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Abstract

The acoustic response of a two-dimensional nearly-closed cavity to an excitation through
a small opening is examined, using the method of matched asymptotic expansions. The
Helmholtz mode of vibration is discussed using a low-frequency expansion of the velocity
potential in the cavity interior. The variation in frequency and magnitude of the resonator
response is explored, both for the Helmholtz and the natural-frequency modes.

1. Introduction

The acoustic response of a nearly-closed cavity to an excitation through a small
opening contains peaks at frequencies close to the natural resonant frequencies of
the fully-closed cavity, that is, at wavelengths comparable to, or smaller than, the
dimensions of the cavity. In addition, there is a single low-frequency peak,
unrelated to any non-trivial natural frequency of the cavity, and corresponding to
a wavelength far in excess of the dimensions of the cavity. The cavity is said to be
responding as a "Helmholtz resonator", when the frequency is close to this peak.
Although Helmholtz [2] discussed the nature of this resonance, Rayleigh ([8]; see
also [9], Chapter 16) provided the first detailed analyses. These classical investiga-
tions are confined to three-dimensional cavities, these being of obvious acoustic
relevance. The corresponding situation in two dimensions (that is, for a cavity
consisting of an infinitely-long cylinder, pierced and communicating to the
outside by a narrow infinitely-long slit) is of somewhat less acoustic interest, and
has seldom been analysed in acoustics.
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[2) Resonators with small openings 3

An indirect application of this two-dimensional configuration is to shallow-water
theory in oceanography. For instance, the problem of harbour resonance can be
reduced to solution of an acoustic-like problem in the horizontal plane, the
coastline of the harbour playing the role of the cavity. Hence, some more recent
studies ([5], [6], [7]) have considered this type of two-dimensional resonator.

In the present paper, we first treat a general class of small-opening problems in
which the aim is to compute the response at all frequencies. That is, we obtain a
theory which is asymptotically valid for small opening size (compared to both
wavelength and cavity size), but which does not yet assume that the wavelength is
far in excess of the cavity size. This theory is therefore, in principle, capable of
predicting all peaks in the response, namely the Helmholtz peak and all of the
peaks corresponding to natural frequencies of the fully-closed cavity.

The results depend on two specially-defined length parameters s and b, the
former depending on the geometry of the opening, and the latter on the geometry
of the cavity. The opening parameter s is independent of frequency, and is a
generalization of that introduced by Tuck [10]. The present generalization is to
allow the cavity wall in the neighbourhood of the opening to be nonplanar;
specifically to allow the opening to be at the apex of a wedge-like region, of a
general angle. Computation of s is quite straightforward, and examples are given
for various types of opening geometries.

On the other hand, for general cavities, the computation of the cavity shape
parameter b (which depends on frequency) is not at all straightforward. However,
exact results for b are available for a special circular-sector cavity and are used to
compute the response of this particular cavity as a function of frequency. These
results are compared to those obtained by direct numerical solution of the
boundary-value problem, using a boundary-integral-equation method similar to
that of Lee ([3], [4]).

If we confine attention to the low-frequency (Helmholtz) mode, it is then not
necessary to determine the cavity parameter b at all frequencies, and, in fact, all
that is needed is its zero-frequency limit. The problem of determining b at zero
frequency can be reduced to that of solving a Poisson equation in the closed
cavity; a much simpler computational task. The resulting value of the logarithm
of b is related to a parameter 911 introduced by Miles and Lee [7], and further
examples of its computation are presented here.

Once b is known for any cavity, the response in the neighbourhood of the
Helmholtz peak can be computed to a consistent order of approximation. This
response is discussed for several cases. The variation of the over-all response with
cavity shape, and the variations of response from one point in the cavity to
another are discussed.
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2. Problem formulation and numerical method

[3]

The mathematical task is to solve Helmholtz's equation

V24> + k2<t> = 0 (2.1)

for </> = <j>(x, y) in a region R of the (x, y) plane bounded by a curve V across
which there is no flow, that is,

= 0 onT. (2.2)

The wavenumber A; is a given positive constant. The only other boundary
condition is at infinity, where 4> is prescribed, that is, as r = yx2 + y2 -> oo,

for some given function ^>oo. The order of the error term in (2.3) corresponds to an
outgoing dispersing scattered signal, for e~'ut time dependence.

The above is a quite general class of two-dimensional boundary-value prob-
lems. Our interest here is in the case when the boundary T is as in Figure 1, and
can be decomposed into

r = r£ + rc (2.4)
= (r£ — r0) + (rc + r0) (2.5)

Figure 1. Sketch of boundary geometry.
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where Fc is a cavity, and TE an exterior boundary. Both TE and Fc are open
curves, but can be closed by addition and subtraction of an artificial boundary Fo

across the cavity opening. We assume that Fo is chosen in such a way that
•J'ooC*' y) is the exact solution of the boundary-value problem with F replaced by
F£ — Fo. That is, our task is to compute the correction <j> — <$>x introduced by
distortion of the boundary YE — Fo, due to introduction of the cavity Fc + Fo.

The example in which we are most interested is that when TE — Fo is a straight
line, and may be taken as the axis x = 0, and in which 4>oa corresponds to
reflection of a plane wave* incident at an angle a, that is,

4>x = eikysiaacos(kx cos a ) . (2.6)

One method of solving the problem so formulated is to attack it numerically,
using a boundary-integral-equation technique similar to that of Lee ([3], [4]). This
approach involves use of the integral relations

T +v [^x')^H^(kr') - H0\kr')^(x')\dl(x') (2.7)

for x G Fc + Fo, and

• to = U*) + \i^\kr')^')dl(x') (2.8)

for x G Fo, where H^(kr') is the zeroth order Hankel function of the first kind,
and

r'=|x-x'|. (2.9)

Equations (2.7), (2.8) provide a pair of coupled integral equations to determine
the unknown boundary values of <j> on Fc + Fo and 3<£/9n on Fo. A direct
numerical solution procedure is to replace integration by summation in (2.7) and
(2.8), giving a set of linear algebraic equations to solve for a vector of values of
these unknown quantities. This procedure, while straightforward, is expensive in
terms of computing time; inversion of large non-sparse matrices with complex
elements being involved. The method is suitable therefore only for specific case
studies, as of real harbours (Lee [4]), or as a benchmark.

The results of such a numerical computation will be used in Section 4 to
validate the asymptotic approach to the resonance problem.

3. Flow through small openings

The matching procedures discussed in [10] are now adapted to the present
problem. The opening geometry may be considered as a quite general one, as
sketched in Figure 2. This general opening is a transition between an asymptoti-
cally-converging wedge of angle 6_ on the left, and a corresponding diverging
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wedge of angle 6+ on the right. The length scale of the opening is a measure j of
its linear size, and the requirement of smallness of the opening is that s be small
compared to all other significant length scales, notably the wavelength 2n/k and
the linear size (say a) of the cavity. Although s could be taken initially as any
typical length dimension of the opening, for example, the minimum width w, our
task is to determine a special measure s, that uniquely characterizes this opening
geometry, as seen in its own far field.

Since ks is small, the flow in the opening is approximately incompressible, and
thus we have to solve Laplace's equation for a flow through the opening. The
behaviour of interest at infinity is that corresponding to a source-sink pair.
Without loss of generahty, we may normalize the net flux through the opening to
unity, seeking therefore a scaled potential </> satisfying, as r -» oo,

4> ->± (log r)/6± + constant forjc^O. (3.1)

The "constant" in (3.1) does not necessarily take the same value when x -» +00 as
it does when x -* — 00, and we now define our effective size s in terms of its
change in value between the two infinities, writing instead of (3.1),

4>+[log(r/s)]/0±^O as*-+±00. (3.2)

For any given opening geometry, our task is to solve v 2<J> = 0 for <£>, subject to
d<j>/dn = 0 on the opening boundaries, and the boundary condition (3.2) at
infinity. As part of that solution process, the quantity s, having the dimensions of
length, will be uniquely determined. This is a quite straightforward computational
task, and s may therefore be treated as a known quantity.

Figure 2 Sketch of opening geometry.
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Figure 3. Special openings: (a) hyperbolic, (b) symmetric wedge, (c) wedge with 8_ = ir.

Most examples considered up to now and discussed in [10] have had 0+ = 6_
= IT, that is, they correspond to openings in a plane wall. In particular, if the
opening is a sharp-edged slit of width w, in a plane wall of zero thickness, then

iw.
In fact, the derivation (using elliptic coordinates) of this result in [10] gener-

alizes immediately to that for an opening consisting of a pair of hyperbolas, as
sketched in Figure 3a, which has 6+ = 6_ < m. Now s is exactly equal to one
quarter of the distance between the foci of the hyperbolae, that is, if w is the
actual width at the throat,

s =
w (3.3)

4sin(0+/2) '

A plot of s/w against 6+ is shown in Figure 4 as the solid line.
Another case in which the effective size s can be determined at least semi-ana-

lytically, is that in which the boundaries are straight-edged wedges. A very general
solution using a Schwartz-Christoffel mapping is presented in Appendix A.
Figure 4 shows two examples of plots of s/w against 6+ , for the case of openings
with a plane of vertical symmetry. The dashed curve is for an opening (Figure 3b)
which also has a plane of horizontal symmetry (0+ = 0_), and the chain-dotted
curve is for 0_ = IT, that is, for an opening in a plane exterior wall, as in Figure
3c.

The results shown in Figure 4 indicate that the effective size of the opening is
increased by decreasing the wall angles 0 ± from IT. This is most easily explained in
terms of the hyperbolic opening, for which the controlling parameter is the
interfocal distance, which exceeds the actual throat width. The increase is not
rapid, but by the time the angle 6+ reaches 90°, a 100-150% increase in s is
predicted. On the other hand, wall thickness per se tends to decrease the effective
size (see [10]), providing 6+ and 6_ remain at 180°.
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Figure 4. Effective size of openings of Figure 3.

We now consider the use of this canonical flow $ and its associated effective
size parameter s, in the present acoustic problem. Although the above discussion
allowed both #_ and 6+ to be arbitrary, from now on for simplicity we shall
restrict attention to the case 6_ = m, that is, to an opening in an exterior plane
wall, for which (2.6) prescribes the incident wave field <f>x(x, y). However, we
allow 0+ < IT, that is, the inside wall of the cavity near the opening need not be
planar.

Now, in the limit as ks -> 0, the disturbance due to the cavity vanishes, and
<> -» <S>X. The residual effect of the cavity, as seen in its own far field, must be that
of an acoustic source. That is, if m is the strength of that source, we set in x < 0,
r >>s,

* = 4>oo - (l/4)im/tf>(&r), (3.4)

and seek to determine the quantity m by matching with the flow in the cavity, via
the opening region.

In order to perform that matching, we let kr -» 0 in (3.4), obtaining

* = ^ ( 0 , 0 ) - (l/4)im[l + (20r)lQg((l/2)y*r)] + O(mk2r2log kr), (3.5)

where log y = 0.577... is Euler's constant. The expression (3.5) must match with
a boundary condition as x/s -> — oo for a through-opening flow, and for that
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[8] Resonators with small openings 9

purpose it can be re-written as

<f> -> <f>° + {m/2ir)log(r/s) asx/s -» - o o , (3.6)

where the constant <£° is given by

$ ° = 1 - (l/4)im + (#n/2w)log((l/2)Yto), (3.7)

noting from (2.6) that ^(0,0) = 1.
The solution for the incompressible flow through the opening is therefore

(using (3.2) with 6_ = IT)

where <j> is the canonical potential defined above. Having solved for this opening
flow, we may now proceed all the way into the cavity, by letting x/s -» +oo, that
is, again using (3.2),

^ <3-9>

Finally, we now match with a within-cavity solution, by observing that, if the
opening size s is small compared to a typical measure a of the cavity size, the
opening will appear to the cavity as a sink of strength irm/0+ , that is, (3.9) will
provide a singularity condition as r/a -> 0. The potential in the cavity can
therefore be written

t=-(1rm/0+)4>c(x,y), (3.10)

where </>c satisfies (2.1) and (2.2) on the limiting (closed, as s -» 0) boundary of the
cavity, except that <f>c behaves like a source of unit strength at the point on that
boundary corresponding to the vanishing opening. That is, as r -» 0, we must
have

<t>c -»(2TT)"1 log r + constant. (3.11)

The canonical potential $c is thus uniquely determined, and, in particular, the
"constant" in (3.11) is uniquely determined. We define a parameter b by choosing
this constant to satisfy

L [ L ] (3.12)

where A is the cavity's area. The parameter b measures the size of the cavity, as
seen in the neighbourhood of its opening; it has the dimensions of a length, and
may be expected to take values comparable to the cavity's linear dimensions, that
is, b = O(Al/2). For the moment, let us assume that >̂c, and hence b, can be
determined for any given cavity.
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Now, as r -* 0,

m

which matches with (3.9) if

U p o n use of (3.7) for <j>°, we obtain the required formula for the source strength
m, namely

1
- T- log ^

The small-gap theory is now complete, with the determination of the source
strength m. In summary, the exterior-region potential is given by (3.4), the
opening-region potential by (3.8), and the cavity-region potential by (3.10). As
inputs, we need the canonical potentials <£ in the opening, and <j>c in the cavity.
Associated with <j> is a single parameter s, with dimensions typical of the opening.
Associated with <f>c is a single parameter b, with dimensions typical of the cavity.
Since <j> satisfies Laplace's equation, s is frequency-independent, but since <j>c

satisfies Helmholtz's equation, we must expect b to depend on frequency.
It is worth reiterating that the only approximation made to this point is that the

effective size ^ of the gap is small compared with all other relevant length scales.
We have not yet assumed that the cavity size a is small compared to the
wavelength. In particular, the error in an expression such as (3.15) is at most a
factor of order 1 + O(ks, s/a).

4. Results for large circular-sector cavities

T h e task of determining the canonical cavity potential <l>c(x, y), satisfying (2.1),
(2.2) and (3.11) is still a quite difficult one, and exact analytic solutions are few.
O n e case in which a solution can be written down, is that for a cavity consisting
of a sector of a circle, with the opening at the apex. That is, if (r, 6) are polar
coordinates centred at the location of the opening, the boundary consists of a
circular a r c r = a and radial lines 6 = ±{6+ , and has area A = {6+a2. In
particular, if 0+ = <n, the cavity is semi-circular, with the opening at the centre of
the diameter.

It is clear then that all conditions are satisfied if
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and the parameter b is given by

Vkb) = ,2.2

11

k2a7

• g ro(ka)

2 J>(ka) •
(4.2)

The source strength m can now be evaluated using (3.15), and hence the value of
the potential on the cavity wall r — a is

2kaO+Jl(ka)

•nka
(4.3)

An illustrative plot of | <> j against ka is given in Figure 5, for the case of a
semi-circular cavity (0 + = IT) with s/a = 0.05.

Peaks in the response | <j> | in the cavity occur whenever the quantity inside the
square brackets of (4.3) is small. Since ks is small, that is, -log(^yks) is large, this
quantity is usually dominated by its second term, and hence peaks occur when
J^{ka) = 0. This is just another way of saying that, when the opening is small, the
cavity behaves almost as if it were closed, and the condition J^ka) — 0 precisely
determines those natural eigenmodes of the closed cavity without 0-dependence.
This cavity can also support modes with ^-dependence, but these possess a node
at r = 0, and hence are not excited through a vanishingly small opening there.

10
ka

15 20

Figure 5. Response of semi-circular cavity of radius a and opening of effective size .$ = 0.05a,
computed by asymptotic theory for small s/a, and evaluated on the curved boundary.
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However, the square bracket in (4.3) can also become small when ka is small,
because then the leading term Y^(ka) becomes large and can cancel the second
term. This defines the Helmholtz mode, the first and highest peak in Figure 5.
This mode will be discussed further in the following section, for general cavities.
In the present case, we note the following expansion of the "exact" cavity
potential <£c as ka -» 0, namely

f r 1 r2 ,

k a \ r , r ii » I , ^ / , a 4 \ i . A\

Sir

which implies

b/a=e-VA + O{k2a2). (4.5)

The corresponding formula for the source strength m follows directly from (3.15),
and the sm&W-ka expansion for the response on the cavity wall r = a can then be
written

1 + \k2a2

(4.6)

Equation (4.6) can also be obtained by a sufficiently-careful direct small-fez
expansion of equation (4.3). The difficulty occurs because we must assume
— log(js) to be a very large quantity, indeed at least as large as (ka)'2. This is
necessary if we are to be able to discuss the Helmholtz resonance mode, in which
substantial cancellation must occur between the leading-order terms in the
denominator of (4.6). The advantage of the particular form adopted for (4.6) (as
the ratio between two separate expansions with respect to ka), is that the error
terms quoted as O(k4a4) for both numerator and denominator are errors result-
ing only from expansions of <j>c, and are completely independent of the opening
parameter s.

The accuracy of formula (4.3) may be checked by comparison with computa-
tions made for a semi-circular cavity, using the numerical method outlined in
Section 2. For that purpose, the cavity was divided into a maximum of 80
segments. That is, at most 30 segments were needed on each half of the actual
symmetric cavity boundary Tc, and 10 on each half of the (straight) artificial
boundary Fo across the opening. About 3-figure accuracy was always achievable
(even close to the peaks) with this coarse discretization, since <J> varies only slowly

https://doi.org/10.1017/S0334270000003271 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003271


112] Resonators with small openings 13

Numerical

Asymptotic

ka

Figure 6. Comparison of numerical and asymptotic results for semi-circular cavity at s/a = 0.05.

around the boundary, except at the junction between Tc and Fo. Segment
distribution was generally uniform, but with a certain amount of accumulation
near that junction.

The output potential <J> around the boundary can be used to provide <j> at any
point in the cavity, as long as the cavity is not too narrow. Thus a complete
description of the field in the cavity may be obtained.

The numerical results for s/a < .02 are in agreement, to 2 or 3 figures, for all
tested k, with the asymptotic results using (4.3). Even for considerably larger s,
the approximation of the Helmholtz and radially-symmetric natural modes by
(4.3) is very good.

However, as the cavity mouth increases in size, the ^-dependent modes men-
tioned above begin to appear. In Figure 6, the velocity potential at (a, 0) is shown
for s/a — 0.05, to illustrate this last-mentioned phenomenon. The two plots are in
excellent agreement everywhere, except in the vicinity of ka — 3.05. This is the
resonant frequency of a ^-dependent mode, with two nodal lines 6 — ±IT/A,

intersecting at right angles at r = 0.
Having confirmed the good agreement of (4.3) with an independent numerical

solution of the problem, we now consider the effect of the opening size s on the
response curves.

In Figure 7, the first two resonance peaks for a semicircle are shown, for several
s values, computed from (4.3). As expected from this equation and (4.6), a
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10

s/a =0.001

Figure 7. Variation in response of semi-circular cavity with opening size s.

reduction in the size 5 of the opening shifts the Helmholtz peak to a somewhat
smaller frequency k, and increases the peak amplitude dramatically. It is also to
be noted that, as s decreases, the position of the first natural frequency also
changes, its bandwidth reduces and its maximum amplitude increases. However,
the quantitative nature of these changes differs from the alterations to the
Helmholtz peak [5].

The effect of the variation of the interior cavity angle 6+ near the opening is
also of interest. We illustrate this in Figure 8 for 0+ = 90°. As 0+ is decreased,
the magnitude of the response increases. This indicates that the energy entering
the cavity is not decreasing as quickly as the cavity area, which is consistent with
the expression for m given in (3.15). Figure 8 also shows the position of the
resonance altering slightly, again consistent with (4.3).
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U r -

12 -

10

!<*>!

0 1 2 3 4 5 6
ka

Figure 8. Response of 90° circular sector cavity, compare with the curve in Figure 7 for s/a = .001.

5. Solution for small cavities of general shape

Although the task of determining the cavity potential $c is formidable in
general, for the Helmholtz mode we are really only interested in the small-/ca
expansion of <j>c, as typified by equation (4.4) for the circular-sector cavity, where
a = O(Al/2). Using (4.4) as a guide, we therefore attempt to find a power series
in k2a2 of the form

</>c = 4>o + </>. + * 2 + - - - (5.1)

where we expect <f>0 = O(k~2a~2), <J>, = 0(1), <j>2 — O(k2a2) and so on.
In fact, we expect that the leading term <J>0 is constant throughout the cavity.

This is anticipated, not only by analogy with (4.4), but also by physical argu-
ments, since this corresponds to uniform compression of the whole cavity, the
only possible form of motion in the low-frequency limit k -> 0.
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Now if the series (5.1) is substituted into the Helmholtz equation (2.1), there
results a sequence of Poisson equations for <£>,, <j>2,..., that is,

V2*, = -k\, (5.2)

V2^=-k\, (5.3)

and so on. Similarly, the wall boundary condition (2.2) implies that

^ i = 0 , ^ = 0 and so on. (5.4)
dn dn

An important set of integral relations follows if we integrate both sides of (5.2)
and (5.3) over the cavity R, with boundary Fc + Fo. Thus

f f V2<t>, dxdy = -k\A = 6 d<j>,dn dl (5.5)
J JR •rrc+r0

is the net flux of <J>, produced by the constant forcing term on the right. But since
9<£,/3w = 0 on the actual (open) cavity boundary r c , the only contribution to the
line integral on the right of (5.5) comes from the flow through the opening ro,
which has shrunk to a point. The opening is represented now by a source of unit
strength in a sector of angle 6+ , which therefore produces net (outgoing) flux
-8+/(2ir). That is,

which determines the leading term in the series (5.1) as

<t>0 = 0+/(2Trk2A). (5.6)

Since the term <j>{ in (5.1) already accounts fully for the unit-source character of
4>c, further terms <t>2, <#>3,... in the series do not produce any net flux through the
opening. Hence, for example,

(f V2<t>2 dxdy ~ ~k2 ff 4»i dxdy - 6 d<t>2/dn dl = 0.JJR JJR Jrc+r0

The resulting integral condition,

fU 0, (5.7)
JR

is a normalization for the potential <>, that ultimately determines the cavity
parameter b. The process of solving (5.2) to determine <>,, and hence the
parameter b, is illustrated in the following section, but for the moment we assume
b is a known quantity, of the order of a = O(Al/2), and subject to a relative error
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Equation (3.15) now gives the source strength m, with error O(k2a2), and
hence the potential in the cavity is (from (3.10)),

that is

*/ft, = 1 + (2k2Av/0+ ^(x^) + 0(A:V), (5.8)

where

m = -2k2A<t>m, (5.9)

that is,

[ t o ) + (l/(29+))logb/s + i/4]
(5.10)

Equation (5.8) determines the flow everywhere in the cavity except near the
opening, where </>, is singular. For the flow in the neighbourhood of the opening,
we use (3.8) to give

*/*« = ! - {k2A/0+)log(b/s) + k2A${x,y) + O(k4a*), (5.11)

where <J>m is again given by (5.10).
Both equations (5.8) and (5.11) predict only second-order spatial effects on the

response; that is, neglecting the term (2tr/6+ )k2A^>](x,y) in (5.8) indicates that <j>
is almost constant (and equal to <#>m) in the cavity. Similarly, neglecting the term
k2A<j>(x, y) in (5.11) predicts a constant response in the opening. However, these
constant values are not quite equal to each other, and we predict that

^ ^ = 1 - ^ - l o g l - l +O(k2a2). (5.12)
•rcavity " + \ s I

This ratio is significantly less than unity, since -log(b/s) is large.
An approach giving results similar to this theory is that of Miles and Lee [7].

Using variational methods, they define a parameter 91L, found from solution of a
Poisson equation, which incorporates the parameter s, and the zero frequency
limit of b. In fact, it appears that, in our notation,

°H=(l/ir)log(b/s). (5-13)

Thus, both the cavity and the aperture geometry are involved in the specification
of the parameter 91L Miles and Lee have some difficulty in defining and
computing 911, in the general case, and construct a lower bound which seems to
approximate their parameter adequately. The approach we have discussed in the
preceeding sections, however, differentiates between the opening and the cavity
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18 G. R. Bigg and E. O. Tuck

geometries, and thus indicates separately the relative importance of these quanti-
ties in the final solution.

The importance of the analysis in the present section is that it enables coverage
of the frequency regime in which the Helmholtz resonance occurs. Such a
resonance corresponds to large magnitudes for <f^ in equation (5.10). Since the
imaginary part of <j>^ is small and provides damping, such a resonance will occur
near io waven umbers k such that the real part of <f^ vanishes, that is, where

2k2A = ( - (2W)-Ilog((i)yfe) + (\/(29+))\og(b/s))'\ (5.14)

Although (5.14) is a transcendental equation for the resonant wavenumber k, it is
clear that the order of magnitude of this k is given by

ka=O(log(b/s)yi/2. (5.15)

Hence, in this range of wavenumbers, the error in the present results is a factor of
the order of 1 + O(log( b/s))'2.

6. The cavity shape parameter b for special small cavities

The computational task for small ka reduces to that of solving the Poisson
equation (from (5.2) and (5.6))

V2*, = - * + / (277/1), (6.1)

in R, subject to (5.4), that is,

30,/3/j = 0 on Tc (6.2)

and, from (3.11) and (3.12),

</>, - (2ir)~hog(r/b) ^ 0 as r -> 0, (6.3)

where r = 0 defines the vanishingly-small opening on the wall of the cavity. The
system (6.1), (6.2) and (6.3) possesses a solution for any value of the constant b,
but the value of b is rendered unique by the normalization condition (5.7).

The following symmetry considerations apply to the parameter b. Suppose the
cavity R under consideration possesses symmetry about the x-axis, and the
opening is at the origin. If we now place a rigid wall along this x-axis and
consider only one of the identical chambers R~ created by this action, this
half-chamber has the same shape parameter b as the original full cavity. This is
because:

(i) The ratio 6+/A in (6.1) is unchanged, the new opening lying in the corner of
angle tr/2,

(ii) the potential <J>,, for R will also satisfy all required conditions for R+ , and
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(iii) the normalization integral (5.7) over R+ is just half that over R, and
therefore also vanishes.

Now suppose we create a third cavity R*, whose axis of symmetry is the^-axis,
by reflecting R+ with respect to that axis. Now by the same arguments, R* has
the same value of b as does R+ , and therefore the same value of b as does the
original cavity R.

The simplest case of computation of b is for the circular sector cavity already
discussed. Now an appropriate solution of the Poisson equation (6.1) is

r
''~b

(6.4)

and if the integral in (5.7) is evaluated, we find b = ae 3 / 4 , as in equation (4.5).
The expression (6.4) also agrees with the 0(1) term in the expansion (4.4) of <j>c in
powers of ka.

If the cavity consists of a complete circle r — 2a cos 6, then 0+ — 77, and a
solution of (6.1) subject to (6.2) and (6.3) can be written

1 1 I r\ r2 ~ 2arcosd , .,
877a2

which satisfies (5.7) if

b = (6.6)
6 1 -

Figure 9. Helmholtz response of a complete circular cavity of radius a at s/a = 0.05, for various
positions within the cavity.
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20 G. R. and E. O. Tuck [19]

This circular cavity can be used to illustrate dependence of the response on
position in the cavity. Figure 9 shows | tj> | at s/a = 0.05, computed from (5.8),
using (6.5) to give <#>,, for two positions within the cavity. This figure shows the
essential spatial invariance for non-resonant frequencies, but a significant varia-
tion in the magnitude (not the frequency) of the Helmholtz peak. The response in
the opening itself is also shown, using (5.11) with <j> taken as zero, indicating, as
predicted by (5.12), a significantly reduced response at all frequencies.

Equation (6.6) can be generalized to

</>, = (2*r ' log(r /6) - r2/ (SA) + * (6.7)

where $ is any solution of Laplace's equation vanishing at r = 0. In this way, for
a given 0, one can construct inverse solutions of the present problem, the cavity's
boundary curve r — r(0) being determined by solving the ordinary differential
equation

dr
dd = 2 (6.8)

which follows from (6.2). For example, if

$ = - (A/(477a2))r2cos20 (6.9)

2-O

1.5

1.0

0.5

\
oo

4

1.5

0

0

0

b

.472

.480

.531

0.5 1.0

Figure 10. A class of inversely-determined cavity shapes with known cavity parameter b.
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for some constant X, we find

Xr2 sin 20 = 2a2 tan~A 6 f\anx 0' d6'. (6.10)

Figure 10 shows the cavity shapes and corresponding values of b for various X.
The symmetry property discussed above applies to these results.

Finally, a solution for a rectangular cavity can be constructed in the form
1 . f . , -> ITX . -, ITy I

= 4^lo4Sinh Ih + sm2h\
n-nx wry
—cos— (6.11)

for suitable real coefficients an, n = 0,1,2, The rectangle has length L and
breadth 2h, the opening being located at the centre (x, y) = (0,0) of one of the
sides of breadth 2A. The expression (6.11) satisfies (6.3) if

(6.12)S 2Lh I 2h \
2..= — K » ( S ) .

U

12

10

0.2 0.4 0.6
ka

0.8

Figure 11. Helmholtz response of rectangular cavities of constant area A, at constant opening size
s/Ax/2 — 0.025, for various aspect ratios S = 2h/L.
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The remaining boundary condition, 9</>,/3H = 0 on x — L yields formulae for an,
n — 1,2,..., as coefficients in a Fourier-cosine series. The remaining coefficient
a0 (and hence b from (6.12)) is determined by the normalization integral (5.7).
The final expression for b is quite complicated, but can be written as a rapidly-
converging double sum (see Appendix B).

The results for the rectangular cavity can be used to illustrate dependence of
the Helmholtz resonance on cavity shape, via the aspect ratio 8 = 2h/L, holding
the area A = 2hL fixed. Figure 11 shows | <j>m | plotted against kAx/1 for various 8,
at s/Ax/1 = 0.025. As indicated in Section 5, <f>m measures the mean response
everywhere in the cavity, with relative error O(k2A); it in fact corresponds to the
value of <j> near the side furthest from the opening.

The most striking feature in Figure 11 is the significant variation with 8 in both
position and magnitude of the Helmholtz resonance peak. Thus, cavity shape
plays an important role in determining the Helmholtz resonance; this is the1

opposite conclusion to that of classical theory for three dimensional cavities (see
Tuck [10]). Two dimensional resonators thus have quite different properties,
unless second-order effects in three dimensions are larger than expected.

The symmetry property demonstrated at the beginning of this section is found
with rectangular cavities. The result is that cavities with an aspect ratio 8 have the
same response curves as those with an aspect ratio of 4/8. For example a square
with the opening in the middle of a side has the same response characteristics as a
rectangle of aspect ratio 5 = 4, with the opening in the middle of the long side.

Potentials in other cavities may be found by separation of variables (as for the
rectangle), or by conformally mapping the region of interest to one for which
solutions are already known, or to a half-plane.

7. Conclusion

In this paper, we have obtained asymptotic expansions for the response of
cavities of arbitrary shape with small openiangs, also of arbitrary shape. The
effect of the boundary geometry is obtained via two independent length parame-
ters, one related to the opening and the other to the cavity.

The opening parameter 5 is well known to be an important influence on the
response of the cavity, and was in effect already used by Rayleigh in his analysis
of the Helmholtz resonator. However, it is conventional to assume that, at least
for the Helmholtz mode, the shape of the cavity is not important, only its net area
A influencing the response. Our results, being expressed in terms of a uniquely-
defined cavity-shape parameter b, are capable of testing this assumption.

In fact, if b is allowed to vary, for cavities of constant area A and constant
opening parameter s, the variation in response is usually small, but sometimes
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significant, especially in the immediate neighbourhood of resonance. Quite large
variations are obtained, for example, by varying the aspect ratio of a rectangular
cavity from unity through values as high as 16.

In addition, our results show how the response varies from point to point
around the boundary, whereas the classical analysis for a Helmholtz resonator
predicts a uniform response. Again the variation is not large except near reso-
nance, unless the observation point lies near the opening, when significantly lower
responses occur at all frequencies.

Appendix A: Determination of effective size of wedge-like openings

Our task is to solve Laplace's equation in a region with boundaries given as in
Figure 12. The boundaries consist of two wedges, with angles air and fi-n, the
vertices being located at points D and H respectively. Without loss of generality,

r

___ —- — ~

/ -1 \

I

• - J - - __ ^ £-plane

'////SO '///EFG

Figure 12. Conformal mapping of wedge-like openings.
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we may fix the location of H as the origin in the complex z = x + iy plane, and
also fix as vertical, the left edge of the wedge with comer at H. The angles B_ and
6+ are as in the text, and necessarily

6+ +8_ +aTT + pn = 2m. (Al)

It is convenient to set 6_ = yn.
The problem is solved by a Schwartz-Christoffel mapping to the upper half

TJ ^ 0 of the f = £ + iij plane, namely

i | = -fctf-r '- ' tt + l) '-att - /z)'^, (A2)

for some parameter fi. The corner points D and H are mapped from the points
f = - 1 , ix respectively. The overall length scale in this problem is arbitrarily
determined by the fact that the constant multiplier in (A2) has unit magnitude.

The appropriate integral of (A2), satisfying z(/x) = 0, is (for f = £ + /0 and

y

(A3)

Our main interest is in the location of the corner point D, which can be written as

where
• l

= 1/7 - / ' r ' - ' [ ( l + /i0'~"0 - 0'"" - l] dt. (A5)•'o
There is no difficulty in numerical integration to determine the function F in

(A5), and hence the coordinates of the point D. The method used here is to make
the preliminary change of variable t = T1 / ( 1~Y ) , which eliminates the algebraic
singularity at / = 0, and then use the mid-point rule. In the particular case fi = 1,
a — P, the function F reduces to a Beta-function, namely

F{a, a, 1) - ((1 - o)/y)B(l - iy, 1 - a). (A6)

This special case yields an opening with symmetry about a line through the
mid-point of HD.

The flow problem is solved in the f-plane by placing a source at the origin.
That is, the complex potential is given by

f=t + i$= ( l / f f )log f + K, (A7)

for some constant K. Now, as f -» 0,

z -» - (i/y)fil~pS~y + constant,
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so that

This agrees with (3.2) if

e_
Similarly, as f -» oo,

ir**> = K+ir**\ILz-l (A8)

z -» —

so that

-f9+/" + constant,

which agrees with (3.2) if

h h ( £ ) (A9)

Subtraction of (A8) and (A9) to eliminate K yields the required formula for s,
namely

or,

where

The problem is thus solved in an inverse manner, by prescribing a, /?, y, and î.
Results are wanted for s/w, where w = | z(-l) | is the throat width, that is, the
distance between the corners H and D. Note that the length scale for the separate
quantities s and w is arbitrarily set, by the choice of the mapping (A2), but this
choice does not matter for their ratio s/w.

Results for /t = 1, a = /$, plotted against 6+ , are shown in Figure 4 of the text.
The solution given in this Appendix can be specialized to give many other
important opening configurations. Cases with a = /? = 0 correspond to thin walls
at an arbitrary angle my to each other, as is the case for many breakwaters for
harbour entrances. Cases with /? = 1 correspond to openings alongside a straight
side wall.

https://doi.org/10.1017/S0334270000003271 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003271


26 G. R. Bigg and E. O. Tuck

Appendix B: Derivation of rectangular cavity parameter

[25]

The Fourier coefficients of equation (6.11) must be derived, as must the
parameter b. The boundary condition 9</>,/3x = 0 on x = L is used to find an for
n # 0 .

The log term in (6.11) may be replaced by <5l{log(sinh7r(x + iy)/2h)} to
simplify the algebra. If we now differentiate (6.11) partially with respect to x at
x — L and take the real part of cothvr/2/i(L + iy) we obtain

Lh

7 1 = 1

1 - , TTL Try
cosh-; cos-p-

h h I

where

= «a_sinh nnL

(Bl)

(B2)

Using the orthogonality of the cosine functions and converting the denominator
of the right-hand side of (Bl) to a geometric cosine series, (Bl) can be written as

A =
2hL

TT
~ir\ I cosJrcosnTdr f o r / i > l . (B3)

Thus, upon evaluation of the above integral (Gradshteyn and Ryzhik, [1],
3.63.17), the Fourier coefficients are determined.

To find, a0, the normalization condition (5.7) is used, that is,

hi?:r—1- 2aohL H ^ 1 / / l os( s i r mff) dxdy • (B4)0 = -

The integral in (B4), denoted /, is integrated by parts, and using the identity
d/dx = —i(d/dy) we obtain

2Lh
dy

sinh— (x + ih)

iahj^(x - ih)
dx[,

(B5)

which, upon expanding the hyperbolic functions in the second integral, becomes

77/

2Lh
dy} -

2 '
(B6)
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Expanding the sinh in the remaining integral and taking the real part gives

H / log(a2 - cos2 T) d-r, (B7)
2Lh 2 m

• - f —

where a = cosh mL/2h. Integrating by parts and using the definite integral

TSin2r 2 . / 1 + / l - I/a2 \
d 2l (B8)/ 7 T ^ T d T w a l

^0 1 + ( - l / a 2 ) c o s 2 r

(Gradshteyn and Ryzhik, [1], 3.81.2) gives

I = L3h. (B9)
Substituting (B9) back into (B4) we obtain aQ, namely

r 2 9 L r
«o = - : J + ^ l o g 2 . (BIO)

To determine b, we use (6.3), the singularity condition at the origin. By letting
(x,y) - (0,0) in (6.11) we find

1 , r 1 , / " W ' V

or,
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