the one hand, one defines the
number t, which is the uniquely determined invariant of a suitable geometrically ruled
surface birationally equivalent to S; on the other hand, analysing the embedding of X

in S, we obtain another number λ > 4, which turns out to be the minimum degree of a
linear series on X different from the gonal one.

Comparing the configuration XK ⊂ S ⊂ V in the four-gonal case with the analogous
situation XK ⊂ R of the trigonal case, it is clear that the invariant m has been replaced,
in some sense, by a, b and t. Finally, one can prove that λ is now independent of a, b

and t; so, a four-gonal curve is determined by the four invariants a, b, λ and t.
In § 8 we describe the geometric meaning of λ, while, in §§ 7 and 9 we find the ranges

for the above invariants λ, t and a, b, respectively.
If t = 0 the cited ranges become

g + 3
3

� λ � g + 3
2

, (R1)

amin � a � g − 3
3

, (R2)

g − λ − 1 � a + b � 2(g − 3)
3

, (R3)

where

amin =

⎧⎪⎨
⎪⎩

⌈
λ − 4

2

⌉
if λ � 2g + 6

5
,

g − 2λ + 1 if λ � 2g + 6
5

.

In § 10 (see Theorem 10.6) we then show that, if (R1), (R2), (R3) are satisfied, there
exists a four-gonal curve of genus g and invariants a, b, λ and t = 0.

Finally, in § 12 we study the moduli spaces Mg,4 of four-gonal curves with t = 0. Let
Mλ

g ⊂ Mg,4 be the variety parametrizing the four-gonal curves of invariant λ and let
Mλ

g (a, b) ⊂ Mλ
g be the subvariety parametrizing the curves of further invariants a and b.

We prove the following.
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Main Theorem. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and
g � 10. We then have the following.

(i) There exists a stratification of the moduli space Mg,4 of four-gonal curves given by

Mg,4 = M̄�(g+2)/2�
g ⊃ M̄�g/2�

g ⊃ · · · ⊃ M̄λ
g ⊃ · · · ⊃ M̄�(g+3)/3�

g ,

and M̄λ
g are irreducible locally closed subsets of dimension g + 2λ + 1, if

λ < �(g + 2)/2�.

(ii) For each admissible λ, we can write that

M̄λ
g =

⋃
a,b

M̄λ
g (a, b),

where M̄λ
g (a, b) is a non-empty, irreducible subvariety whose dimension is

dim(Mλ
g (a, b)) =

⎧⎪⎪⎨
⎪⎪⎩

2(2a + b + λ) + 10 − g − ε − τ − ξ if a � g − λ − 1
2

,

2(a + b) + λ + 8 − ε − ξ if a <
g − λ − 1

2
,

where

ε :=

⎧⎪⎨
⎪⎩

0 if b < c,

1 if a < b = c,

2 if a = b = c,

τ :=

{
0 if a < b,

1 if a = b
and ξ :=

⎧⎨
⎩1 if λ =

g + 3
2

,

0 otherwise.

In § 13 we briefly describe the moduli space of four-gonal curves of invariant t � 1,
computing also in this case the dimension of each stratum. It turns out that such a
dimension (for chosen g and λ in the good range) is strictly smaller than that of the
corresponding stratum in the case t = 0. In other words, the t = 0 case describes the
general and most significant situation.

2. Preliminaries

We say that a curve is four-gonal if it has a linear series g1
4 but no g1

d for any d � 3. We
also assume that such a curve is not bihyperelliptic (i.e. the degree 4 map on P

1 does not
factorize through a hyperelliptic curve), in particular, that it is not bielliptic.

Let X be a four-gonal curve of genus g. In order to have a unique g1
4 on X, we assume

that g � 10.
Denote by ϕK : X → XK ⊂ P

g−1 the canonical map associated with X and denote
by XK the canonical model of X. In general, if Y is a variety and D is a divisor on Y ,
we denote by ϕD : Y → ϕD(Y ) ⊂ P(H0(Y,OY (D))) the morphism associated with D.

If Φ ∈ g1
4 is a four-gonal divisor, by the geometric Riemann–Roch theorem (see [2,

Chapter I, § 2]) we have that dim〈ϕK(Φ)〉 = deg(Φ) − h0(OX(Φ)) = 2; therefore,

V :=
⋃

Φ∈g1
4

〈ϕK(Φ)〉 ⊂ P
g−1
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is a scroll, ruled by planes on P
1, containing XK . Denote by π : V → P

1 the natural
projection.

Recall that a non-degenerate variety W ⊂ P
r is said to be projectively normal if it is

normal and, for any k ∈ N, the homomorphism

H0(Pr,OPr (k)) → H0(W, OW (k))

induced by the exact sequence of sheaves

0 → IW → OPr → OW → 0

is surjective.
We say that W is linearly normal if the homomorphism above is surjective for k = 1.

In particular, if W is a non-degenerate curve, then it is linearly normal if and only if
h0(W, OW (1)) = h0(Pr,OPr (1)) = r + 1.

It is well known that XK is projectively normal, so V is a rational normal scroll (hence,
projectively normal as well). We then set V = P(F), where F is a vector bundle of rank 3
on P

1, i.e. F = O(a)⊕O(b)⊕O(c) for suitable non-negative integers a � b � c. It is also
well known that, for any k, it holds that

h0(V, OV (k)) = h0(P1, π∗OV (k)) = h0(P1, Symk F), (2.1)

and that the Riemann–Roch theorem for any vector bundle G on P
1 with non-negative

splitting type gives that h0(P1,G) = deg(G) + rk(G).
From the above two relations, since a, b, c � 0, we then have that h0(V, OV (1)) =

h0(P1,F) = deg(F) + rk(F). Taking into account that h0(V, OV (1)) = g, we finally
obtain that

a + b + c = g − 3. (2.2)

In the following we need some basic notation and facts about ruled surfaces.
We denote by Ft (where t � 0) the Hirzebruch surface of invariant t, i.e. the P

1-bundle
over P

1 associated with the sheaf O(−t) ⊕ O (here O means OP1).
If 1 � a � b, a rational ruled surface Ra,b is P(O(a) ⊕ O(b)), naturally embedded

in P
a+b+1. Clearly, setting t := b − a, we have that Ra,b

∼= Ft, so t is the invariant
of Ra,b.

We recall the following well-known facts (see [11, Chapter V, Proposition 2.9, Theo-
rem 2.17 and Proposition 2.3]).

Lemma 2.1. Let Ft be as before, let f be its generic fibre and let C0 = P(O(−t)) ⊂ Ft.
We then have the following.

(i) C2
0 = −t.

(ii) If U is any directrix (i.e. an irreducible unisecant curve) of Ft, different from C0,
then U2 � t.

(iii) If there exists a directrix U of R such that U2 = 0, then t = 0, i.e. F0 ∼= P
1 × P

1.

Moreover, t > 0 if and only if Ft has exactly one unisecant curve (namely, C0)
having negative self-intersection.

(iv) Num(Ft) = Z〈C0〉 × Z〈f〉.
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Finally, we recall three classical formulae concerning ruled surfaces and scrolls, due
to Segre.

Unisecants formula (UF)

Let R ⊂ P
r+1 be a ruled surface of degree r and invariant t, and let Und(R) be the

variety of the unisecant curves on R having degree d and self-intersection bigger than t.
The general element of Und(R) is then irreducible and dim(Und(R)) = 2d + 1 − r.

Genus formula (GF)

If Y is a q-secant curve on a ruled surface R ⊂ P
r, then its arithmetic genus is

pa(Y ) = ((q − 1)/2)[2(deg(Y ) − 1) − q deg(R)].

The following relation (IF), generalizing the analogous property for ruled surfaces,
comes from the intersection law on a scroll (see [8, Example 8.3.14]).

Intersection formula (IF)

Let W be a rational scroll ruled by n-planes and let C1 and C2 be two subschemes of W

meeting properly and such that Ci is mi-secant for i = 1, 2 (i.e. Ci meets the general
fibre of W in a variety of degree mi). Then, deg(C1 · C2) = m1 deg(C2) + m2 deg(C1) −
m1m2 deg(W ).

We also recall the following notions and the result that classifies the degenerate fibres
of a surface ruled by conics given in [6, Proposition 1.13 and Theorem 2.4].

Definition 2.2. Let D be a very ample bisecant divisor on a Hirzebruch surface F;
the surface S0 := ϕD(F) is then said to be geometrically ruled by conics (over P

1).
Equivalently, a projective surface S0 ⊂ P

N is geometrically ruled by conics if there exists
a surjective morphism π : S0 → P

1 such that the fibre π−1(y) is a smooth rational curve
of degree 2 for every point y ∈ P

1, and such that π admits a section.
We say that a projective surface S ⊂ P

N is ruled by conics (over P
1) if it is birational

to a surface geometrically ruled by conics. Equivalently, S is ruled by conics if there exists
a surjective morphism π : S → P

1 and an open subset U ⊆ P
1 such that the fibre π−1(y)

is a curve of degree 2 and arithmetic genus 0 for every point y ∈ P
1, and the fibre π−1(y)

is smooth for every point y ∈ U .

Theorem 2.3. Let S ⊂ P
N be a projective surface ruled by conics over a smooth

irreducible curve. The degenerate fibres of S are then of one of the following types.

• Type F1. The union of two distinct lines; in this case S is smooth in each point of
the fibre.

• Type F2(A). The union of two distinct lines, meeting in an ordinary double point
of S.

• Type F2(D). The union of two coincident lines, containing exactly two ordinary
double points of S.
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• Type Fn(A) (n � 3). The union of two distinct lines, meeting in a rational double
point of type (An−1).

• Type Fn(D) (n � 3). The union of two coincident lines, containing exactly one
rational double point of S; in particular, this point is of type (A3) if n = 3, and of
type (Dn) if n � 4.

A deep and detailed overview of the rational double points can be found in [3, Chap-
ter 3].

Since any surface S ruled by conics is birational to a surface S0 geometrically ruled by
conics, S can be obtained from a suitable S0 by a finite number of monoidal transforma-
tions. In particular, each singular fibre of S (as described in Theorem 2.3) arises in this
way. Again in [6], we studied this situation, as summarized below.

Let F and D be as before, and let S0 = ϕD(F) be a surface geometrically ruled by
conics via the morphism π : S0 → P

1. Consider a point P1 ∈ S0 and let f0 := π−1(y) be
the fibre of S0 containing P1. Consider the blow-up σP1of S0 at P1 and the corresponding
projection on P

1, π1 say:

BlP1(S0) := S1
σP1 ��

π1

��

S0

π

��
P

1
P

1

Denote also by f1 := π−1
1 (y) the total transform of f0 via σP1 . Now, take P2 ∈ f1 and

the blow-up σP2 : S2 → S1. With obvious notation, we can iterate this construction and
obtain a sequence of blow-ups:

S̃0 := Sn

σPn �� · · · �� S2
σP2 �� S1

σP1 �� S0
∪ ∪ ∪ ∪

f̃0 := fn f2 P2 ∈ f1 P1 ∈ f0

where, for any i = 1, . . . , n, we define Pi ∈ fi−1, fi := π−1
i (y), and πi : Si :=

BlPi(Si−1) → P
1 is the natural projection.

Definition 2.4. With the above notation, we say that fn = f̃0 ⊂ S̃0 is a fibre of
level n over f0.

Denoting by σ the sequence of blow-ups of S0 defined above, setting D̃ to be the strict
transform of D (very ample bisecant divisor on S0) via σ, and setting B to be the base
locus of D̃, S can be obtained in the following way:

S̃0
σ ��

ϕD̃−B

��

S0

S

ρ

����������

where ρ is defined as the birational map such that the diagram is commutative.
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Definition 2.5. We say that the fibre f ⊂ S is an embedded fibre of level n if

n = min
i

{there exists a blow-up σ : S̃0 → S0

and a fibre fi ⊂ S̃0 of level i such that f = ϕD̃−B(fi)}.

Again in [6], we noted that each fibre f ⊂ S of type Fn(A) or Fn(D) is an embedded
fibre of level n. We also gave the following definition in [6].

Definition 2.6. Let f (1), . . . , f (p) be the degenerate fibres of S, and let li be the level
of f (i) for i = 1, . . . , p. If

∑p
i=1 li = L, we say that S is of level L.

Moreover, we proved that all the surfaces geometrically ruled by conics (g.r.c.) and
giving rise, by a minimal number of elementary transformations, to a surface S ruled by
conics of level L are exactly the elements of the following set:

GRCL(S) := {S0 | S0 is a g.r.c. surface and S can be obtained
from it by a sequence of L blow-ups and contractions}.

3. The surface S of minimum degree, ruled by conics and containing XK

Starting from the situation XK ⊂ V ⊂ P
g−1, described at the beginning of the previous

section, we try to ‘canonically’ define a surface (ruled by conics) containing XK and
contained in V .

Notation. As usual, if n is a rational number, [n] denotes the greatest integer smaller
than or equal to n, while �n� denotes the smallest integer bigger than or equal to n.

Theorem 3.1. There exists a surface S ruled by conics such that XK ⊂ S ⊂ V and
deg(S) � �(3g − 8)/2�. Moreover, S is unique unless deg(S) = (3g − 7)/2; in this case,
S varies in a pencil.

Proof. We consider the vector space H := H0(Pg−1, IXK
(2))/H0(Pg−1, IV (2)) and

set N := dim(H); clearly, Σ := P(H) parametrizes the hyperquadrics of P
g−1 contain-

ing XK but not containing V .
We recall that, if W is a projectively normal subvariety of P

g−1, we get the cohomology
exact sequence (see § 2)

0 → H0(IW (2)) → H0(OPg−1(2)) → H0(OW (2)) → 0.

Hence, h0(OPg−1(2)) = h0(IW (2)) + h0(OW (2)). Rewriting this equality for both XK

and V , we get that

h0(IXK
(2)) + h0(OXK

(2)) = h0(OPg−1(2)) = h0(IV (2)) + h0(OV (2)),

so N = h0(IXK
(2)) − h0(IV (2)) = h0(OV (2)) − h0(OXK

(2)).
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In order to compute N , recall (2.1) and the Riemann–Roch theorem on the scroll
V = P(F):

h0(V, OV (2)) = h0(P1, Sym2(F)) = deg(Sym2(F)) + rk(Sym2(F)).

Clearly, Sym2(F) is a free bundle of degree 4(a + b + c) and rank 6; therefore, from (2.2)
we get h0(OV (2)) = 4g − 6. On the other hand, by the Riemann–Roch theorem
h0(OXK

(2)) = 3(g − 1). Hence, the above space Σ of hyperquadrics is a projective
space of dimension N − 1 = h0(OV (2)) − h0(OXK

(2)) − 1 = g − 4.
For each Q ∈ Σ ∼= P

g−4, consider the scheme-theoretic intersection

Q · V =
( ⋃

i=1,...,hQ

Fi

)
∪ SQ,

where the Fi are the fibres of V entirely contained in Q, hQ � 0, and SQ is a surface that
is ruled by conics (since Q intersects the general fibre F of V in a conic passing through
the four points of the divisor Φ ⊂ F ) and contains XK .

Note that SQ is irreducible; if not, SQ = S1 ∪S2, where the Si are ruled surfaces. But,
XK ⊂ SQ and it cannot be contained in a ruled surface since each four-gonal divisor
spans a plane.

In order to find a quadric Q̄ ∈ Σ such that deg(SQ̄) is the minimum, it is enough
to require that the number hQ̄ is the maximum. Note that a fibre F is contained in a
quadric Q ∈ Σ if Q contains two points, say P1 and P2, belonging to F and such that
the 0-cycle of V of degree 6 given by Φ + P1 + P2 does not lie on a conic.

Since dim(Σ) = g − 4, we can impose that the space Σ contains [(g − 4)/2] pairs
of points. If each such pair of points belongs to the same fibre (and satisfies the above
conditions), then we can find a Q̄ ∈ Σ containing [(g − 4)/2] fibres. Clearly, Q̄ could
contain further fibres; hence,

deg(SQ̄) � deg(Q̄ ∩ V ) −
[
g − 4

2

]
� 2(g − 3) −

[
g − 4

2

]
=

⌈
3g − 8

2

⌉
.

This proves the existence of the required surface S := SQ̄.
Concerning the uniqueness, we assume that there are two such surfaces, say S1 and S2.
Since XK ⊂ (S1 ∩ S2), from (IF) we get that

2g − 2 = deg(XK) �
∫

(S1 · S2) = 2 deg(S1) + 2 deg(S2) − 4 deg(V ).

This relation is verified if and only if deg(S1) = deg(S2) = (3g − 7)/2. To complete the
proof, just observe that the linear system of the quadrics Q̄ ∈ Σ containing [(g − 4)/2]
fibres has dimension

dim Σ − 2
[
g − 4

2

]
= g − 4 − 2

(
g − 5

2

)
= 1;

therefore, there exists a pencil of distinct surfaces SQ̄. �

The existence of such a surface S has also been proved, using a different method, by
Schreyer [12].
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Notation. From now on, f denotes the general fibre of S, so f is a conic lying on a plane
F = 〈f〉. Moreover, if T is a surface ruled by conics, we denote by VT the scroll whose
fibres are the planes spanned by these conics. For example, if S is the surface defined in
Theorem 3.1, the scroll VS is exactly V .

Remark 3.2. The fibres of the ruled surface S defined in Theorem 3.1 cannot all be
singular. Otherwise, from [5, Proposition 1.2], the surface S would be ruled by lines on
a hyperelliptic curve, Y say, via α : S → Y , and the ruling π : S → P

1 would factorize
through α. Hence, taking into account that the restriction XK → Y of α has degree 2,
we obtain that XK is bihyperelliptic, contrary to the assumption made on X.

Remark 3.3. The surface S introduced in Theorem 3.1 is then ruled by conics in the
sense of § 2.

4. Birational models of XK ⊂ S

In this section we study a surface S (not necessarily of minimum degree, as for that
defined in Theorem 3.1) such that S is ruled by conics and XK ⊂ S ⊂ V , where V as
usual denotes the three-dimensional scroll spanned by the four-gonal divisors on XK .

Note that, since XK is linearly normal, S ⊂ P
g−1 is linearly normal. Moreover, the

scroll V = VS is not a cone (see Corollary 9.9); Theorem 2.3 then holds, so the classifi-
cation of the degenerate fibres of the surface S is the one described there.

In § 2 we have also summarized the results (contained in [6]) that allow us to associate
with a surface S, ruled by conics and of a certain level L, the set GRCL(S) consisting of
all the g.r.c. surfaces linked to S via a sequence of L monoidal transformations.

Here, we are looking for the inverse procedure: how to recover the surface S (and the
curve XK) starting from a g.r.c. surface S0 ∈ GRCL(S).

Notation. Since each surface S0 ∈ GRCL(S) is geometrically ruled by conics, each one
admits an invariant τ0 := t(S0), in the sense that S0 ∼= Fτ0 . We denote by Xτ0 ⊂ Fτ0

∼= S0

the corresponding model of XK ⊂ S.
Since Xτ0 ⊂ Fτ0 is a four-secant curve, we have

Xτ0 ∼ 4C0 + (λ0 + τ0)f, (4.1)

where C0 and f are the generators of Num(Fτ0) (see Lemma 2.1) and λ0 is a suitable
integer. Moreover, denoting by pa(C) the arithmetic genus of a curve C, we set

δτ0 := pa(Xτ0) − g. (4.2)

Note that, if all the singularities of Xτ0 are ordinary double points, δτ0 = deg(Sing(Xτ0)).

Remark 4.1. We recall that the adjunction formula for the dualizing sheaf ωXR
of a

curve XR on a smooth surface R is (see [7, Chapter 1, (1.5)])

ωXR
= KR ⊗ OR(XR)|XR

, (4.3)
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where KR = OR(KR) denotes the canonical sheaf of R. Taking the degrees, we then
obtain that

2pa(XR) − 2 = XR · (XR + KR). (4.4)

In our situation, R = Fτ0 and XR = Xτ0 . Then, KFτ0
= OFτ0

(−2C0 − (τ0 + 2)f), so,
using (4.1), we obtain that KFτ0

⊗OFτ0
(Xτ0) = OFτ0

(2C0 +(λ0 −2)f). Hence, from (4.3)
we can obtain that ωXτ0

= OFτ0
(2C0 + (λ0 − 2)f)|Xτ0

.
Finally, since KFτ0

∼ −2C0−(τ0+2)f , from (4.4) and (4.1) we find that 2pa(Xτ0) − 2 =
6λ0 − 6τ0 − 8.

Proposition 4.2. The following properties hold:

(i) the arithmetic genus of Xτ0 is pa(Xτ0) = 3(λ0 − τ0 − 1),

(ii) λ0 � max{3τ0, τ0 + 5},

(iii) δτ0 = 3(λ0 − τ0 − 1) − g.

Proof. (i) This is immediate from the last relation of Remark 4.1.

(ii) From [11, Chapter V, Theorem 2.18], since Xτ0 is irreducible, λ0 + τ0 � 4τ0.
Therefore, λ0 � 3τ0. On the other hand, pa(Xτ0) � g � 10 by assumption. Then, using
(i), we obtain that λ0 � τ0 + 5.

(iii) This follows from (4.2) and from (i). �

We wish to describe how to recover the canonical model XK starting from the chosen
birational model Xτ0 ⊂ Fτ0

∼= S0 ∈ GRCL(S).
Since X0 is the embedded model of Xτ0 obtained via the dualizing sheaf ωXτ0

(described above), then, in order to obtain X0, we have to embed Fτ0 by the sheaf
OFτ0

(2C0 + (λ0 − 2)f) (see Remark 4.1). Finally, we project the obtained curve X0 from
its singular points.

Remark 4.3. Note first that λ0−2 > 2τ0. In fact, if τ0 � 2, then λ0 > τ0+4 � 2τ0+2.
If τ0 � 3, then λ0 � 3τ0 > 2τ0 + 2 (both arguments follow from Proposition 4.2 (ii)).

Therefore (using [11, Chapter V, Theorem 2.18]), the linear system |2C0 + (λ0 − 2)f |
is very ample on Fτ0 . Moreover, from [4, Proposition 1.8], and from Proposition 4.2 (iii),
we get that h0(Fτ0 ,OFτ0

(2C0 +(λ0 −2)f)) = g + δτ0 . Hence, there exists an isomorphism
ϕ : Fτ0

∼=−→ S0 ⊂ P
g−1+δτ0 , where ϕ = ϕ2C0+(λ0−2)f and S0 := ϕ(Fτ0).

Clearly, S0 is a projective ruled surface, whose fibres are all smooth conics and
X0 = ϕ(Xτ0) ⊂ S0, so we have the commutative diagrams:

Fτ0

ϕ∼= �� S0 ⊂ P
g−1+δτ0

π

��
π

��
S ⊂ P

g−1

ρ

��
and Xτ0

ϕ|Xτ0∼= �� X0 ⊂ S0

π

��
π

��
XK ⊂ S

ρ

��
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where π (which is the inverse of the map ρ) is exactly the desingularization morphism
of X0, or, equivalently, the linear projection centred in 〈Σ〉 is generated by the singular
points of X0 (possibly infinitely near).

Remark 4.4. Since there are at most two singular points on each fibre, 〈Σ〉 meets S0

in a zero-dimensional variety of degree δτ0 . It is then clear that δτ0 = L and deg(S) =
deg(S0) − δτ0 .

5. Singularities of a birational model X0

The purpose of this section is to describe all the possible singularities of X0.
Recall that, from Remark 4.3, the projection π : X0 ⊂ S0 → XK ⊂ S is centred in

the singular points of X0, and the singular fibres of S correspond to the fibres of S0

containing the singular points of X0. Therefore, it is enough to examine the singular
fibres of S and the four-gonal divisor on each of them.

In order to do this, we focus on one singular fibre f of S and the corresponding
fibre f0 ⊂ S0.

Remark 5.1. Note that the curve XK ⊂ S intersects each fibre of S in four points
(the four-gonal divisor Φ ∈ g1

4). In particular, XK also meets each singular fibre f in four
points. If f = l ∪ m and l �= m, then two of them belong to the line l and two are on
the other line m (possibly coinciding); where this not the case, XK has a trisecant line,
hence a trigonal series (from the geometric Riemann–Roch theorem). On the other hand,
if l = m, then the support of Φ = XK ∩ f consists of two points (possibly coinciding).

Example 5.2. Let f ⊂ S be an embedded fibre of level 1. Then, π is the projection
centred at the point P0 ∈ f0, where P0 ∈ Sing(X0). Clearly, f = f0 + E, where E is the
exceptional divisor and f0 still denotes the other component of f . Setting A := f0 · E,
Pi ∈ f0 and Qi ∈ E (where Pi �= A �= Qi and Pi �= Qi for i = 1, 2), the possible cases are
the following:

(a) Φ = P1 + P2 + Q1 + Q2,

(b) Φ = P1 + P2 + 2Q1,

(c) Φ = 2P1 + Q1 + Q2,

(d) Φ = 2P1 + 2Q1,

(e) Φ = P1 + 2A + Q1,

(f) Φ = P1 + 3A (where XK · f0 = P1 + A and XK · E = 2A),

(g) Φ = 3A + Q1 (where XK · f0 = 2A and XK · E = A + Q1).

Figure 1 illustrates the corresponding singularities of X0.
It is clear that, in all the cases above, X0 has a double point: more precisely, either a

node, in cases (a), (c), (e), (g), or an ordinary cusp, in cases (b), (d), (f).
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π

S0

S

π π π

π π π

Figure 1. Level 1: possible singularities of X0.

A description of the double points of an algebraic curve can be found, for instance,
in [10, Lecture 20].

Here, we just recall that a node of the nth kind is a double point analytically equivalent
to y2 − x2n = 0. In particular, if n = 1, 2, 3, it is called an (ordinary) node, tacnode or
oscnode, respectively.

Moreover, a cusp of the nth kind is a double point analytically equivalent to y2 −
x2n+1 = 0. In particular, if n = 1, 2, it is called an (ordinary) cusp or ramphoid cusp,
respectively.

Definition 5.3. We say, for short, that a double point P0 of X0 is transversal if the
tangent line to the fibre f0 at P0 does not coincide with any of the tangent lines to X0

at P0; it is tangent otherwise.

Example 5.4. Assume that S is a surface ruled by conics having a fibre f of type (2A),
as defined in Theorem 2.3. Clearly (see [6, § 3]), this fibre arises from a fibre f0 ⊂ S0 by
projecting it from two points. More precisely, the projection π : S0 → S can be factorized
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π
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f0f0

P0
πP0

πP0
πP0

πP1
πP1

πP1
πP1

Figure 2. Type (2A): possible singularities of X0.

by π = πP1 ◦πP0 , where P0 ∈ f0 and P1 ∈ f1 := f0 +E ⊂ πP0(S0) and P1 �= f0 ·E. There
are two possibilities: either P1 ∈ f0 or P1 ∈ E.

In the first case, f = E + E(1), while in the second one, where P1 is infinitely near
to P0, we have f = f0 + E(1) (in both cases E(1) denotes the exceptional divisor of the
blow-up centred at P1). Moreover, in both configurations, f turns out to be a union of
two lines meeting in an ordinary double point for the surface S.

We start, in Figure 2, by sketching the situations corresponding to the configuration (a)
(in both cases f = E + E(1) and f = f0 + E(1)) and the configurations (b) and (d) (both
in case f = f0 + E(1)).

The construction (Ia) gives that X0 has two nodes on the fibre f0; in (IIa) the curve X0

has a tacnode, while in (IIb) and (IId) it has a ramphoid cusp. Finally, one can easily
see that the cases related to (e), (f), (g) do not occur.

Remark 5.5. The two examples above lead us to a general pattern. If X0 has only
one singular point P0 ∈ f0 and f is of type (nA), then f = f0 + E(n−1) and π can be
factorized by π = πPn−1 ◦ · · · ◦ πP1 ◦ πP0 , where Pi+1 ∈ E(i) for all i. Moreover, the type
of the singularity of P0 depends only on the intersection XK · E(n−1) on S, so we can
always assume that the two points given by XK · f0 on S are distinct.

We can now complete Example 5.4: if X0 has one singular point on f0, then the signifi-
cant cases are (IIa) and (IIb). Here XK is tangent (respectively, transversal) to E(1) on S.
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Figure 3. Type (3A): possible singularities of X0.

Example 5.6. In the same way, we get the possible singularities in the case F3(A),
as Figure 3 shows.

The above study can be easily generalized, obtaining the following result.

Proposition 5.7. The possible singularities of X0 ⊂ S0 arising from a fibre of S of
type Fn(A), where n � 2, are the following points on the same fibre f0 ⊂ S0.

• If n = 2, there is either one double point of second kind (either a transversal
tacnode or a transversal ramphoid cusp) or two double points of first kind (either
node or cusp).

• If n � 3, there is either one double point of the nth kind (transversal) or two double
points of lower kind.
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Figure 4. Type (2D): possible singularities of X0.

Note that in the case of two double points on f0, these two points are of kind h and k,
where h + k = n.

Example 5.8. Assume now that S is a surface ruled by conics having a fibre f of
type (2D). Clearly (see [6, § 3]), this fibre arises from a fibre f0 ⊂ S0 by projecting it
from two infinitely near points. More precisely, if π : S0 → S is the considered projection,
then π = πP1 ◦ πP0 , where P0 ∈ f0, and if f1 := f0 + E ⊂ πP0(S0), then P1 := f0 ·
E. As noted in [6], the fibre of S corresponding to f0 is given by f = 2E(2): it is a
totally degenerate conic containing two singular points of S, which correspond to the
lines f0 and E. Since f consists of a double line, the four-gonal divisor can be either
2A + 2B (where A, B ∈ E(2) are distinct points, non-singular for S) or 4A, as Figure 4
shows.

It is clear that the first configuration leads to a tangential tacnode, and the second
one gives a tangential ramphoid cusp of first order. Using the same argument as before,
we easily get the following result.

Proposition 5.9. The possible singularities of X0 ⊂ S0 arising from a fibre of S of
type Fn(D), where n � 2, consist of a unique singular point of the corresponding fibre
f0 ⊂ S0 as follows.
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• If n = 2, then there exists either a tangential tacnode or a tangential ramphoid
cusp.

• If n � 3, then there exists a tangential double point of the nth kind.

Combining Example 5.2, Propositions 5.7 and 5.9, we obtain the following complete
description of the possible singularities of X0.

Theorem 5.10. Let S be a surface ruled by conics containing XK , and let X0 ⊂ S0 be
birational models of XK and S, respectively, where S0 is a g.r.c. surface. Let π : S0 → S

be the usual projection. Assume that f is the unique singular fibre of S and set f0 to be
the corresponding fibre of S0.

The singular points of X0 then belong to f0 and are, as long as f is of type F1, Fn(A),
Fn(D) for n � 2, of one of the following types.

• (F1) One singular point: either a node or a cusp, both of them either tangential or
transversal.

• (Fn(A)) Only transversal singular points. More precisely:

(a) one double point of the nth kind,

(b) two double points of orders h, k < n, where h + k = n.

• (Fn(D)) Only one tangential double point of the nth kind.

In particular, all the singular points of X0 are double points.

6. ‘Standard’ birational models of XK ⊂ S

In § 4 we studied the set GRCL(S) consisting of the g.r.c. surfaces S0 such that S can
be obtained from S0 by a sequence of L monoidal transformations (L is the level of S).
We now determine one such surface in a sort of ‘canonical’ way: this will be called the
‘standard’ birational model of S.

Proposition 6.1. Let X0 ⊂ S0 ∈ GRCL(S) be as usual. Then, GRCL(S) =
{elmΣ(S0) | Σ ⊆ Sing(X0)}, i.e. each S′

0 ∈ GRCL(S) can be obtained from S0 by a
sequence of elementary transformations centred in singular points of X0 (or infinitely
near to them) and conversely.

Proof. Consider a surface S′
0 ∈ GRCL(S) and the corresponding model of XK , say

X ′
0 ⊂ S′

0. As in Proposition 4.2, denote by π : S0 → S and π′ : S′
0 → S the projections

centred in the singular points (possibly infinitely near) of X0 and X ′
0, respectively. We

can then define a sequence of elementary transformations (centred in some of the singular
points of X0) from S0 to S′

0.
Conversely, note that each elementary transformation of S0 can be obtained by con-

sidering an embedded model of S0 that is ruled by lines and projecting it from a finite
number of points. In this way, we get a birational model S′

0 of S that is a geometrically
ruled surface. If X ′

0 ⊂ S′
0 is the corresponding curve, it is clear that δ(X ′

0) = δ(X0) if
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and only if the above projection is centred in singular points of X0 (this is due to the
fact that the singular points of X0 are double points for Theorem 5.10). Therefore, if
S′

0 = elmΣ(S0), where Σ ⊆ Sing(X0), using Remark 4.4, the level of S′
0 coincides with

δ(X ′
0) = δ(X0) = L; hence, S′

0 ∈ GRCL(S). �

Definition 6.2. A surface S̄0 ∈ GRCL(S) is a standard model of a surface S ruled by
conics if its invariant is

t := min{τ0 = t(S0) | S0 ∈ GRCL(S)}.

If, moreover, X̄0 := ρ(XK) ⊂ S̄0 is the corresponding birational model of XK ⊂ S,
we also say that X̄0 is a standard model of XK . Finally, we denote the corresponding
invariant λ0 of S̄0 by λ.

Theorem 6.3. Let S be as before, let L be its level, let S0 ∈ GRCL(S) be a birational
model of S of invariant τ0, and let X0 be the model of XK on S0. If we assume that
t > 0, then the following facts hold.

(i) If S0 is a standard model, then the singular points of X0 belong to the minimum
unisecant C0 of S0.

(ii) There is exactly one standard model S̄0 of S.

(iii) If the singular points of X0 belong to the minimum unisecant C0 of S0, then
S0 = S̄0.

Proof. First, consider the model X ′ ⊂ R1,τ0+1 ∼= S0. We know that X ′ ∼ 4C0 +
(λ0 + τ0)f and δ(X ′) = 3(λ0 − τ0 −1)−g by Proposition 4.2. In particular, the level of S

is L = 3(λ0 − τ0 − 1) − g.
Consider a singular point T of X ′ and the projection πT from T . From Proposition 6.1,

πT (R1,τ0+1) belongs to GRCL(S).

(i) If S0 is a standard model, then τ0 = t. Assume that the point T does not belong
to C0. The invariant of πT (R1,t+1) is then t − 1, while t is the minimum invariant of the
surfaces belonging to GRCL(S).

(ii) Let S̄0 ∼= R1,t+1 be a standard model and let S′
0 be another surface in GRCL(S).

From Proposition 6.1, we know that S′
0 = elmΣ(S̄0), where Σ ⊆ Sing(X̄0). For simplicity,

assume that Σ = {T}, where T is a singular point of X̄0. From (i), we have that T ∈ C0

and, from Theorem 5.10, we know that T is a double point of X̄0, so T = A1 +A2, where
Φ := A1 + A2 + A3 + A4 is the four-gonal divisor on the fibre f̄0 containing T .

Clearly, S′
0 = πT (R1,t+1), so the curve X ′

0 has a double point (A3 +A4) on the fibre f̄ ′
0,

and such a point does not belong to the unisecant curve C ′
0 of S′

0. Therefore, we get
from (i) that S′

0 is not a standard model of S.

(iii) This follows by an analogous argument. �

Proposition 6.4. With the above notation, if t > 0, then the singular points of X̄0

belong to distinct fibres.
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Proof. Also in this case consider the model X ′ ⊂ R1,t+1 ∼= S̄0 and assume that
there exists a fibre containing two distinct singular points of X ′, P1 and P2, say. Clearly,
one of them, P1 say, does not belong to C0. So, by projecting R1,t+1 from P1 we get a
contradiction with the argument used in Theorem 6.3. �

Theorem 6.5. With the notation above, the surface S has degree

deg(S) = 4(λ − t − 2) − δt = g + λ − t − 5.

Proof. Since S̄0 = ϕ2C0+(λ−2)f (Ft) and C2
0 = −t, we have

deg(S̄0) = (2C0 + (λ − 2)f)2 = 4(λ − t − 2).

Moreover, from Remark 4.4 we have that deg(S) = deg(S̄0) − δt, so the first equality
holds. The second equality follows immediately from δt = 3(λ − t − 1) − g (see Proposi-
tion 4.2 (iii)). �

7. Bounds on the invariants λ and t

We return to the global description of the four-gonal curve X; as usual, XK ⊂ S ⊂ V =
P(O(a) ⊕ O(b) ⊕ O(c)) ⊂ P

g−1 (where S is as in Theorem 3.1) and X̄0 ⊂ S̄0 ∼= Ft are
standard models of them. Since the model Xt ⊂ Ft is again a four-secant curve, it is of
type Xt ∼ 4C0 + (λ + t)f .

So far we have defined the integers, a, b, c, t, δ, λ (here, δ := δt), which are invariants of
the curve X. All of them are useful to describe its geometry. We start with the dependence
of a, b, c on t, δ, λ.

Remark 7.1. Consider the isomorphism ϕ2C0+(λ−2)f : Ft → S̄0 ⊂ P
g−1+δ and the

volume VS̄0
⊂ P

g−1+δ generated by S̄0. From [4, Proposition 1.8], we have that

VS̄0
= P(O(λ − 2 − 2t) ⊕ O(λ − 2 − t) ⊕ O(λ − 2)).

If we consider the projection π : P
g−1+δ → P

g−1 centred at the singular locus of X̄0, it
is clear that π(VS̄0

) = VS . Using Theorem 6.3 (i), if t > 0, then the singular points of X̄0

are contained in the unisecant of minimum degree of S̄0 and, hence, of VS̄0
. Moreover, if

these points are all distinct, then VS has the form

VS = P(O(λ − 2 − 2t − δ) ⊕ O(λ − 2 − t) ⊕ O(λ − 2)).

On the other hand, taking into account that c = g − 3 − a − b, the scroll above is

VS = P(O(a) ⊕ O(b) ⊕ O(g − 3 − a − b)).

Hence, comparing the two expressions of VS and using δ = 3(λ − t − 1) − g (see Propo-
sition 4.2 (iii)), we obtain that

a = g + t − 2λ + 1 and b = λ − t − 2.

Note that, if t > 0 but the δ double points of X̄0 are not all distinct, a � g + t − 2λ + 1.
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Proposition 7.2. With the above notation, if V = P(O(a) ⊕ O(b) ⊕ O(c)), then

a + b � g − 5
2

.

Proof. We consider the curve XK ⊂ V and the ruled surface

Ra,b = P(O(a) ⊕ O(b)) ⊂ V.

In order to apply the intersection formula (IF) in § 2, we first observe that Ra,b and XK

meet properly on V , i.e. dim(Ra,b ∩ XK) = dim(Ra,b) + dim(XK) − dim(V ) = 0.
To see this, note that XK cannot be contained in Ra,b, otherwise the general four-gonal

divisor on XK would span a line instead of a plane, in contradiction to the geometric
Riemann–Roch theorem.

Hence, dim(Ra,b ∩ XK) = 0 and we can apply (IF), which gives the (non-negative)
degree of the intersection: 0 � degV (Ra,b·XK) = 4(a+b)+2g−2−4(g−3) = 2(a+b)−g+5,
and this is the required inequality. �

The lower bound of λ in terms of t given in Proposition 4.2 (λ � max{3t, t + 5}) can
be improved.

Remark 7.3. Assume that t � 1 and that the δ singular points of Xt are distinct.
Clearly,

2δ �
∫

C0 · Xt =
∫

C0 · (4C0 + (λ + t)f) = λ − 3t;

hence, λ � 2δ + 3t. Since δ = 3(λ − t − 1) − g (see Proposition 4.2 (iii)), we easily obtain
that

λ � 2g + 3t + 6
5

. (7.1)

Proposition 7.4. The following properties hold.

(i) For any t,

λ � g

3
+ t + 1.

(ii) If t = 0, then

λ � g + 3
2

.

(iii) If t � 1, then

λ � t +
g + 3

2
and t � g + 3

4
.

(iv) If t � 1 and the double points of X are all distinct, then

λ � g + 3
2

and t � g + 3
6

.
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Proof. (i) This follows from Proposition 4.2 (i), since pa(X̄0) = 3(λ − t − 1) � g.

(ii)–(iii) Using Theorems 3.1 and 6.5, we have that

g + λ − t − 5 = deg(S) �
⌈

3g − 8
2

⌉
⇒ λ − t �

⌈
3g − 8

2

⌉
− g + 5 =

⌈
g + 2

2

⌉
;

hence, we obtain the required bounds either if t = 0 or if t � 1. Moreover, from Propo-
sition 4.2 we have λ � 3t, so, using the previous bound of λ in (iii), we finally get
t � λ/3 � t/3 + (g + 3)/6, and this concludes the proof.

(iv) In this case, we can apply Remark 7.3. Using 3(λ − t − 1) − g = δ � 0 followed
by (7.1), we get that

t � λ − g + 3
3

� 2g + 3t + 6
5

− g + 3
3

⇒ t � g + 3
6

.

Using this bound and (7.1) we finally get λ � (g + 3)/2. �

8. Geometric meaning of the invariant λ

We keep the notation of the previous section: S is a surface ruled by conics such that
XK ⊂ S ⊂ V , and L denotes its level. Take a standard model S̄0 ∈ GRCL(S) and
consider its embedded model R1,t+1 ⊂ P

t+3.
As usual, we denote by X ′ ⊂ R1,t+1 the corresponding model of XK , where

X ′ ∼ 4C0 + (λ + t)f .

Remark 8.1. Note that such an X ′ has only double points as singularities (see The-
orem 5.10).

Remark 8.2. Denote by HX′ the hyperplane section of X ′ ⊂ R := R1,t+1 ⊂ P
t+3.

Since HR ∼ C0 + (t + 1)f ,

HX′ = HR · X ′ ∼ Φ + ∆, where Φ ∈ g1
4 and ∆ ∈ g1+t

λ+t.

In particular, deg(HX′) = λ + t + 4 and one can verify that X ′ is the embedding of
minimum degree of XK .

Definition 8.3. A linear system |D| on a curve X is called primitive if, for each point
P ∈ X, the linear system |D + P | has P as a base point. Equivalently, dim |D + P | =
dim |D|.

It is not difficult to see that the following property of X ′ ⊂ P
t+3, here stated for a

standard model S̄0, also holds for any birational model S0 ∈ GRCL(S).

Proposition 8.4. Let S̄0 ∼= R1,t+1 ⊂ P
t+3 be a standard model of S. Let Φ and ∆ be

as before and let X ′ = XΦ+∆ ⊂ R1,t+1 be as usual. If g > 13, then the following facts
hold.
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(i) The divisor Φ+∆ is a special divisor on X; in particular, K −Φ−∆ is an effective
divisor.

(ii) The curve X ′ ⊂ P
t+3 is linearly normal.

Proof. (i) It is enough to show that h0(O(K − Φ − ∆)) > 0 or, equivalently, by
the Riemann–Roch theorem, that λ < g − 1. If t = 0, it follows immediately from
Proposition 7.4 (ii).

If t � 1, still from Proposition 7.4 (iii), we have that λ � t+(g+3)/2 and t � (g+3)/4,
so λ � (3g + 9)/4 < g − 1, where the last inequality is true since g > 13 by assumption.
Finally, since Φ + ∆ is a special divisor, K − Φ − ∆ is an effective divisor.

(ii) We recall that (as in Remark 7.1) the surface S̄0 is naturally embedded, via the
isomorphism ϕ2C0+(λ−2)f , in a projective space, namely, S̄0 ⊂ VS̄0

⊂ P
g−1+δ, where

VS̄0
= P(O(λ − 2 − 2t) ⊕ O(λ − 2 − t) ⊕ O(λ − 2))

and t � 0. If t > 0, defining M := 〈ϕ2C0+(λ−2)f ((λ − 3 − t)Φ)〉, it is clear that

πM : VS̄0
→ P(O(1) ⊕ O(t + 1)) = R1,t+1.

This map can be factorized as follows: setting Σ as the divisor of the singular points
of X̄0 and taking into account that K − Φ − ∆ is an effective divisor on X from (i), set

L := 〈ϕ2C0+(λ−2)f (Σ)〉, N := 〈ϕK(K − Φ − ∆)〉.

We then have the following diagram:

X̄0

��

⊂ S̄0

��

⊂ VS̄0

��

⊂ P
g−1+δ

πL

��
Ft ⊃ Xt

ϕK ��

ϕ̄
���������������

ϕ′
���������������� XK

��

⊂ S

���
��

��
��

� ⊂ V

��

⊂ P
g−1

πN

��
X ′ ⊂ R1,t+1 ⊂ P

t+3

(8.1)

where ϕ̄ := ϕ2C0+(λ−2)f , ϕ′ = ϕΦ+∆ and πN ◦ πL = πM .
Note that X̄0 is not linearly normal. Namely, X̄0 is not special; if it was linearly normal,

then dim〈Φ〉 = 3 in P
g−1+δ, while X̄0 is contained in the scroll VS̄0

which is ruled by
planes.

Hence, we have to consider its normalization X̃ ⊂ P
g−1+2δ, and the corresponding

scroll

W :=
⋃

Φ∈g1
4

〈Φ〉 ⊂ P
g−1+2δ.
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It is easy to see that W is ruled by planes. Setting L̃ := 〈Σ〉 ⊂ P
g−1+2δ, the projection πL̃

factorizes through the normalization map, say Π, as follows:

X̃

��

⊂ W

��

⊂ P
g−1+2δ

Π

��
X̄0

��

⊂ VS̄0

��

⊂ P
g−1+δ

πL

��
XK ⊂ V ⊂ P

g−1

(8.2)

and πL ◦ Π = πL̃. Setting M̃ := 〈(λ − 3 − t)Φ〉 ⊂ P
g−1+2δ and keeping in mind (8.1)

and (8.2) we obtain:
X̃

��

⊂ W

��

⊂ P
g−1+2δ

πL̃

��
XK

��

⊂ V

��

⊂ P
g−1

πN

��
X ′ ⊂ R1,t+1 ⊂ P

t+3

where πN ◦ πL̃ = πM̃ . Since πM̃ : X̃ → X ′ and X̃ is linearly normal, X ′ is also linearly
normal.

If t = 0, the proof follows in a similar way. �

Proposition 8.5. Let S̄0 ∼= R1,t+1 ⊂ P
t+3, and let Φ, ∆ and X ′ = XΦ+∆ be as usual.

If g > 13, then the following hold.

(i) The linear system |∆| defined above is primitive.

(ii) If B ⊂ ∆ is a divisor on X ′ such that B ∈ g1
β �= g1

4 , then B ∼ ∆ − A1 − · · · − At,
for suitable Ai ∈ X ′ \ C0 for all i. In particular, β = λ.

Proof. (i) Assume that there exists P ∈ X ′ such that ∆ + P ∈ g2+t
λ+t+1, and consider

the model of XK given by X∆+P ⊂ P
t+2. Keeping in mind Proposition 8.4, we have that

X ′ = XΦ+∆ is linearly normal in P
t+3. Hence, we can consider the following diagram:

XΦ+∆

��

⊂ R1,t+1 ⊂ P
t+3

π〈Φ−P 〉

��
X ��

�����������

		�
��

��
��

� X∆+P

��

⊂ P
t+2

πP

��
X∆ ⊂ P

t+1

therefore, Φ − P is a triple point of X ′ = XΦ+∆, in contrast with Remark 8.1.
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(ii) The result is obvious for t = 0, so we can assume that t > 0. Since 〈Φ〉 is a fibre
of R1,t+1, the projection π〈Φ〉 : P

t+3 → P
t+1, centred in the line 〈Φ〉, maps R1,t+1 onto

the cone R0,t.
Moreover, HX′ ∼ Φ+∆, so π〈Φ〉(X ′) = X∆ = ϕ∆(X) ⊂ R0,t. Since all the singularities

of X ′ belong to C0 (see Theorem 6.3), X∆ has only one singular point in C := π〈Φ〉(C0),
which is the vertex of the cone R0,t.

In order to obtain a linear series of dimension 1 on X∆ ⊂ P
t+1, it is necessary to

project it from t points, say A1, . . . , At, of X∆. If each of these points is different from C,
then we get the required B ∈ g1

β , where β = deg(∆)− t = λ. If, for some i, it occurs that
Ai = C, then πC(R0,t) = C ⊂ P

t, where C is a rational normal curve of degree t: in this
case B ∈ g1

4 , in contrast with the assumption that g1
β �= g1

4 . �

Definition 8.6. A linear system |∆| on the curve X is called minimal if it satisfies
Proposition 8.5 (i) and (ii).

Remark 8.7. Note that, if we perform the previous construction with respect to a
birational model S0 ∈ GRCL(S), which is not a standard model, the corresponding series
|∆| is primitive but not minimal.

Remark 8.8. If t = 0, i.e. |∆| = g1
λ, then |∆| is minimal if and only if it is primitive.

We have seen in Proposition 8.5 that, if R1,t+1 is isomorphic to a standard model, the
associated series |∆| on X ′ is minimal. The converse is also true, as the following result
shows.

Proposition 8.9. Let X be as usual and consider two divisors Φ ∈ g1
4 and ∆ ∈ g1+t

λ+t.
If the linear series |∆| is minimal on X, then XΦ+∆ ⊂ R1,t+1 is isomorphic to a standard
model of XK ⊂ S.

Proof. We have to consider two cases; either

dim〈ϕΦ+∆(Φ)〉 = 1 or dim〈ϕΦ+∆(Φ)〉 = 2.

(1) In this case, since deg(Φ) = 4, XΦ+∆ is contained in a geometrically ruled surface
as a four-secant curve. Moreover, since dim |∆| = t + 1, the invariant of such a ruled
surface is t. Therefore, XΦ+∆ ⊂ Rh,t+h for a suitable h � 1.

Assume first that h � 2. Consider, as in the proof of Proposition 8.5 (ii), the projection
π〈Φ〉 : Rh,t+h → Rh−1,t+h−1, where π〈Φ〉(XΦ+∆) = X∆. Clearly, HR ∼ U + hf , where U

is a unisecant of degree t + h. Therefore,

Φ + ∆ = HR · XΦ+∆ ∼ hΦ + U · XΦ+∆

(see Remark 8.2). Since h � 2, it follows that ∆ ∼ (h − 1)Φ + U · XΦ+∆, so Φ ⊂ ∆.
Hence, ∆ − Φ ∈ gt−1

λ+t−4. Therefore, there exist t − 2 points, say A1, . . . , At−2, such that
∆ − Φ − A1 − · · · − At−2 ∈ g1

λ−2. But this is impossible since |∆| is minimal; hence, it
satisfies Proposition 8.5 (ii). This proves that h = 1, so XΦ+∆ ⊂ R1,t+1.

If XΦ+∆ has a multiple point P not belonging to C0, then we can project it from P

and t − 1 general points of the curve, obtaining a divisor B ⊂ ∆ such that B ∈ g1
λ̄

and
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λ̄ < λ. Therefore, all the singular points of XΦ+∆ ⊂ R1,t+1 belong to C0, and this implies
(from Theorem 6.3) that R1,t+1 is a standard model.

(2) In this case the curve is contained in the scroll V , ruled by planes, whose fibres are
〈ϕΦ+∆(Φ)〉, Φ ∈ g1

4 . So we set, for suitable a � b � c, XΦ+∆ ⊂ V = P(O(a)⊕O(b)⊕O(c)).
Clearly, among the unisecant curves U b of degree b such that U b ⊂ Ra,b ⊂ V , we can
choose one, say U , that does not meet XΦ+∆ (otherwise, XΦ+∆ would be contained in the
ruled surface Ra,b ⊂ V , in contradiction to the assumption). Therefore, if we consider the
projection π〈U〉 : V → Ra,c, it is clear that π〈U〉(XΦ+∆) is again a curve, say X̄Φ+∆, whose
hyperplane divisor is still Φ+∆, but X̄Φ+∆ ⊂ Ra,c, also contrary to the assumption. �

The remaining part of this section is devoted to the case t = 0. Here, the linear
series |∆| is denoted by |Λ|, since its degree is λ, as noted in Remark 8.8.

We show that this linear series is, in general, not unique. In order to determine all
such series g1

λ, let XK ⊂ S ⊂ V be as usual and assume that t(S) = 0. Let Φ ∈ g1
4 , let

Λ′ ∈ g1
λ′ (where λ′ > 4) and let XΦ+Λ′ := ϕΦ+Λ′(X) ⊂ R1,1. Denote by |l| and |l′| the

two rulings of R1,1.

Notation. If P ∈ R1,1, denote by lP and l′P the lines of the two rulings passing
through P . Moreover, if A is a double point of XΦ+Λ′ , denote by A1 and A2 the cor-
responding points on the canonical model of the curve, i.e. A1, A2 ∈ XK are such that
ϕΦ+Λ′(A1) = ϕΦ+Λ′(A2) = A.

Proposition 8.10. In the above situation, each pair of double points, A and B say, of
XΦ+Λ′ such that lA �= lB and l′A �= l′B determines a linear series |Λ̄′| �= |Λ′| of degree λ′.

Proof. Take the four-gonal and the λ′-gonal divisors of |Λ′| containing, respectively,
the two double points:

A1 + A2 + A′
1 + A′

2 ∈ g1
4 , A1 + A2 + P1 + · · · + Pλ′−2 ∈ |Λ′|,

B1 + B2 + B′
1 + B′

2 ∈ g1
4 , B1 + B2 + Q1 + · · · + Qλ′−2 ∈ |Λ′|.

Set Λ̄′ = Φ + Λ′ − (A1 + A2 + B1 + B2); clearly, |Λ̄′| is a linear series of degree λ′ and
distinct from |Λ′|. �

Remark 8.11. Let XK ⊂ S be as usual and assume that t = 0 and λ are the
invariants of S. Let Φ ∈ g1

4 , Λ ∈ g1
λ be two divisors on X. In the general case, the

δ double points of X ′ = XΦ+Λ ⊂ R1,1 belong to different lines of the two rulings |l|
and |l′|. Therefore, from the above result it is clear that there are

(
δ
2

)
linear series |Λ| of

degree λ; with each of them we can associate a model of X lying on R1,1. In particular, if
|Λ̄| is one of these series, the corresponding model XΦ+Λ̄ still has δ double points, since
the pair (A, B) has been replaced by (A′, B′), where A′ := ϕΦ+Λ̄(A′

1) = ϕΦ+Λ̄(A′
2) and

B′ := ϕΦ+Λ̄(B′
1) = ϕΦ+Λ̄(B′

2), following the notation in Proposition 8.10.
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Theorem 8.12. Let XK ⊂ S ⊂ V and let S be a surface ruled by conics of minimum
degree. Let t and λ be the invariants of S defined before. If t = 0, then the invariant λ

is the minimum degree of a linear series distinct from the g1
4 , i.e.

λ = min{r | X has a complete and base-point-free linear series g1
r and r > 4}.

Moreover, assume that |Λ| and |Λ′| are two distinct linear series of degree λ, and let S

and S′ be the associated surfaces. The following facts then hold.

(i) If λ �= (g + 3)/2, then S = S′.

(ii) If λ = (g + 3)/2, then S and S′ are not necessarily coincident, but belong to
a pencil of surfaces. Moreover, each element of this pencil is a surface ruled by
conics, associated with a linear series of degree λ, and having degree (3g − 7)/2.

Proof. Recall that λ is defined at the beginning of this section as the invariant of X

such that a standard model of X is a divisor of type (4, λ) on R1,1. Consider a linear
series g1

λ′ �= g1
λ; we need to show that λ′ � λ. Suppose that λ′ < λ. If g1

λ′ is minimal,
consider Λ′ ∈ g1

λ′ . Clearly, XΦ+Λ′ ⊂ R1,1 is a standard model.
If g1

λ′ is not minimal, then it is not primitive (from Remark 8.8), so there exist t′

points, say A1, . . . , At′ , such that ∆ := Λ′ +A1 + · · ·+At′ is both primitive and minimal.
Therefore, XΦ+∆ ⊂ R1,t′+1 is a standard model. Hence, the corresponding surface S′

ruled by conics is such that XK ⊂ S′ ⊂ V and deg(S′) = g + λ′ − t′ − 5. Assume that
S′ �= S; since XK ⊆ S ∩ S′, by (IF) we have that

deg(XK) �
∫

V

S · S′ = 2 deg(S) + 2 deg(S′) − 4 deg(V ).

Hence, 2g − 2 � 2(2g + λ + λ′ − t − t′ − 10) − 4(g − 3), so λ + λ′ � t + t′ + g + 3. Since
λ′ < λ, we obtain that

λ >
g + 3

2
+

t + t′

2
=

g + 3
2

+
t′

2
,

where the last equality comes from the assumption that t = 0. On the other hand,
λ � (g + 3)/2 from Proposition 7.4. Hence, t′ < 0, and this is impossible. Therefore, we
have proved that if S′ �= S, then λ′ � λ.

Assume now that S′ = S. Clearly, t′ = t = 0 and deg(S) = deg(S′). Hence, from
Theorem 6.5, it follows that λ = λ′.

In this way, we have proved the first part of the statement.

(i) Assume now that λ �= (g + 3)/2 and S �= S′. We can then use (IF) as before and,
from the assumption that λ = λ′, we obtain that λ � (g + 3)/2 + t′/2. We again
apply Proposition 7.4 to S, so λ � (g + 3)/2. Comparing these inequalities, we
obtain that t′ = 0; hence, λ = (g + 3)/2, contrary to the assumption.

(ii) Suppose now that λ = (g+3)/2. In this case, from Theorem 6.5, deg(S) = g+λ−5 =
(3g − 7)/2. Therefore, deg(S′) = g − λ − t′ − 5 � deg(S), and this implies that
t′ = 0 and deg(S′) = deg(S) = (3g − 7)/2. So, by Theorem 3.1, the result follows.

�

https://doi.org/10.1017/S001309151300062X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151300062X


656 M. Brundu and G. Sacchiero

9. Bounds for the invariants a and b

In this section we determine the range of the invariants a and b of the four-gonal curve X.
We keep the notation of § 7, where X̄0 ⊂ S̄0 ⊂ V̄ are standard models of XK ⊂ S ⊂ V

and π : P
g−1+δ → P

g−1 is the projection centred on the singular locus of X̄0.
Recall also that V = P(O(a) ⊕ O(b) ⊕ O(c)) and

V̄ = VS̄ = P(O(λ − 2 − 2t) ⊕ O(λ − 2 − t) ⊕ O(λ − 2)).

Moreover, from Proposition 4.2 (iii) we have δ = 3(λ−t−1)−g, and from Proposition 7.4
we obtain the following range of the invariant λ:

g + 3
3

� λ − t � g + 3
2

. (9.1)

Remark 9.1. Note that, from the above expression of V̄ , it follows that a � λ−2−2t,
b � λ−2− t, c � λ−2. Moreover, since a+ b+ c = g −3, there are only two independent
invariants, a and b say.

Notation. Clearly, if a < b, there exists a unique directrix on V with degree a. In this
case, we denote by A such a directrix of V , by Ā ⊂ V̄ the preimage of A via π, by δA

the number of the double points (possibly infinitely near) of X̄0 lying on Ā, and by ā the
degree of Ā. Then,

a = ā − δA. (9.2)

Proposition 9.2. Let t > 0 and let U be a directrix on S̄0. If deg(U) < λ − 2,
then U = C0.

Proof. It is enough to consider the isomorphism ϕ2C0+(λ−2)f : Ft → S̄0 and the unise-
cant irreducible curves C0 and U = C0+αf on Ft. If U �= C0, then α � t from Lemma 2.1.
So,

degS̄0
(U) =

∫
S̄0

(C0 + αf) · (2C0 + (λ − 2)f) = λ − 2 + 2α − 2t � λ − 2,

and the result follows. �

Proposition 9.3. Let t � 0. The directrix Ā of V̄ is then contained in S̄0.

Proof. Assume that Ā �⊂ S̄0. Taking into account that deg(S̄0) = 4(λ − t − 2), as
computed in Theorem 6.5, and deg(V̄ ) = 3(λ − t − 2), using the intersection formula we
then have that∫

V̄

X̄0 · Ā �
∫

V̄

S̄0 · Ā = deg(S̄0) + 2 deg(Ā) − 2 deg(V̄ ) = 2ā − 2λ + 2t + 4.

Therefore, if the δA singular points are distinct, it follows that

δA � 1
2

∫
V̄

X̄0 · Ā = ā − λ + t + 2.
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In the case of infinitely near points, it is not so difficult to show that the same relation
holds.

In this way, from (9.2), we have the following bound of a: a = ā−δA � λ− t−2, which
is the minimum degree of a directrix of V .

Consider the directrix π(C0) ⊂ V . Since degV̄ (C0) = λ − 2t − 2 and the centre of π

contains at least one point of C0, degV (π(C0)) � λ − 2t − 3 < λ − t − 2; this concludes
the proof. �

Remark 9.4. Consider the unisecant Ā ⊂ S̄0 ∼= Ft. Clearly, from Lemma 2.1, we have
Ā ∼ C0 + αf for some α � t or α = 0. Therefore, as computed in the proof of Proposi-
tion 9.2, we have

ā = degS̄0
(Ā) = λ − 2t + 2α − 2, (9.3)

Ā · X̄0 =
∫

S̄0

(C0 + αf)(4C0 + (λ + t)f) = λ − 3t + 4α,

δA � Ā · X̄0

2
=

λ − 3t + 4α

2
. (9.4)

It is immediate to see, from (9.2), (9.3) and (9.4), that

a = ā − δA � λ − t − 4
2

. (9.5)

Note that this bound of a does not depend on α.

Remark 9.5. Note that, since δA � δ, from (9.2) we have that a = ā − δA � ā − δ;
so, taking into account that δ = 3(λ − t − 1) − g, from (9.3) we immediately obtain that

a � λ − 2t + 2α − 2 − 3(λ − 1 − t) + g = g − 2λ + t + 2α + 1 � g − 2λ + t + 1. (9.6)

Remark 9.6. In order to compare the two bounds of a given by (9.5) and (9.6), just
note that

λ − t − 4
2

< g − 2λ + t + 1 ⇐⇒ λ <
2g + 3t + 6

5
.

This leads us to consider the best lower bound of a in each of the two ranges of λ.

Keeping in mind the previous remarks, we immediately have the following.

Proposition 9.7. The invariant a has the following lower bound:

amin := amin(g, λ, t) =

⎧⎪⎨
⎪⎩

⌈
λ − t − 4

2

⌉
if λ � 2g + 3t + 6

5
,

g − 2λ + t + 1 if λ � 2g + 3t + 6
5

,

and these bounds are attained if and only if Ā = C0.
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Remark 9.8. We can also obtain an ‘absolute’ lower bound of a, just observing that
amin can be realized when δA = δ; hence, when (λ − t − 4)/2 = g − 2λ + t + 1 or,
equivalently (from Remark 9.6), when λ = (2g + 3t + 6)/5. It is immediate to see that,
on this line of the plane (t, λ), the two values of amin(g, λ, t) coincide and are equal to

amin(g, t) =
g − t − 7

5
. (9.7)

Clearly, the minimum value of a is obtained for the maximum value of t (if t > 0).
Therefore, keeping in mind that λ � 3t (by Proposition 4.2), it is clear that the minimum
value of a corresponds to the common point of the lines λ = (2g + 3t + 6)/5 and λ = 3t.
We finish the argument by observing that (2g+3t+6)/5 = 3t if and only if t = (g+3)/6,
and substituting this value into (9.7) we obtain that amin(g) = (g − 9)/6. Note that,
in this case, λ = 3t = (g + 3)/2. Summing up, we have proved that if t > 0, then
amin(g) = (g − 9)/6 for t = (g + 3)/6 and λ = (g + 3)/2.

On the other hand, if t = 0, the value of (9.7) occurs for λ = (2g + 6)/5, and we have
that amin(g) = (g − 7)/5 for λ = (2g + 6)/5.

Corollary 9.9. With the above notation we have that,

for all t � 0, a � g − 9
6

, while for t = 0, a � g − 7
5

.

In particular, VS is not a cone for t � 0 and g � 10 or t = 0 and g � 8.

Proposition 9.10. Keeping the above notation, the invariants a and b can vary in
the following two ranges:

amin � a � g − 3
3

, (R2)

g − λ − 1 � a + b � 2(g − 3)
3

. (R3)

Proof. The two inequalities on the right-hand side in (R2) and (R3) follow from
a � b � c and a + b + c = g − 3. For the left-hand inequality of (R3), note that c � λ − 2
by Remark 9.1; hence, a + b = g − 3 − c � g − 3 − (λ − 2). �

Remark 9.11. If a < (g − λ − 1)/2, then a < b; hence, A is unique.

10. Existence of curves of given invariants λ, a, b when t = 0

Remark 10.1. If t = 0, a standard model S̄0 of S is isomorphic to F0 via
ϕ2l+(λ−2)l′ : F0 → S̄0 ⊂ P

3λ−4 and X̄0 ∼ 4l + λl′ on S̄0. Moreover, the projection from V̄

to V is π : P
3λ−4 → P

g−1, V̄ = P(O(λ − 2)⊕3) and Proposition 4.2 (iii), (9.1), (R2), (R3)
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become, respectively,

δ = 3(λ − 1) − g, (10.1)
g + 3

3
� λ � g + 3

2
, (R1)

amin � a � g − 3
3

, (R2)

g − λ − 1 � a + b � 2(g − 3)
3

, (R3)

where

amin =

⎧⎪⎨
⎪⎩

⌈
λ − 4

2

⌉
if λ � 2g + 6

5
,

g − 2λ + 1 if λ � 2g + 6
5

.

Note that (2g + 6)/5 belongs to the range of λ given in (R1). Moreover, λ = (2g + 6)/5
if and only if δ = λ/2.

At this point, beside the map ϕ := ϕ2l+(λ−2)l′ , it is useful to consider a further model
of S given by the isomorphism

ψ := ϕ4l+λl′ : F0 → S′ ⊂ P
5λ+4.

Notation. From now on, we denote a geometrically ruled surface ϕnl+ml′(F0) ⊂
P

(n+1)(m+1)−1 by Sn,m.
In this way, S′ = S4,λ and we set f : S′ → S̄0, the isomorphism being given by ϕ = f◦ψ.

Remark 10.2. A hyperplane section H · S′ of S′ ⊂ P
5λ+4 corresponds, via the mor-

phism ψ, to a curve XH ⊂ F0 of type (4, λ). It is not difficult to show, using Theorem 5.10,
that P ∈ F0 is a double point of XH if and only if H contains the tangent plane TP (S′)
(here, P means ψ(P ) ∈ S′).

Remark 10.3. Let S := Sn,m ⊂ P
(n+1)(m+1)−1 and let Y ⊂ S be a divisor whose

decomposition into irreducible and reduced components is Y = Y1∪· · ·∪Ys. Let P1, . . . , Pδ

be points of Y , and denote by δi the number of these points belonging to the compo-
nent Yi. Let

L := 〈TP1(S), . . . , TPδ
(S)〉

be the linear space spanned by the δ tangent planes. Clearly, if H is any hyperplane
containing L, H intersects Yi in at least 2δi points. Therefore, if 2δi > deg(Yi), then H

contains Yi.

The above observation leads to the following.

Definition 10.4. We say that P1, . . . , Pδ trivially degenerate the component Yi if
2δi > deg(Yi). Moreover, we say that P1, . . . , Pδ trivially degenerate the curve Y if this
occurs for at least one component of Y .
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Remark 10.5. Let S′ = S4,λ be as before. Assume that a � b � c fulfil the relations
(R1), (R2) and (R3).

(a) Let M ∼ l be a divisor of S′. Clearly, deg(M) = H · M = λ. We consider λ − 2 − a

distinct points of M , say P1, . . . , Pλ−2−a. Clearly, P1, . . . , Pλ−2−a do not trivially
degenerate M if and only if 2(λ−2−a) � deg(M) = λ if and only if a � (λ−4)/2,
and this is true by (R2).

(b) In the same way, if N ∼ l is a divisor of S′, and P1, . . . , Pλ−2−b are distinct points
of N , then 2(λ−2−b) � 2(λ−2−a) � deg(N) = λ, again by (R2). So P1, . . . , Pλ−2−b

do not trivially degenerate N .

(c) Consider now a divisor Q ∼ (λ−2− c)l′ consisting of λ−2− c distinct components
and a set of distinct points P1, . . . , Pλ−2−c, one on each component of Q. Obviously,
P1, . . . , Pλ−2−c do not trivially degenerate Q.

Theorem 10.6. Let g, a, b, λ be positive integers, with g � 10, and consider the
following inequalities:

g + 3
3

� λ � g + 3
2

, (R1)

amin � a � g − 3
3

, (R2)

g − λ − 1 � a + b � 2(g − 3)
3

, (R3)

where

amin =

⎧⎪⎨
⎪⎩

⌈
λ − 4

2

⌉
if λ � 2g + 6

5
,

g − 2λ + 1 if λ � 2g + 6
5

.

There then exists a four-gonal curve of genus g and invariants a, b, λ if and only if (R1),
(R2), (R3) are verified.

Proof. If there exists a four-gonal curve of genus g and invariants a, b, λ, then (R1),
(R2), (R3) come from Remark 10.1.

Conversely, we choose g, λ, a, b satisfying the inequalities (R1), (R2), (R3). Using
Remark 10.2, it is enough to show that there exists an irreducible hyperplane section
H · S′ of S′ = S4,λ, i.e. a curve XH ∼ 4l + λl′ on F0, of genus g and invariants a, b.

Take the following three divisors of S′: M , N , Q, where M ∼ l ∼ N (M �= N) and
Q ∼ (λ − 2 − c)l′ consists of distinct lines. Moreover, consider λ − 2 − a distinct points
of M , λ − 2 − b distinct points of N , and λ − 2 − c distinct points of Q, one on each line
and none belonging to M or N .

Note that M + N + Q ∈ |2l + (λ − 2 − c)l′| and (10.1) implies that (λ − 2 − a) + (λ −
2 − b) + (λ − 2 − c) = δ.

Therefore, also taking into account Remark 10.5, it is immediate to see that the
hypotheses of Lemma 11.4 are verified; we can then deduce that the linear space L
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spanned by the tangent planes to S′ at the above δ points does not contain any further
point of S′. In particular, a general hyperplane H ⊃ L corresponds to an irreducible
curve XH ∼ 4l + λl′ having exactly δ nodes, so its genus is g(XH) = 3(λ − 1) − δ = g.

Consider the isomorphism f : S′ → S̄0, defined previously, and set Ā := f(M),
B̄ := f(N). Clearly,

deg(Ā) = deg(B̄) = λ − 2.

Set X̄0 := ϕ(XH) ⊂ S̄0 and denote by δA and δB the number of the double points of X̄0

lying on Ā and on B̄, respectively. From the construction, it is clear that

δA = λ − 2 − a and δB = λ − 2 − b.

Setting A, B ⊂ S ⊂ V the projections of Ā and B̄, respectively, via π〈∆̄〉 : S̄0 → S,
from (9.2) we have that deg(A) = deg(Ā) − δA = λ − 2 − δA = a and deg(B) =
deg(B̄) − δB = λ − 2 − δB = b. In this way, one can easily deduce that V = VS =
P(O(a) ⊕ O(b) ⊕ O(c)), so a and b are the other two invariants of X. �

In order to complete the proof of Theorem 10.6, we need to prove the ‘key-lemma’
stated in Lemma 11.4. The next section is devoted to this purpose.

11. Proof of the key-lemma

In order to prove the key-lemma (Lemma 11.4), we need some preliminary technical
results.

Lemma 11.1. Let S := Sn,m and let D ∼ hl + kl′ ⊂ S be a divisor, where h � n + 1
and k � m + 1. Then,

(i) dim〈D〉 = h(m + 1) + k(n + 1) − hk − 1.

Moreover, if D is irreducible, then

(ii) D is a non-special curve,

(iii) D is a linearly normal curve in 〈D〉.

Proof. (i) Assume first that h � n and k � m. It is clear that, setting S′ := Sn−h,m−k,
we have dim〈D〉 = h0(OS(1)) − h0(OS′(1)) − 1, and this proves the above relation.

The remaining cases are h = n + 1 and k � m + 1 or h � n + 1 and k = m + 1. In
both cases, D ∼ hl + kl′ cannot be contained in any hyperplane section H · S ∼ nl + ml′

of S. Hence, 〈D〉 = 〈S〉, so dim〈D〉 = dim〈S〉 = (n + 1)(m + 1) − 1, and this gives the
formula in the statement when h = n + 1 or k = m + 1.

(ii) It is enough to show that deg(D) > 2pa(D)−2. Taking into account that deg(D) =
hm+kn and pa(D) = hk−h−k+1, and using the assumption that n � h−1 and m � k−1,
we obtain that deg(D) = hm + kn � h(k − 1) + (h − 1)k > 2hk − 2h − 2k = 2pa(D) − 2.
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(iii) It is enough to prove that h0(D,OD(1)) = dim〈D〉 + 1. Since D is non-special,
as proved before, applying the Riemann–Roch theorem, we obtain that h0(OD(1)) =
deg(D) − pa(D) + 1, and this coincides with dim〈D〉 + 1, as one can easily verify. Hence,
D is linearly normal in 〈D〉. �

Lemma 11.2. Let S := S2,k, where k � 2, and consider d distinct points
P1, . . . , Pd ∈ S, where d � 2k + 1. Setting J := 〈P1, . . . , Pd〉, if dim(J) < d − 1, then
there exists a unisecant curve U on S such that #(U ∩ {P1, . . . , Pd}) � deg(U) + 1. In
particular, U ⊂ S ∩ J .

Proof. Assume, for simplicity, that the considered points belong to distinct fibres
of S′. Since dim |l + kl′| = 2k + 1 � d, there exists a unisecant curve linearly equivalent
to l + kl′ containing P1, . . . , Pd. Therefore, we can find a unisecant, U ′ say, of minimum
degree containing P1, . . . , Pd. Clearly, U ′ ∼ l + εl′, where ε � k; moreover, U ′ = U + l′1 +
· · · + l′α, where U is irreducible, P1, . . . , Pd−α ∈ U and Pd−α+i ∈ l′i \ U for i = 1, . . . , α.
We show that U is the required unisecant curve. Were this not the case, setting β :=
deg(U)+1− (d−α), it would follow that β > 0. Let T := 〈J, A1, . . . , Aβ〉, where Aj ∈ U .
Clearly, U ⊂ T ; hence, T meets each fibre l′i in two points: Pd−α+i and U ∩ l′i. Since the
fibres are conics, choosing Bi ∈ l′i, the linear space

Σ := 〈J, A1, . . . , Aβ , B1, . . . , Bα〉

contains 〈U ′〉. Therefore, dim〈U ′〉 � dim(Σ) � dim(J) + α + β = dim(J) + deg(U) + 1 −
d + 2α. On the other hand, using Lemma 11.1, dim〈U ′〉 = deg(U ′) = deg(U) + 2α, so
dim(J) � d − 1, against the assumption.

It is easy to extend this proof to the case where at most two of the d points belong to
the same fibre. �

Lemma 11.3. Let S := S4,λ, where λ � 4, and let D̃ ∈ |2l + εl′| be a bisecant curve
on S such that D̃ does not contain any fibre of S. Consider d + 1 points P, P1, . . . , Pd as
follows: P ∈ S, P1, . . . , Pd ∈ D̃ such that they do not trivially degenerate D̃ and at most
two of them belong to the same fibre. Assume that P1, . . . , Pm are double points of D̃

(for 0 � m � d) and that Pm+1, . . . , Pd are simple points of D̃. Let

T := 〈P, TP1(S), . . . , TPm(S), tPm+1(D̃), . . . , tPd
(D̃)〉,

where TPi(S) and tPi(D̃) denote the tangent plane to S and the tangent line to D̃,
respectively, at Pi.

If ε � λ and d � λ, then dim(T ) = 2d + m.

Proof. For simplicity, assume that P ∈ D̃ and P1, . . . , Pd belong to distinct fibres
of S. In this situation, T ⊆ 〈D̃〉 and m � d � ε.
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Claim. T is a proper subspace of 〈D̃〉.

In order to prove this, observe that, by Lemma 11.1 and the assumption d � λ, we
have that

dim〈D̃〉 = 2λ + 3ε + 1 � 2d + 3ε + 1.

As noted before, m � ε; hence, dim〈D̃〉 � 2d + 3m + 1 > 2d + m � dim(T ), and this
proves the claim.

Let N := dim〈D̃〉 and consider the projection πT : P
N → P

n with centre T for a
suitable n. Clearly, by the claim above, n > 0. Let R := R(D̃) be the ruled surface
generated by D̃ via the ruling on S. Since T is a multisecant space of R and P1, . . . , Pd

belong to distinct fibres, T ∩ R contains a unisecant curve (see [4, Lemma 1.5]), Y say.
Therefore, πT (R) = πT (D̃) is a rational normal curve of degree n in P

n. In particular,

N − n = dim〈D̃〉 − dim〈πT (D̃)〉 = dim(T ) + 1. (11.1)

In order to prove the statement, observe that it holds that dim(T ) � 2d + m.

First case (D̃ is irreducible.) Since πT |D̃ is a map of degree 2,

n = deg(πT (D̃)) =
deg(D̃) −

∫
T · D̃

2
. (11.2)

Moreover, from Lemma 11.1 (iii) we get N = dim〈D̃〉 = h0(OD̃(1))−1 = deg(D̃)−pa(D̃),
so, using (11.1), we obtain that

dim(T ) = N − n − 1

= deg(D̃) − pa(D̃) − deg(D̃) −
∫

T · D̃

2
− 1

=
deg(D̃) +

∫
T · D̃

2
− pa(D̃) − 1.

Note that deg(D̃) = 4ε + 2λ and pa(D̃) = ε − 1; moreover, by the definition of T ,∫
T · D̃ � 2d + 2m + 1. Hence, we obtain that dim(T ) � ε + λ + d + m + 1/2. Thus, if we

assume that dim(T ) < 2d + m, we get ε + λ + d + m + 1/2 < 2d + m, so d > λ + ε + 1/2,
contrary to the assumption that d � λ.

Second case (D̃ is reducible.) Let D̃ = U1+U2, where Ui are irreducible unisecant curves.
Let di be the number of points among P1, . . . , Pd belonging to Ui. Clearly, P1, . . . , Pm ∈
U1 ∩ U2, so d = d1 + d2 − m. Moreover, we have that

dim〈D̃〉 = dim〈U1〉 + dim〈U2〉 −
∫

U1 · U2 + 1. (11.3)

Since T is a proper subspace of 〈D̃〉, as proved in the previous claim, D̃ �⊂ T . Therefore,
only two cases can occur: either Ui �⊂ T for i = 1, 2 or (for instance) U1 ⊂ T and U2 �⊂ T .
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If Ui �⊂ T for i = 1, 2, then πT (D̃) = πT (U1) = πT (U2), so

n = dim〈πT (D̃)〉 = dim〈πT (Ui)〉 = deg(πT (Ui)) = deg(Ui) −
∫

T · Ui for i = 1, 2.

(11.4)
Adding the previous relations (11.4) for i = 1 and i = 2, we obtain that 2n = deg(U1 +
U2) −

∫
T · (U1 + U2), so this equality coincides with (11.2) and we conclude the proof as

in the first case.
We are left to study the case U1 ⊂ T , i.e. U1 = Y . Since T contains the tangent lines

to U2 at all the d2 points defined before, and since U1 ⊂ T and the m double points of D̃

belong to U1 ∩ U2, ∫
T · U2 = 2d2 +

∫
U1 · U2 − m.

In this case, (11.4) holds only for U2, so it becomes

dim〈πT (D̃)〉 = deg(U2) −
(

2d2 +
∫

U1 · U2 − m

)
.

Therefore, using the relation above and (11.3), and taking into account that dim〈Ui〉 =
deg(Ui), we obtain that dim〈D̃〉−dim〈πT (D̃)〉 = deg(U1)+2d2−m+1. We now substitute
d2 = d+m−d1 and use (11.1), obtaining that dim(T )+1 = deg(U1)+2d+2m−2d1−m+1.
Finally, recall that the Pi do not trivially degenerate D̃; hence, 2d1 � deg(U1). So, we
obtain that

dim(T ) + 1 � 2d + m + 1,

as required. In the general case, the proof follows in a similar way. �

Notation. Since we consider, in the following result, both S′ := S4,λ and S2,c+2, we
denote the divisors on these surfaces by D4, D̃4, . . . and D2, D̃2, . . . , respectively.

Lemma 11.4 (key-lemma). Let g, a, b, c, λ be positive integers satisfying (2.2),
(R1), (R2), (R3).

Let S′ := S4,λ ⊂ P
5λ+4 and let D4 ∈ |2l + (λ − 2 − c)l′| be a curve on S′ of type

D4 = D̃4 +
∑α

i=1l
′
i, where α is an integer such that 0 � α � λ−2−c and D̃4 is a suitable

bisecant divisor not containing any irreducible component linearly equivalent to l′.
We take δ = 3(λ − 1) − g distinct points on D4 that do not trivially degenerate D4:

set P1, . . . , Pδ−α ∈ D̃4 and P ′
1, . . . , P

′
α ∈

∑α
i=1l

′
i such that P ′

i ∈ l′i \ D̃4 for i = 1, . . . , α.
Setting

L := 〈TP1(S
′), . . . , TPδ−α

(S′), TP ′
1
(S′), . . . , TP ′

α
(S′)〉,

if P ∈ S′ is any further point such that P �∈ L and L′ := 〈P, L〉, then we have

dim(L′) = 3δ.

In particular, dim(L) = 3δ − 1, i.e. L is of maximum dimension and the intersection of
L and S′ consists only of the points P1, . . . , Pδ−α, P ′

1, . . . , P
′
α.
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P1
P2 Pm

Pm+1 P  − 

P'1 P'2
P'

l'1 l'2 l'

δ α
α

α
…

Figure 5. The divisor D4 on the surface S4,λ.

Proof. First note that dim(L′) � 3δ and dim(L) � 3δ −1. It is, thus, enough to show
that dim(L′) � 3δ.

Assume first that P �∈ D̃4.

Step 1 (computation of the dimension of Σ := 〈L′, D4〉). Among the chosen
points P1, . . . , Pδ−α ∈ D̃4, consider those that are singular points of D̃4, say P1, . . . , Pm,
for some 0 � m � δ − α.

Clearly, since they are double points of D̃4, the tangent plane at each of them is
contained in 〈D̃4〉. On the other hand, the tangent plane at the remaining δ − m points
intersects 〈D4〉 in a line (either tangent to D̃4 for Pm+1, . . . , Pδ−α, or tangent to l′i for
the points of type P ′

i ). Briefly,

TPi(S
′) ⊂ 〈D̃4〉 for i = 1, . . . , m,

TPi(S
′) ∩ 〈D4〉 = tPi(D4) = tPi(D̃4) for i = m + 1, . . . , δ − α,

TP ′
j
(S′) ∩ 〈D4〉 = tP ′

j
(D4) = tP ′

j
(l′j) for j = 1, . . . , α.

⎫⎪⎪⎬
⎪⎪⎭ (11.5)

Now consider the projection π := π〈D4〉 : S′ = S4,λ → S2,c+2, and set

J := π(Σ) = 〈P̄ , P̄m+1, . . . , P̄δ−α, P̄ ′
1, . . . , P̄

′
α〉,

where P̄ := π(P ), P̄i := π(TPi(S
′)) for i = m + 1, . . . , δ − α, and P̄ ′

j := π(TP ′
j
(S′)) for

j = 1, . . . , α.
By the definition of J , we clearly have that

dim(Σ) = dim(J) + dim〈D4〉 + 1. (11.6)

Step 2 (computation of the dimension of J). Observe that the isomorphisms
ϕ4l+λl′ and ϕ2l+(c+2)l′ induce a canonical isomorphism, say χ, as follows:

F0
ϕ4l+λl′



��
��

��
�� ϕ2l+(c+2)l′

����������

S4,λ
χ �� S2,c+2
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and χ coincides with π on S4,λ \D4. Therefore, setting D2 := χ(D4) ⊂ S2,c+2, the points
P̄m+1, . . . , P̄δ−α, P̄ ′

1, . . . , P̄
′
α belong to D2. Clearly, dim(J) � δ − m. We want to show

that dim(J) = δ − m.
Assume that dim(J) < δ − m. In order to apply Lemma 11.2, we need to compare

the number of points spanning J with the integer c. On the one hand, from (10.1) and
(R1) we have that δ = 3(λ − 1) − g � (g + 3)/2. On the other hand, from (R3), we get
c � (g − 3)/3, i.e. g � 3c + 3. Therefore, we obtain that

δ − m � δ � g + 3
2

� 3c + 6
2

< 2c + 5 ⇒ δ − m + 1 � 2(c + 2) + 1.

So, we can apply Lemma 11.2 to J (which is spanned by δ − m + 1 points and has
dimension smaller than δ − m) and S2,c+2. In this way we obtain that there exists a
unisecant curve Ū ⊂ J ∩ S2,c+2 such that, setting r the number of the points among
P̄ , P̄m+1, . . . , P̄δ−α, P̄ ′

1, . . . , P̄
′
α belonging to Ū , deg(Ū) � r − 1. Let Ū ∼ l + εl′; then,

deg(Ū) = c + 2 + 2ε.

Claim. The unisecant Ū is not contained in D2.

If not, let U := χ−1(Ū) and let h be the number of the points among P , the Pi and P ′
j

belonging to U . On the one hand, since these points do not trivially degenerate D4 (by
assumption) and U ⊂ D4 (since Ū ⊂ D2 by the assumption of the claim), 2h � deg(U).

On the other hand, h � r by the definitions of h and r and from χ(U) = Ū . From all
these observations, it follows that deg(U) � 2h � 2r � 2(deg(Ū) + 1) = 2(c + 3 + 2ε).
Since deg(U) = λ + 4ε, we obtain that 2c + 6 � λ. Using the bound c � (g − 3)/3, we
finally get λ � 2

3g + 4, against (R1). In this way the claim is proved.
Since Ū is not contained in D2, their intersection surely contains the r points introduced

before. So

r �
∫

S2,c+2

Ū · D2 = (l + εl′) · (2l + (λ − 2 − c)l′) = λ − 2 − c + 2ε.

The above relation and deg(Ū) � r−1 give that c+2+2ε = deg(Ū) � r−1 � λ−3−c+2ε,
so λ � 2c + 5, and this leads to a contradiction, as in the proof of the claim above.

Hence, such a unisecant curve Ū does not exist, and this implies that

dim(J) = δ − m. (11.7)

Step 3 (computation of the dimension of L′). Putting (11.6) and (11.7) together,
we finally obtain that

dim(Σ) = dim〈D4〉 + δ − m + 1. (11.8)

We now compare dim(Σ) with dim(L′). Consider the linear space

T := 〈P, TP1(S
′), . . . , TPm(S′), tPm+1(D̃4), . . . , tPδ−α

(D̃4)〉 ⊆ L′.

Note that, from (R1), we have g � 2λ − 3; hence, δ − α � δ = 3(λ − 1) − g � λ.
Therefore, the assumptions in Lemma 11.3 are satisfied by S4,λ, D̃4 and T , with respect
to the points P, P1, . . . , Pδ−α. We then obtain that

dim(T ) = 2(δ − α) + m. (11.9)
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Since T ⊆ 〈D̃4, P 〉 by (11.5), there exist β points, say R1, . . . , Rβ ∈ D̃4 such that
〈T, R1, . . . , Rβ〉 coincides with 〈D̃4, P 〉, where

β = dim〈D̃4, P 〉 − dim(T ) � dim〈D̃4〉 − dim(T ) + 1. (11.10)

Therefore, the linear space 〈L′, R1, . . . , Rβ〉 contains 〈D̃4, P 〉, so it meets each fibre l′P ′
j

(for j = 1, . . . , α) in four points: two of them are l′P ′
j
∩ D̃4 and the remaining ones are

l′P ′
j
∩ TP ′

j
(S′). Hence, if we add to this space a further point, say Aj , on each fibre, the

obtained linear space also contains the quartic curves l′P ′
1
, . . . , l′P ′

α
, and, hence, the whole

divisor D4. In this way we have proved that 〈L′, R1, . . . , Rβ , A1, . . . , Aα〉 ⊃ 〈L′, D4〉 = Σ,
so

dim(Σ) � dim(L′) + α + β. (11.11)

Using (11.8) and (11.11) we obtain that dim〈D4〉+δ−m+1 = dim(Σ) � dim(L′)+α+β,
and, from this, using (11.10) we get that dim〈D4〉+δ−m+1 � dim(L′)+α+dim〈D̃4〉−
dim(T ) + 1. Finally, using (11.9) we obtain that

dim(L′) � δ − m + dim〈D4〉 − dim〈D̃4〉 − α + 2(δ − α) + m

= 3δ − 3α + dim〈D4〉 − dim〈D̃4〉
= 3δ,

where the last equality easily comes from Lemma 11.1.
Note that the statement has been proved in the case P �∈ D̃4, but the case P ∈ D̃4

follows in a similar way, with some warnings. Namely, in Step 1, the main difference
concerns the linear space J := π(Σ) = 〈P̄m+1, . . . , P̄δ−α, P̄ ′

1, . . . , P̄
′
α〉 obtained from Σ by

projecting from 〈D4〉, and (11.6) still holds. In Step 2, since δ − m + 1 � 2(c + 2) + 1,
a fortiori, it holds that δ − m � 2(c + 2) + 1. So, also in this case, Lemma 11.2 can
be applied to J , which is spanned by δ − m points and is assumed to have dimension
smaller than δ − m − 1. Using the same argument we can prove the analogous statement
of (11.7), i.e. dim(J) = δ − m − 1. Finally, in Step 3 we obtain the analogous statement
of (11.8) and, precisely, that dim(Σ) = dim〈D4〉 + δ − m. In the following argument, the
result of Lemma 11.3 is used; since it holds for any P , in this case (11.9) is also verified.
It is now immediate to see that (11.10) becomes β = dim〈D̃4〉 − dim(T ), and we again
obtain that dim〈D4〉 + δ − m = dim(Σ) � dim(L′) + α + β.

Using the new form of (11.10) we finally obtain that dim〈D4〉 + δ − m � dim(L′) +
α + dim〈D̃4〉 − dim(T ), which completes the proof as in the general case. �

Remark 11.5. The above result also holds if at most two of the points P1, . . . , Pd

belong to the same fibre.

Corollary 11.6. For every curve D̄ ∼ 2l + (λ − 2 − c)l′ ⊂ S̄0 ∼= F0 and for every
choice of P1, . . . , Pδ ∈ D̄ that do not trivially degenerate D̄, there exists a curve X̄0 ⊂ S̄0

whose double points are exactly P1, . . . , Pδ and whose characters are a, b, λ, where
a + b = g − 3 − c.
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We conclude this section with some remarks about the construction of the bisecant
curves D4 and D̃4.

We consider a geometrically ruled surface contained in V and having minimum degree;
each such surface corresponds to a quotient of type

F := O(a) ⊕ O(b) ⊕ O(c) → O(a) ⊕ O(b) → 0, (11.12)

i.e. it is of the type R := Ra,b = P(O(a) ⊕ O(b)).

Remark 11.7. Since these quotients correspond to F(−c), tensorizing (11.12) by
O(−c) we obtain that

0 → O → O(a − c) ⊕ O(b − c) ⊕ O → O(a − c) ⊕ O(b − c) → 0,

so

h0(F(−c)) =

⎧⎪⎨
⎪⎩

3 if a = b = c,

2 if a < b = c,

1 if b < c

or, equivalently, dim |Ra,b| =

⎧⎪⎨
⎪⎩

2 if a = b = c,

1 if a < b = c,

0 if b < c.

Remark 11.8. Set V̄ := VS̄0
and, as usual, let Σ be the set of the double points of X̄0.

We have the diagram
S̄0

��

⊂ V̄

πΣ

��

⊃ R̄

��
S ⊂ V ⊃ R

where R̄ := π−1
Σ (R). Setting δR := �(Σ∩R̄), i.e. the number of the double points (possibly

infinitely near) of X̄0 lying on R̄, it is clear that deg(R̄) = deg(R) + δR = a + b + δR.

Lemma 11.9. Let R ∈ |Ra,b| be a ruled surface on V = O(a) ⊕ O(b) ⊕ O(c) and let
S̄0 = S2,λ−2 as usual. Then,

D̃ := R̄ · S̄0 ∼ 2l + (λ − 2 − c − δ + δR)l′,

and there exists a unique bisecant curve D̄ ∼ 2l + (λ − 2 − c)l′ ⊂ S̄0 such that Σ ⊂ D̄

and D̄ ⊇ D̃. Moreover, as soon as R varies in |Ra,b|, D̄ varies in a linear system of
dimension 0, 1, 2 if b < c, a < b = c, a = b = c, respectively.

Proof. Let HV̄ be a hyperplane section of V̄ containing R̄. Since each hyperplane
section cannot contain any other unisecant component out of R̄, HV̄ ∼ R̄ + τFV̄ , where
FV̄ is the generic fibre of V̄ and τ is a non-negative integer. Clearly, since deg(HV̄ ) =
deg(V̄ ) = deg(V ) + δ = a + b + c + δ and deg(R̄) = a + b + δR, we obtain that

R̄ ∼ HV̄ − (c + δ − δR)FV̄ .

Taking into account that HV̄ · S̄0 = 2l + (λ − 2)l′ and FV̄ · S̄0 = l′, we obtain that

R̄ · S̄0 ∼ 2l + (λ − 2)l′ − (c + δ − δR)l′ = 2l + (λ − 2 − c − δ + δR)l′,
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as required. Note that only δR points of Σ lie on D̃, and the remaining δ − δR lie on
δ − δR fibres (possibly coincident) of S̄0, say l′1, . . . , l

′
δ−δR

. Hence,

Σ ⊂ D̃ ∪ l′1 ∪ · · · ∪ l′δ−δR
∼ 2l + (λ − 2 − c)l′,

so, setting D̄ := D̃ ∪ l′1 ∪ · · · ∪ l′δ−δR
, we obtain that D̄ is linearly equivalent to 2l + (λ −

2 − c)l′ and contains both Σ and D̃, as required. Finally, from the above construction,
the divisor D̄ is unique for each R̄. The last statement follows from Remark 11.7. �

Keeping the above notation, one can immediately compute the degree of D̄:

deg(D̄) =
∫

(2l + (λ − 2 − c)l′) · (2l + (λ − 2)l′) = 4(λ − 2) − 2c. (11.13)

Observe that R̄ is the ruled surface generated by the ruling of V̄ on D̃, i.e.

R̄ =
⋃

P,Q∈D̃∩FV̄

lP,Q,

where lP,Q denotes the line passing through the points P and Q. In particular, R̄ is
determined by D̃; to stress this fact, we write R̄ = R̄(D̃).

12. Moduli spaces of four-gonal curves with t = 0

In this section we study the moduli spaces of four-gonal curves with given invariants; in
particular, we determine whether they are irreducible and find their dimension. Moreover,
we give a stratification of these spaces using the invariants introduced in the previous
sections.

Let X be a four-gonal curve of genus g and consider its canonical model XK ⊂ S ⊂
V ⊂ P

g−1, where (from Theorem 3.1) S is a surface ruled by conics, of minimum degree
and unique, unless g is odd and deg(S) = (3g − 7)/2. In this case, there exists a pencil
of such surfaces.

Assume that S has invariant t = 0, i.e. its (embedded) standard model is the quadric
surface R1,1 ⊂ P

3, on which X can be realized as a curve X ′ ∼ 4l+λl′ having only double
points as singularities: we write X = X(g, λ). Moreover, if V = P(O(a) ⊕ O(b) ⊕ O(c)),
then a and b are further invariants of X, and we write X = X(g, λ, a, b).

Remark 12.1. If X is as before, then, by Remark 8.11, it is clear that it has a finite
number of models X ′, at most

(
δ
2

)
, on R1,1 unless g is odd and deg(S) = (3g − 7)/2.

In this case, there is a one-dimensional family of such models of X. More precisely, one
model comes from another via an elementary transformation of type elmA,B , where A

and B are two double points of X ′ as in Remark 8.11. In this way, denoting by X ′′

another model of X on R1,1 and by ξ an elementary transformation as before, the set

ΞX′ := {ξ : X ′ → X ′′}

consists of at most
(
δ
2

)
elements if deg(S) � �(3g−8)/2�, while dim(ΞX′) = 1 if deg(S) =

(3g − 7)/2.
Note that ΞX′ has exactly

(
δ
2

)
elements in the general case.
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We denote by Aλ the open subset of the linear system |4l + λl′| on R1,1 parametrizing
the irreducible curves of such a linear system, and set

Wλ
g := {X ′ ∈ Aλ | X = X(g, λ) and X ′ has δ double points on distinct fibres},

Wλ
g (a, b) := {X ′ ∈ Wλ

g | X = X(g, λ, a, b)}.

We denote by Mg,4 the moduli space of four-gonal curves of genus g and let

θ : Wλ
g → Mg,4

be the usual projection defined by θ(X ′) = [X], where [X] is the isomorphism class of
the four-gonal curve X in Mg,4. Finally, set

Mλ
g := θ(Wλ

g ), Mλ
g (a, b) := θ(Wλ

g (a, b)).

It is clear that, in order to compute the dimension of these moduli spaces, we need to
find both the dimensions of Wλ

g (respectively, Wλ
g (a, b)) and of the general fibre of θ.

Remark 12.2. From Theorem 10.6, the locally closed subsets Wλ
g (a, b) and, hence,

Wλ
g are not empty, as long as a, b, λ fulfil (R1), (R2), (R3).

Lemma 12.3. Let X ′, Y ′ ∈ Wλ
g be two curves on R1,1. If [X] = [Y ] in Mλ

g , there
exists an automorphism β of the quadric surface R1,1 and a morphism ξ ∈ ΞY ′ such that
Y ′ = ξ(β(X ′)). Therefore, the dimension of the general fibre of θ is

dim(θ−1([X])) =

⎧⎨
⎩7 if g is odd and λ =

⌈
g + 2

2

⌉
,

6 otherwise.

Proof. Since X ∼= Y , XK
∼= YK and there exists a linear automorphism, α say, of P

g−1

such that α(XK) = YK . Let SX and SY be the surfaces, ruled by conics and of minimum
degree such that XK ⊂ SX ⊂ P

g−1 and YK ⊂ SY ⊂ P
g−1. Assume that these surfaces

are unique; therefore, α(SX) = SY .
Consider diagram (8.1) for both X and Y : setting NX := 〈ϕX(KX − ΦX − ΛX)〉 and

NY analogously, we have the following:

P
g−1

α

��

⊃ SX

α

��

⊃ XK

α

��

πNX �� XΦX+ΛX
= X ′ ⊂ R1,1(X)

β

��
P

g−1 ⊃ SY ⊃ YK

πNY �� YΦY +ΛY
= Y ′ ⊂ R1,1(Y )

where β is the isomorphism between the quadrics R1,1(X) and R1,1(Y ) induced by α.
Up to a linear change of coordinates in P

3, we can assume that R1,1(X) = R1,1(Y ), so
β ∈ Aut(R1,1).

Consider then the curves Y ′ and β(X ′) lying on R1,1: from the construction above, we
obtain that they are both models of Y on a quadric. Therefore, applying Remark 12.1,
we get that there exists ξ ∈ ΞY ′ such that Y ′ = ξ(β(X ′)), as requested.
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When SX and SY are not unique they vary in a pencil (see Theorem 3.1), and the
proof follows in a similar way.

The second part of the statement follows from the first part, namely, it is clear that
dim(θ−1([X])) = dim(Aut(R1,1))+dim(ΞX). On the one hand, observe that Aut(R1,1) ∼=
Aut(P1 ×P

1) ∼= PGL(2)×PGL(2) has dimension 6. On the other hand, by Remark 12.1,

dim(ΞX) =

⎧⎨
⎩1 if g is odd and deg(S) =

3g − 7
2

,

0 otherwise.

Finally, note (using Theorem 6.5) that g + λ − 5 = deg(S) = (3g − 7)/2 or, equivalently,
λ = (g + 3)/2 = �(g + 2)/2�, where the last equality holds since g is odd. �

We recall (see § 10) that if X ′ ∈ Wλ
g , then X ′ ⊂ R1,1 ∼= F0 and ϕ4l+λl′ : F0 → S′ ⊂

P
5λ+4. In particular, we can associate with X ′ a hyperplane HX of P

5λ+4. By Remark 10.2
we have that X ′ has P1, . . . , Pδ as double points if and only if HX contains the linear
space

LP1,...,Pδ
:= 〈TP1(S

′), . . . , TPδ
(S′)〉.

We can then identify Wλ
g with its image via the injective morphism i : Wλ

g → P̌
5λ+4

defined by X ′ �→ HX .
In order to compute the dimension of Wλ

g and of Wλ
g (a, b), and to prove their irre-

ducibility, we need further preliminary observations.

Remark 12.4. The key-lemma (Lemma 11.4) has been proved under the assumption
that (P1, . . . , Pδ) are distinct points. For instance, if δ = 2, this result states that

dim LP1,P2 = dim〈TP1(S
′), TP2(S

′)〉 = 5.

If P2 is infinitely near to P1, given a local system of coordinates of S′ in a neighbourhood
of P1, the tangent plane to S′ at P1 is generated by P1 and the first derived vectors
both along the bisecant D̃ and along the fibre l′1. Hence, it is easy to see that the linear
space LP1,P2 is generated by the above generators of TP1(S

′) and by two further second
derived vectors and a third derived vector. One can show that all of them are linearly
independent, so, also in this case, dimLP1,P2 = 5.

It is not difficult to prove, if k is any integer (1 � k � δ − 1) and the considered
points are P1, P2, . . . , Pk+1, . . . , Pδ, where P2, . . . , Pk+1 are infinitely near to P1, that
dim LP1,...Pδ

� 3δ − k.

Lemma 12.5. We consider the morphism

Ψ : Wλ
g → Symδ(R1,1) defined by X ′ �→ (P1, . . . , Pδ),

where Σ = P1 + · · · + Pδ is the singular locus of X ′ ⊂ R1,1. The general fibre of Ψ then
has dimension

(i) dim(Ψ−1(P1, . . . , Pδ)) = 5λ + 4 − 3δ if P1, . . . , Pδ are distinct points,

(ii) dim(Ψ−1(P1, . . . , Pδ)) � 5λ+3− 3δ + k if P2, . . . , Pk+1 are infinitely near to P1 for
some k � 1.
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Proof. By definition, Wλ
g consists of the irreducible curves of type (4, λ) on R1,1

having δ double points on distinct fibres. So, taking into account the above injective
morphism i : Wλ

g → P̌
5λ+4 and the fact that X ′ ∈ Wλ

g has P1, . . . , Pδ as double points
if and only if the hyperplane HX := i(X ′) contains the linear space LP1,...,Pδ

, it is clear
that the general fibre Ψ−1(P1, . . . , Pδ) is isomorphic to an open subset of {H ∈ P̌

5λ+4 |
H ⊃ LP1,...,Pδ

}, since the general hyperplane containing LP1,...,Pδ
contains the tangent

planes to S′ only at the chosen points. This means, exactly, that

dim(Ψ−1(P1, . . . , Pδ)) = 5λ + 4 − (dimLP1,...Pδ
+ 1).

(i) If P1, . . . , Pδ are distinct, then in the key-lemma (Lemma 11.4) we have shown that
the dimension of LP1,...,Pδ

is 3δ − 1 independently of the position of the considered
points. So, in this case, Ψ−1(P1, . . . , Pδ) is irreducible of dimension 5λ + 4 − 3δ.

(ii) If P1, . . . , Pδ are not distinct, as in the assumption, then the fibre of Ψ could have
bigger dimension. Nevertheless, we can get an upper bound on this dimension by
taking into account Remark 12.4, obtaining that dim(Ψ−1(P1, . . . , Pδ)) is at most
5λ + 4 − (3δ − k + 1), and this proves the second part.

�

Proposition 12.6. For each λ satisfying

g + 3
3

� λ �
⌈

g + 2
2

⌉
, (R1)

the locally closed subset Wλ
g is irreducible of dimension g + 2λ + 7.

Proof. Setting Sym := Symδ(R1,1), consider the map Ψ : Wλ
g → Sym defined in

Lemma 12.5. Note that Ψ is dominant and dim(Sym) = 2δ. Recall also that the δ singular
points of the general curve X ′ ∈ Wλ

g are in general position on R1,1 by Lemma 11.4.
If P1, . . . , Pδ are distinct points, by Lemma 12.5 we get that dim(Ψ−1(P1, . . . , Pδ)) =

5λ + 4 − 3δ. Therefore,

dim(Wλ
g ) = dim(Ψ−1(P1, . . . , Pδ)) + dim(Sym) = 5λ + 4 − δ = g + 2λ + 7,

where the last equality follows from δ = 3(λ − 1) − g.
Assume now that P2, . . . , Pk+1 are infinitely near to P1 for some k � 1. The fibre

of Ψ at the point (P1, . . . , Pδ) ∈ Sym then has dimension at most 5λ + 3 − 3δ + k

by Lemma 12.5. The difference between such an integer and 5λ + 4 − 3δ is at most
k − 1 < 2k = codimSym(∆), where ∆ := {(Q1, . . . , Qδ) ∈ Sym | Q1 = · · · = Qk+1}.
Clearly, ∆ is a closed subset of Sym and contains the considered element (P1, . . . , Pδ).
Therefore, the variety consisting of the fibres on the points of ∆ is a proper closed subset
of Wλ

g . �
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Remark 12.7. Recall that Mg,4 is a closed irreducible subset of the moduli space Mg,
and has dimension 2g + 3. We set the maximum value of λ (see (R1)) to be

λmax :=
⌈

g + 2
2

⌉
.

Then, from Proposition 12.6,

dim(Wλmax
g ) = g + 2λmax + 7.

We recall that the fibre of θ : Wλmax
g → Mλmax

g has dimension either 6 or 7, according to
whether g is even or odd, respectively (from Lemma 12.3). Hence,

dim(Mλmax
g ) =

⎧⎪⎨
⎪⎩

g + 2
g + 2

2
+ 1 = 2g + 3 if g is even,

g + 2
g + 3

2
= 2g + 3 if g is odd.

Therefore, in both cases, we have that dim(Mλmax
g ) = dim(Mg,4); in other words, the

general four-gonal curve has invariant λmax.

Remark 12.8. We know that, if t > 0, X admits a standard model X ′ ⊂ R1,t+1.
Nevertheless, also in this case, it is possible to define another model of X, X ′′ say,
on a quadric surface R1,1. Clearly, in this situation, X ′′ not only has double points as
singularities, but also triple points.

Namely, let Q1, . . . , Qt be simple points of X ′, belonging to t distinct fibres of R1,t+1,
and consider the projection from these points:

X ′

��

⊂ R1,t+1

πQ1,...,Qt

��
X ′′ ⊂ R1,1

Since X ′ meets each fibre of R1,t+1 in the four points of the gonal divisor, the singularities
of X ′′ are the δ double points of X ′ and, in addition, t triple points, all of them belonging
to the same line l.

It is clear that the closure W̄λ
g of Wλ

g in Aλ also contains the curves of the invariants g, λ

and t > 0, and it is not difficult to see that the closed subset consisting of such curves
has dimension smaller than dim(Wλ

g ).

Using Remark 12.2, Lemma 12.3, Proposition 12.6 and Remarks 12.7 and 12.8, we
immediately obtain the following result, which is the first part of the Main Theorem
stated in § 1 (here, M̄λ

g denotes the closure of Mλ
g in the moduli space Mg,4 of four-

gonal curves).

Theorem 12.9. There exists a stratification of the moduli space Mg,4 of four-gonal
curves given by

Mg,4 = M̄�(g+2)/2�
g ⊃ M̄�g/2�

g ⊃ · · · ⊃ M̄λ
g ⊃ · · · ⊃ M̄�(g+3)/3�

g ,
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and M̄λ
g are irreducible locally closed subsets of dimension g + 2λ + 1 for (g + 3)/3 �

λ < �(g + 2)/2�.

In order to show the second part of the Main Theorem, we start with some preliminary
facts.

We keep the notation of Lemma 11.9, where D̃ denotes a divisor of S̄0 = S2,λ−2 ⊂
P

g−1+δ linearly equivalent to 2l + (λ − 2 − c − δ + δR)l′ and containing δR points among
P1, . . . , Pδ.

Also recall (see § 9) that the unisecant Ā ⊂ V̄ is the preimage, via π, of the (unique
if a < b) unisecant of degree a of V . Moreover, R̄ := π−1(R), where R := Ra,b, so
Ā ⊂ R̄ = R̄(D̃) as described in Lemma 11.9.

In the forthcoming computations we use the following relations a few times (coming
from a + b + c = g − 3 and from (10.1)):

c = g − 3 − a − b, 3λ = δ + g + 3. (12.1)

Lemma 12.10. Let D̃ ⊂ S̄0 and R̄ := R̄(D̃) be as before. Let Ā ∈ Una+δR(R̄) and
Γ := D̃ · Ā. Assume that a � (g − λ − 1)/2. Then,

(i) deg(Γ ) = 4(λ − 2) − 2b − 2c − 2(δ − δR),

(ii) h0(OR̄(Ā)) = h0(OD̃(Γ )),

(iii) assuming also that δR = δ and either a > (g − λ − 1)/2 or a = (g − λ − 1)/2 and
a < b,

H0(OR̄(Ā)) ∼= H0(OD̃(Γ )).

Proof. (i) Recall that, keeping the notation in Lemma 11.9, D̄ = D̃ + (δ − δR)l′. So
deg(D̃) = deg(D̄)−2(δ−δR), since S̄0 is ruled by conics. Hence, using (11.13), we obtain
that deg(D̃) = 4(λ − 2) − 2(c + δ − δR). Therefore, applying (IF) and Remark 11.8, we
have that

deg(Γ ) = 2 deg(Ā) + deg(D̃) − 2 deg(R̄)

= 2(a + δR) + 4(λ − 2) − 2(c + δ − δR) − 2(a + b + δR)

= 4(λ − 2) − 2b − 2c − 2(δ − δR).

(ii) We first show that Γ is a non-special divisor on D̃. Since D̃ is of type (2, λ − 2 −
c− (δ − δR)) on the quadric, pa(D̃) = λ− 3− c− (δ − δR). A sufficient condition in order
to have non-special Γ is that deg(Γ ) > 2pa(D̃) − 2, or, equivalently,

4(λ − 2) − 2b − 2c − 2(δ − δR) > 2(λ − 3 − c − (δ − δR)) − 2,

i.e. λ − b > 0, and this is true since b � λ − 2. Therefore, h1(OD̃(Γ )) = 0 and, by the
Riemann–Roch theorem, also using (12.1), we obtain that h0(OD̃(Γ )) − 1 = deg(Γ ) −
pa(D̃) = a − b + δR + 1. Moreover, h0(OR̄(Ā)) − 1 = dimR̄(|Ā|) = dim(Una+δR(R̄)) =
a − b + δR + 1 by (UF). Hence, we obtain that

h0(OD̃(Γ )) = a − b + δR + 2 = h0(OR̄(Ā)).
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(iii) In order to prove the claim, consider the exact sequence

0 → ID̃/R̄(Ā) → OR̄(Ā) → OD̃(Γ ) → 0. (12.2)

By (ii), it suffices to show that the map f : H0(OR̄(Ā)) → H0(OD̃(Γ )) induced by (12.2)
is injective.

Clearly, this holds if and only if there exists a unique Ā ∈ Una+δR(R̄) passing
through Γ , and this holds if

∫
Ā2 < deg(Γ ). From (IF) and Remark 11.8 we obtain

that ∫
Ā2 = 2 deg(Ā) − deg(R̄) = 2(a + δR) − (a + b + δR) = a − b + δR.

Therefore, the condition
∫

Ā2 < deg(Γ ) becomes a−b+δR < 4(λ−2)−2b−2c−2(δ−δR).
Again using (12.1), the above inequality is equivalent to λ − g + a + b + 1 − (δ − δR) > 0.
By assumption, δ − δR = 0, so a + b > g − λ − 1 and, using the further assumptions on
a and b, the claim is proved. �

Before stating the second part of the Main Theorem, we set

ε :=

⎧⎪⎨
⎪⎩

0 if b < c,

1 if a < b = c,

2 if a = b = c,

τ :=

{
0 if a < b,

1 if a = b
and ξ :=

⎧⎨
⎩1 if λ =

g + 3
2

,

0 otherwise.

Theorem 12.11. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and
c = g − 3 − a − b. If a � (g − λ − 1)/2, then Mλ

g (a, b) is an irreducible variety of
dimension 2(2a + b + λ) + 10 − g − ε − τ − ξ.

Proof. From Remark 12.2 and Lemma 12.3, it is enough to show that Wλ
g (a, b) is

irreducible of the right dimension.
Keeping the notation in Lemma 12.5, set Y λ

g (a, b) := Ψ(Wλ
g (a, b)).

Claim. Ψ−1(Y λ
g (a, b)) ⊂ Wλ

g (a, b).

This is equivalent to the following property: let X ′′ ∈ Wλ
g be such that Ψ(X ′′) =

(P1, . . . , Pδ) = Ψ(X ′), where X ′ ∈ Wλ
g (a, b); then, X ′′ ∈ Wλ

g (a, b). This is true, since
π〈P1,...,Pδ〉(V̄ ) is the scroll V = P(O(a) ⊕ O(b) ⊕ O(c)) associated with both X ′ and X ′′,
and this proves the claim.

Step 1 (irreducibility and dimension of Wλ
g (a, b)). From the claim above we

can consider the restriction of Ψ ,

ψ : Wλ
g (a, b) → Y λ

g (a, b).

From Lemma 12.5, dim(ψ−1(P1, . . . , Pδ)) = 5λ + 4 − 3δ if P1, . . . , Pδ are distinct points.
Using the same argument as that in the proof of Proposition 12.6, in the case of

infinitely near points one easily shows that the variety consisting of the fibres on the
points of ∆ is a proper closed subset of Wλ

g (a, b). For this reason, Wλ
g (a, b) is irreducible

if Y λ
g (a, b) is irreducible and

dim(Wλ
g (a, b)) = dim(Y λ

g (a, b)) + 5λ + 4 − 3δ. (12.3)
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Step 2 (irreducibility and dimension of Y λ
g (a, b)). Recall that the singular locus

Σ = P1 + · · · + Pδ of X ′ ⊂ R1,1 is contained in a suitable bisecant curve D̄ ∼ 2l + (λ −
2 − c)l′ ⊂ R1,1 by Lemma 11.9 (there, the result concerns S̄0; here, it concerns R1,1).

It is not hard to show that there exists an open subset, Y 0 say, of Y λ
g (a, b) whose

elements (P1, . . . , Pδ) fulfil the following property: there exists D̄ ∈ |2l+(λ−2− c)l′| not
containing fibres and such that P1, . . . , Pδ ∈ D̄ ∩ Ā, for a suitable Ā ∈ Una+δ(R̄), where
R̄ := R̄(D̄). In particular, on this subset δR = δ.

We check that the above condition is compatible with the degrees of the involved
divisors, i.e. setting Γ := D̄ ∩ Ā, we must have that δ � deg(Γ ). From Lemma 12.10 (ii),
taking into account that here δ = δR and using (12.1) as usual, it is easy to see that
deg(Γ ) = 2a + λ − g + 1 + δ � δ, since 2a + λ − g + 1 � 0. Namely, this is equivalent to
a � (g − λ − 1)/2, which holds by assumption.

Consider then the correspondence Zλ
a,b ⊂ |2l + (λ − 2 − c)l′| × Symδ(R1,1) defined by

Zλ
a,b := {(D̄, P1, . . . , Pδ) | there exists Ā ∈ Una+δ(R̄(D̄)) such that P1, . . . , Pδ ∈ D̄ ∩ Ā}.

Consider now the two canonical projections, where Ω is the open subset of |2l+(λ−2−c)l′|
consisting of curves not containing fibres:

Zλ
a,b

p



		
		

		
		 q

		�
��

��
��

�

|2l + (λ − 2 − c)l′| ⊃ Ω Y 0 ⊂ Y λ
g (a, b) ⊂ Symδ(R1,1)

By Lemma 11.9, every element (P1, . . . , Pδ) of Y 0 determines either a unique D̄ ∼ 2l +
(λ − 2 − c)l′ (if b < c) or a pencil (if a < b = c) or a two-dimensional linear system
(if a = b = c) of such curves. This implies that the general fibre of q is irreducible of
dimension ε, where ε = 0, 1, 2 as long as b < c, a < b = c, a = b = c, respectively.
Furthermore, p is surjective by Corollary 11.6.

Defining by ZD̄ := p−1(D̄) any fibre of p, we have that if ZD̄ is irreducible, then
Y λ

g (a, b) is irreducible and

dim(Y λ
g (a, b)) = dim(Zλ

a,b) − ε

= dim(ZD̄) + dim(|D̄|) − ε

= dim(ZD̄) + 3(λ − 1 − c) − 1 − ε. (12.4)

Step 3 (irreducibility and dimension of ZD̄). It is clear that

ZD̄
∼= {(P1, . . . , Pδ) ∈ Symδ(D̄) | there exists Ā ∈ Una+δ(R̄)

such thatP1, . . . , Pδ ∈ D̄ ∩ Ā}.

In order to compute the dimension and to prove the irreducibility of ZD̄, consider the
correspondence (where Γ = D̄ ∩ Ā is as before)

TD̄ := {(P ′
1, . . . , P

′
δ, Ā) | P ′

1, . . . , P
′
δ ∈ Γ} ⊂ Symδ(D̄) × Una+δ(R̄),
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and the two projections:

TD̄

π1



��
��

��
�� π2

		















Symδ(D̄) Una+δ(R̄)

Obviously, Im(π1) = ZD̄, and π2 is a finite surjective morphism; hence, denoting by τ

the dimension of the fibres of π1, we obtain that

dim(ZD̄) = dim(TD̄) − τ = dim(Una+δ(R̄)) − τ = a − b + δ + 1 − τ. (12.5)

We find the possible values of τ . In the proof of Lemma 12.10 (iii) we show that
∫

Ā2 =
a− b+ δ; with the same argument used there to prove the uniqueness of the unisecant Ā

passing through a certain divisor, it is immediate to see that

τ = 0 ⇐⇒
∫

Ā2 < δ ⇐⇒ a − b + δ < δ ⇐⇒ a < b.

Using the same argument we obtain that

τ � 1 ⇐⇒
∫

Ā2 � δ ⇐⇒ a − b + δ � δ ⇐⇒ a = b and
∫

Ā2 = δ.

Hence, necessarily, τ = 1 and a = b. It remains to show that ZD̄ is irreducible. Since
ZD̄ = π1(TD̄), it is enough to show that TD̄ itself is irreducible. Assume first that

a >
g − λ − 1

2
or a =

g − λ − 1
2

< b.

It follows from Lemma 12.10 (iii) that H0(OR̄(Ā)) ∼= H0(OD̄(Γ )); hence,

TD̄
∼= {(P ′

1, . . . , P
′
δ, Γ

′) | P ′
1, . . . , P

′
δ ∈ Γ ′} ⊂ Symδ(D̄) × |Γ |.

Consider the morphism ϕΓ : D̄ → P
r, where r = dim |Γ | = a − b + δ + 1 (as computed in

the proof of Lemma 12.10 (ii)); if D̄′ denotes the image of D̄ in P
r, it is clear that

TD̄
∼= {(P ′

1, . . . , P
′
δ, H) | P ′

1, . . . , P
′
δ ∈ H ∩ D̄′} ⊂ Symδ(D̄′) × P̌

r.

The irreducibility of TD̄ is a consequence of Lemma 12.12.
Finally, we have to consider the last case:

a =
g − λ − 1

2
= b.

Since c = g−3−(a+b) = λ−2, from Lemma 12.10 (i) we have deg(Γ ) = 4(λ−2)−2b−2c =
3λ−3−g = δ. Therefore, π2 : TD̄ → Una+δ(R̄) is an isomorphism; hence, TD̄ is irreducible
of dimension δ + 1 (since a = b).

Finally, observe that, if ¯̄D �∈ Ω in Step 2, one can easily prove that dim(Z ¯̄D) = a− b+
δR + 1 − τ . In particular, dim(Z ¯̄D) < dim(ZD̄); hence, p−1(|2l + (λ − 2 − c)l′| \ Ω) is a
Zariski locally closed subset of Zλ

a,b.
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Step 4 (final computation). We can now compute the dimension of the moduli
space using (12.3), (12.4), (12.5) and (12.1):

dim(Wλ
g (a, b)) = dim(Y λ

g (a, b)) + 5λ + 4 − 3δ

= dim(ZD̄) + 3(λ − 1 − c) + 3 − ε + 5λ − 3δ

= 2(2a + b + λ) + 16 − g − ε − τ.

Hence, from Lemma 12.3, we obtain that

dim(Mλ
g (a, b)) = dim(Wλ

g (a, b)) − 6 − ξ = 2(2a + b + λ) + 10 − g − ε − τ − ξ,

and this proves the claim. �
It remains to show the following fact.

Lemma 12.12. Let X ⊂ P
r be a (smooth) irreducible curve, let k be an integer such

that k � deg(X), and let

VX := {(P1, . . . , Pk; H) | P1, . . . , Pk ∈ H ∩ X} ⊂ Symk(X) × P̌
r.

The variety VX is then irreducible.

Proof. This is a straightforward generalization of the proof of the uniform position
lemma [9]. �

We now prove the last part of the Main Theorem. We first need some preliminary
results; we recall that, if a < (g − λ − 1)/2, Ā ⊂ S̄0 ⊂ V̄ (from Proposition 9.3).

Lemma 12.13. Let a < (g − λ − 1)/2 and [X] ∈ Mλ
g (a, b). In θ−1([X]) there then

exists a curve X ′ ⊂ R1,1 such that Ā ∼ l. In particular, deg(Ā) = λ−2 and δA = λ−2−a.

Proof. Let Ā ∼ l +αl′ ⊂ S̄0 = ϕ2l+(λ−2)l′(F0) ⊂ P
3λ−4 and assume that α � 1. Since

degS̄0
(Ā) =

∫
(l + αl′) · (2l + (λ − 2)l′) = λ − 2 + 2α (12.6)

and deg(A) = a � λ − 2 (from Remark 9.1), the number of double points of X̄0 lying on
Ā is, from (9.2), δA = deg(Ā) − deg(A) = λ − 2 + 2α − a � 2α. Therefore, since Ā meets
each line of the ruling l of S̄0 in α points, there are at least two double points of X̄0,
N1 and N2 say, belonging to Ā and not belonging to a same line l. Consider now the
isomorphism ϕl+2l′ : R1,1 ∼= S̄0 → S̃ ∼= R2,2 and set Ã := ϕ(Ā) ∼ l̃ + αl̃′; for simplicity,
we still denote by N1 and N2 the images of these points in S̃.

Clearly, deg(Ã) = α + 2 and the projection π〈N1,N2〉 : S̃ → R1,1 maps Ã to a unisecant
curve Ā∗ of degree α (since N1, N2 ∈ Ã) lying on R1,1. Hence, Ā∗ ∼ l + (α − 1)l′; in
particular, from (12.6), degS̄0

(Ā∗) = λ − 2 + 2(α − 1).
Set X ′ := (π〈N1,N2〉 ◦ ϕl+2l′)(X) ⊂ R1,1 and let A∗ ⊂ S be the curve corresponding

to Ā∗ ⊂ R1,1. Since the number of the double points of X ′ lying on Ā∗ is δA − 2, we get
that

deg(A∗) = degS̄0
(Ā∗) − (δA − 2) = λ − 2 + 2α − δA = a = deg(A);
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this implies that A∗ = A. Iterating this procedure we obtain a model of X such that
α = 0; hence, Ā ∼ l and the other requirements are fulfilled. �

Corollary 12.14. Let a < (g −λ− 1)/2 and let W̃λ
g (a, b) ⊂ Wλ

g (a, b) be the following
set:

W̃λ
g (a, b) := {X ′ ∈ Wλ

g (a, b) | X ′ ⊂ R1,1, Ā ∼ l}.

The restriction
θ : W̃λ

g (a, b) → Mλ
g (a, b)

is then surjective and the fibres have dimension 6 unless g is odd and λ = (g + 3)/2, in
which case they have dimension 7.

Proof. The surjectivity is immediate by Lemma 12.13, and the dimension of the fibres
can be computed using the same argument as in Lemma 12.3. �

We set

ε :=

{
0 if b < c,

1 if a < b = c
and ξ :=

⎧⎨
⎩1 if λ =

g + 3
2

,

0 otherwise.

Note that the case a = b = c (which corresponds to ε = 2 in Theorem 12.11) does not
occur here. Namely, we now consider the range a < (g − λ − 1)/2: the relation a = b = c

would contradict (R1).

Theorem 12.15. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and
c = g − 3 − a − b. If a < (g − λ − 1)/2, then Mλ

g (a, b) is an irreducible variety of
dimension 2(a + b) + λ + 8 − ε − ξ.

Proof. Using Corollary 12.14, we can slightly modify the construction in Theo-
rem 12.11; essentially, we use W̃λ

g (a, b) instead of Wλ
g (a, b). In particular, we consider

models X ′ ⊂ R1,1 of X such that Ā ∼ l and Ā ⊂ D̄ ∼ 2l + (λ − 2 − c)l′. Namely, if
Ā �⊂ D̄, then δA � Ā · D̄; but δA = λ−2−a (from Lemma 12.13) while Ā · D̄ = λ−2− c,
and this is impossible since a < c.

Setting Ỹ λ
g (a, b) the image of W̃λ

g (a, b) via the map Ψ : Wλ
g → Symδ(R1,1), we have

that

Ỹ λ
g (a, b) = {(P1, . . . , Pδ) | there exist Ā ∈ |l|, B̄ ∈ |l + (λ − 2 − c)l′| :

P1, . . . , Pλ−2−a ∈ Ā, Pλ−1−a, . . . , Pδ ∈ B̄},

and the analogous statement of (12.3) holds:

dim(W̃λ
g (a, b)) = dim(Ỹ λ

g (a, b)) + 5λ + 4 − 3δ. (12.7)

Consider the correspondence Zλ
a,b ⊂ |l| × |l + (λ − 2 − c)l′| × Symδ(R1,1) defined by

Zλ
a,b := {(Ā, B̄, (P1, . . . , Pδ)) | P1, . . . , Pλ−2−a ∈ Ā, Pλ−1−a, . . . , Pδ ∈ B̄}.
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Note that b is determined from a and c. Consider now the two canonical projections:

Zλ
a,b

p



��
��

��
�� q

		�
��

��
��

�

|l| × |l + (λ − 2 − c)l′| Ỹ λ
g (a, b) ⊂ Symδ(R1,1)

Using the same argument as in Theorem 12.11, one can see that the fibres of q are
irreducible of dimension ε. Note that, in this case, ε can assume only the values 0 and 1,
since the assumption that a < (g−λ−1)/2 implies that a < b; otherwise, a+b < g−λ−1,
against (R3) (see Theorem 10.6). Note that p is surjective from Corollary 11.6. Moreover,
the general fibre p−1(Ā, B̄) of p is isomorphic to Symλ−2−a(Ā) × Symδ−λ+2+a(B̄), so it
is irreducible of dimension δ. Therefore, Zλ

a,b and, hence, Ỹ λ
g (a, b) are irreducible and

dim(Ỹ λ
g (a, b)) = dim(Zλ

a,b)−ε = dim |l|+dim |l+(λ−2−c)l′|+δ−ε = 2(λ−1−c)+δ−ε,

so, using (12.7) we obtain that

dim(W̃λ
g (a, b)) = 2(λ − 1 − c) + δ − ε + 5λ + 4 − 3δ = 2(3λ + 1 − c − δ) + λ − ε.

Using (12.1), we get that 3λ+1−c−δ = 3λ+1− (g−3−a−b)−3(λ−1)+g = a+b+7,
so

dim(W̃λ
g (a, b)) = 2(a + b) + 14 + λ − ε.

Applying Corollary 12.14, we obtain that

dim(Mλ
g (a, b)) = dim(W̃λ

g (a, b)) − 6 − ξ = 2(a + b) + 8 + λ − ε − ξ,

as required. �

Remark 12.16. If a < (g − λ − 1)/2, then δ = 3(λ − 1) − g > 0; in particular,
λ > (g+3)/3. To show this, just remark that g � 3λ−3 by (R1); hence, a < (g−λ−1)/2 �
(3λ − 3 − λ − 1)/2 = λ − 2, so, from Lemma 12.13, δ � δA = λ − 2 − a > 0.

Corollary 12.17. Set, as usual, a � b � c and a + b + c = g − 3. The following facts
hold.

(1) The general curve X(g, λ, a, b) of Mλ
g satisfies a + b � (2g − 8)/3.

(2) For the general curve X(g, λ, a, b) of Mλ
g , the values of a, b, c = g − 3 − (a + b) are

determined by the class of g (mod 3). In particular,

(i) if g = 3p, then (a, b, c) = (p − 1, p − 1, p − 1);

(ii) if g = 3p + 1, then (a, b, c) = (p − 1, p − 1, p);

(iii) if g = 3p + 2, then (a, b, c) = (p − 1, p, p).
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(3) Conversely, for the above values of a and b we obtain a stratum of maximal dimen-
sion, i.e.

dim(Mλ
g (a, b)) = dim(Mλ

g ).

Consequently,

a curve X(g, λ, a, b) ∈ Mλ
g is general ⇐⇒ a, b, c ∈

{[
g − 3

3

]
,

[
g − 1

3

]}
.

Proof. (1) We have to show that, if a + b < (2g − 8)/3, dim(Mλ
g (a, b)) < dim(Mλ

g ).
We rewrite the above condition correspondingly for the possible values of g (mod 3) as

follows.

• For g = 3p,

a + b � 2p − 3 ⇒ a � p − 2 ⇒ 2a + b � 3p − 5.

• For g = 3p + 1,

a + b � 2p − 3 ⇒ a � p − 2 ⇒ 2a + b � 3p − 5.

• For g = 3p + 2,

a + b � 2p − 2 ⇒ a � p − 1 ⇒ 2a + b � 3p − 3.

Clearly, in all these cases,

a + b � 2g − 9
3

and 2a + b � g − 5. (12.8)

From Theorem 12.11 (respectively, Theorem 12.15) and using (12.8) we immediately
obtain that

a � g − λ − 1
2

⇒ dim(Mλ
g (a, b)) � 2(2a + b + λ) + 10 − g − ξ

� 2(g − 5 + λ) + 10 − g − ξ

= g + 2λ − ξ,

a <
g − λ − 1

2
⇒ dim(Mλ

g (a, b)) � 2(a + b) + λ + 8 − ξ

� 4g − 18
3

+ λ + 8 − ξ

= g + λ + 1 +
g + 3

3
− ξ,

where, in both cases,

ξ :=

⎧⎨
⎩1 if λ =

g + 3
2

,

0 otherwise.
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Note that, in the second case, from Remark 12.16 we have that (g+3)/3 < λ. Therefore,
for every value of a it holds that

dim(Mλ
g (a, b)) < g + 2λ + 1 − ξ. (12.9)

Finally, recall that, from Theorem 12.9, dim(Mλ
g ) = g+2λ+1 for all (g+3)/3 < λ < λmax,

where λmax = �(g + 2)/2�.
On the other hand, from Lemma 12.3, Proposition 12.6 and Remark 12.7 it turns out

that

dim(Mλmax
g ) =

{
g + 2λmax if g is odd,

g + 2λmax + 1 if g is even.

Therefore, if λ < λmax or g is even, then ξ = 0, so (12.9) gives that

dim(Mλ
g (a, b)) < g + 2λ + 1 = dim(Mλ

g ).

Otherwise, λ = λmax and g is odd; then ξ = 1, so (12.9) gives that

dim(Mλ
g (a, b)) < g + 2λ = dim(Mλ

g ),

and this proves the first part of the statement.

(2) We consider a general curve X(g, λ, a, b) ∈ Mλ
g . We have just proved that a + b �

(2g − 8)/3. From the condition (R3) we get that

2g − 8
3

� a + b � 2g − 6
3

⇒ a + b =
[
2g − 6

3

]
;

hence, a + b is uniquely determined. Therefore, since c = g − 3 − (a + b) and a � b � c,
we obtain the following.

• For g = 3p,

a + b = 2p − 2 ⇒ c = p − 1 ⇒ (a, b, c) = (p − 1, p − 1, p − 1).

• For g = 3p + 1,

a + b = 2p − 2 ⇒ c = p ⇒ (a, b, c) =

{
(p − 1, p − 1, p),

(p − 2, p, p).

• For g = 3p + 2,

a + b = 2p − 1 ⇒ c = p ⇒ (a, b, c) = (p − 1, p, p).

Note that the case where g = 3p + 1 and (a, b, c) = (p − 2, p, p) does not correspond to a
general curve since, in this case, X(g, λ, a, b) belongs to a proper closed subset of Mλ

g .
To show this, we consider the two ranges of a and the corresponding dimensions of the

moduli spaces found in Theorems 12.11 and 12.15, respectively.

https://doi.org/10.1017/S001309151300062X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151300062X


Stratification of the moduli space of four-gonal curves 683

(I) a � (g − λ − 1)/2. We have that

dim(Mλ
g (a, b)) � 2(2a+b+λ)+10−g = 2(3p−4+λ)+10− (3p+1) = 3p+2λ+1,

while dim(Mλ
g ) = g + 2λ + 1 = 3p + 2λ + 2.

(II) a < (g −λ− 1)/2. Substituting g = 3p+1 into (R1) and into the bound of a in the
assumption, we obtain, respectively, that

λ � g + 3
3

= p +
4
3

⇒ λ � p + 2,

p − 2 = a <
g − λ − 1

2
⇒ λ � p + 3.

Using Theorem 12.15, under the assumption that (a, b, c) = (p − 2, p, p), we obtain
that ε = 1 and ξ = 0; hence,

dim(Mλ
g (a, b)) = 2(a + b) + λ + 8 − ε − ξ = 2(2p − 2) + λ + 8 − 1 = 4p + λ + 3.

On the other hand, dim(Mλ
g ) = g + 2λ + 1 = 3p + 2λ + 2. Examining the two

possible cases of λ, we immediately get that

dim(Mλ
g (a, b)) =

{
5p + 5 if λ = p + 2,

5p + 6 if λ = p + 3,

while

dim(Mλ
g ) =

{
5p + 6 if λ = p + 2,

5p + 8 if λ = p + 3,

and this proves the second part.

(3) It remains to show that the strata corresponding to the values (i), (ii), (iii) of
(a, b, c) are maximal.

First note that the inequalities a < (g − λ − 1)/2 and λ � (g + 3)/3 (the latter coming
from (R1)) become, respectively,

(i)

p − 1 <
3p − λ − 1

2
and λ � 3p + 3

3
,

(ii)

p − 1 <
3p − λ

2
and λ � 3p + 4

3
,

(iii)

p − 1 <
3p − λ + 1

2
and λ � 3p + 5

3
.
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In cases (i) and (ii) we get a contradiction, while in (iii) we get that λ = p + 2. So, in
cases (i) and (ii), a � (g − λ − 1)/2 necessarily.

Second, observe that if a � (g − λ − 1)/2, then Theorem 12.11 can be applied, and we
have that

dim(Mλ
g (a, b)) = 2(2a + b + λ) + 10 − g − ε − τ − ξ, (∗)

where ξ = 1 if and only if λ = (g + 3)/2. This happens if g is odd, so λ =
(g + 3)/2 = �(g + 2)/2�. Keeping the notation and the result in Remark 12.7, where
λmax := �(g + 2)/2�, we have that dim(Mλmax

g ) = 2g +3 = dim(Mg,4). Otherwise, ξ = 0
and λ < �(g + 2)/2�; in this case, from Theorem 12.9, dim(Mλ

g ) = g + 2λ + 1. Now
consider each possibility.

Case (i) g = 3p, (a, b, c) = (p − 1, p − 1, p − 1).
Since ε = 2 and τ = 1, from (∗) we obtain that

dim(Mλ
g (a, b)) = 2(3p − 3 + λ) + 10 − 3p − 2 − 1 − ξ = 3p + 2λ + 1 − ξ = g + 2λ + 1 − ξ.

Therefore,

λ =
⌈

g + 2
2

⌉
⇒ ξ = 1 and dim(Mλ

g (a, b)) = g + 2λ = g + 2
g + 3

2

= 2g + 3 = dim(Mλ
g ),

λ <

⌈
g + 2

2

⌉
⇒ ξ = 0 and dim(Mλ

g (a, b)) = g + 2λ + 1 = dim(Mλ
g ).

Case (ii) g = 3p + 1, (a, b, c) = (p − 1, p − 1, p).
Since ε = 0 and τ = 1, from (∗) we again obtain that dim(Mλ

g (a, b)) = 3p+2λ+2−ξ =
g + 2λ + 1 − ξ. Using the same argument as before, we prove the claim.

Case (iii) g = 3p + 2, (a, b, c) = (p − 1, p, p).

(I) If a � (g − λ − 1)/2, the proof follows as above, using (∗) where ε = 1 and τ = 0.

(II) If a < (g − λ − 1)/2, the dimension of the strata is computed in Theorem 12.15,
where one can find that

dim(Mλ
g (a, b)) = 2(a + b) + λ + 8 − ε − ξ. (∗∗)

In our situation, ε = 1 and ξ = 0, since λ �= (g+3)/2, with g = 3p+2 and λ = p+2,
as remarked before. So (∗∗) gives that dim(Mλ

g (a, b)) = 5p+7. On the other hand,
dim(Mλ

g ) = g + 2λ + 1 = 5p + 7.

The final claim comes from (2.2) and [11, Chapter V, Corollary 2.19], together with
a straightforward computation on the values in (i), (ii), (iii), taking into account that
a � b � c. �
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13. Moduli spaces of four-gonal curves with t � 1

We recall that if t � 1 and the double points of the standard model X̄0 are distinct, then
the bounds of the invariants λ and t are described in Proposition 7.4 (i)–(iv), while the
invariants a and b are determined by λ and t (see Remark 7.1). More precisely,

g + 3
3

+ t � λ � g + 3
2

+ t, 1 � t � g + 3
6

,

a = g − 2λ + t + 1, b = λ − t − 2, c = λ − 2.

As a consequence, the subvariety of Wλ
g parametrizing the curves of invariants g, λ, t,

a, b can be simply denoted by Wλ
g (t). In order to describe such a variety, we perform a

construction similar to that in Theorem 12.11.
We denote by At

λ the open subset of the linear system |4C0 + (λ + t)f | on R1,t+1

parametrizing the irreducible curves of such a linear system, and set

Wλ
g (t) := {X ′ ∈ At

λ | X = X(g, λ, t) and it has δ distinct double points on C0}.

Consider the morphism ϕ : R1,t+1 → S′ ⊂ P
N , where ϕ := ϕ4C0+(λ+t)f .

It is clear that N = h0(R1,t+1,OR1,t+1(4C0 + (λ + t)f)) − 1 = 5(λ − t) + 4
(from [4, Proposition 1.8]), and we can identify Wλ

g (t) with the set {H ∈ P̌
N | H ⊃

〈TP1(S
′), . . . TPδ

(S′)〉, Pi ∈ C0}. Therefore, consider the correspondence

W̃ = {(H; P1, . . . , Pδ) | H ⊃ 〈TP1(S
′), . . . , TPδ

(S′)〉} ⊂ P̌
N × Symδ(P1)

and the projections
W̃

π1

����
��

��
�� π2

		�
��

��
��

�

P̌
N Symδ(P1)

Obviously, π1(W̃ ) = Wλ
g (t) and π1 is an isomorphism on an open subset of Wλ

g (t).
Moreover, π2 is surjective and the fibres have dimension N − dim〈TP1(S

′), . . . , TPδ
(S′)〉.

One can show (as in Lemma 11.4) that it also holds in the case t � 1 that the
space 〈TP1(S

′), . . . , TPδ
(S′)〉 has maximum dimension, i.e. 3δ − 1. Hence, dim(Wλ

g (t)) =
dim W̃ = N − (3δ − 1) + δ = 5(λ − t + 1) − 2δ, so, using Proposition 4.2 (iii), we obtain
that

dim(Wλ
g (t)) = 2g + t − λ + 1.

As well as in the case t = 0, one can show that these varieties are not empty. Furthermore,
we recall that the automorphism group of a rational ruled surface R1,t+1 ⊂ P

t+2 has
dimension t + 5 if t � 1, and dimension 6 if t = 0 (as we already noted in Lemma 12.3).
These two facts, together with the previous computation of dim(Wλ

g (t)), immediately
give the following result.

Theorem 13.1. Let g, λ, t be positive integers satisfying g � 10, (g + 3)/3 + t �
λ � (g + 3)/2 + t, 1 � t � (g + 3)/6. Then, Mλ

g (t) is an irreducible variety of dimen-
sion 2g − λ − 4.
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