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Abstract

We analyse a 36-year hydrodynamic and morphological dataset from the Hasaki coast, Japan,
comprising 501 wave storm events (405 individual and 96 clustered events) to investigate the
impact of storm dynamics and clustering on beach erosion. Focusing on the wave component of
storms, events are identified using wave height thresholds. Daily and weekly beach profile
measurements from the Hasaki Oceanographic Research Station are used to quantify erosion.
The study examines the seasonal influences on Hasaki beach, the characteristics and temporal
evolution of storms, and their associated erosional impacts. Moreover, we test two supervised
machine learning (ML) algorithms, support vector regression (SVR), and deep neural network
(DNN), in predicting shoreline change using 16 wave, storm, and morphological features. SVR
showed reasonable accuracy on the training dataset but underperformed on testing, while DNN
failed to produce reliable predictions on both.With SVR yielding an R2 of 0.18 andDNN 0.27 on
the testing dataset, we conclude that, given the limited data and available features, such ML
models may not generalise well. However, separate analyses using observed data reveal clear
seasonal variations in wave storm dynamics and distinct behaviours of clustered events asso-
ciated with beach erosion, highlighting important insights beyond the ML results.

Impact statement

Development of tools and methods for projecting coastal erosion is increasingly important for
sustainable coastal management and planning practices. The need for such tools is largely
accelerated by the climate change uncertainty and its possible impacts on any given coastal zone
through wave storm activity (i.e. local threshold exceeding wave heights). Wave storms tend to
have a seasonal activity that drives the majority of erosional events, and these can be further
classified into single and clustered events. Beach response to these stormwaves depends not only
on storm strength but also on the temporal timing (length and time of year), as well as other
conditions. This study aimed to develop first insights into the development of such tools through
machine learning (ML) techniques by using a 36-year hydrodynamic andmorphological dataset
from the Hasaki coast, Japan. The findings show that the current ML framework applied
underperforms in estimating shoreline response and requires further work for both the tech-
niques as well as more comprehensive data considerations. This also suggests that more open,
standardised, and accessible coastal datasets are necessary to build reliable and generalisable ML
tools. The insights from this work can guide the further development of impact-based coastal
monitoring and predictive systems that reflect seasonal and storm clustering effects on beach
evolution.

Introduction

Climate change is amplifying the frequency and intensity of extreme weather events, increasing
the vulnerability of coastal systems and calling for urgent, informedmitigation strategies. Among
storm-induced disturbances, beach erosion poses a major threat to both natural coastal envir-
onments and built infrastructure. Although beaches are continuously shaped by waves, tides, and
winds, storms remain the dominant drivers of abrupt and significant morphological change
(Birkemeier, 1979). Approximately 24% of sandy beaches worldwide are already in erosionary
states (Luijendijk et al., 2018), and this trend is expected to worsen under future climate scenarios
(Vousdoukas et al., 2020). While the impacts of individual storms are well documented, storm
clustering (successive storms occurring within short timeframes) remains underexamined,
despite their potential for causing more sustained erosion due to cumulative energy input and
limited recovery intervals.
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The increasing intensity and frequency of coastal storms are
particularly concerning given the growing population density and
ongoing economic development in coastal areas (Small and
Nicholls, 2003; Neumann et al., 2015; Kulp and Strauss, 2019).
These events, often driven by atmospheric extremes such as extra-
tropical and tropical cyclones, intensify coastal hazards through
wave impact and overwash (Rivas et al., 2022). While storms
comprise multiple interacting components, such as storm surge,
wind, rainfall, and waves, the present study focuses specifically on
the wave component, which is generally the dominant driver of
storm-induced erosion along open sandy coasts (Hansen and Bar-
nard, 2010; Splinter et al., 2014; Ahmad et al., 2015; Lobeto et al.,
2024). Recent studies suggest that clusters of moderate wave storms
can inflict more damage than a single storm with similar charac-
teristics (Coco et al., 2014; Karunarathna et al., 2014; Dissanayake
et al., 2015; Masselink et al., 2016). This enhanced erosive effect is
often linked to progressive sediment loss and inadequate time for
beach recovery between events (Eichentopf et al., 2020). However,
the physical processes underlying the impacts of clustered events
remain poorly quantified, highlighting the need for detailed mor-
phological and hydrodynamic analyses.

Effective coastal management, especially in wave storm-prone
and seasonally dynamic regions, requires a clear understanding of
how beaches respond to both individual and clustered events
(Masselink et al., 2016). While short-term storm-induced morpho-
logical changes can be substantial, medium- to long-term coastal
evolution is often governed by seasonal and interannual variability
(Suzuki and Kuriyama, 2007, 2014; Hansen and Barnard, 2010;
Kuriyama et al., 2012; Pianca et al., 2015). For instance, the shoreline
dynamics of Japan’s main island, Honshu – bordered by the Sea of
Japan, the Philippine Sea, and the North Pacific Ocean – are influ-
enced by a range of extreme wave conditions, including typhoons,
extratropical cyclones, and locally generated storm events (Dorman
et al., 2004; Eichentopf et al., 2020; Shimozono et al., 2020; Suzuki
et al., 2020). Long-term observations have revealed patterns of
shoreline oscillation and storm-driven variability that are strongly
modulated by these seasonal conditions (Eichentopf et al., 2020).
Similarly, seasonal changes in beach profiles have been linked to the
frequency and intensity of storm activity in other coastal regions
(Angnuureng et al., 2017). These findings highlight the importance
of integrating high-resolution storm data with long-term beach
morphology observations for robust risk assessments and accurate
seasonal-scale impact prediction (Bird, 2008; Vousdoukas et al.,
2012).

Recent rapid developments in machine learning (ML) algo-
rithms, combined with the increasing availability of large datasets,
have led to a significant rise in ML-aided studies in coastal sciences
(Goldstein et al., 2019; Beuzen and Splinter, 2020; Ellenson et al.,
2020; Hayuningsih et al., 2024; Tabasi et al., 2025). Due to their
excellent ability to fitmodels to available datasets whilemaintaining
strong generalisation capability – although this often depends on
the size and quality of the training data –ML-aided approaches are
increasingly applied to understand and predict coastal extreme
events. Wave storm-induced beach erosion prediction studies, in
particular, have benefited from these data-driven approaches. For
example, Thilakarathne et al. (2024a,b) demonstrated howML and
explainable artificial intelligence (AI) techniques can reveal the
relative contributions ofmorphological and hydrodynamic features
to beach erosion predictions. Such insights offer promising new
avenues for advancing coastal process understanding. However,
challenges remain, such as the limited availability of high-quality
datasets that often hampers the training of models with robust

generalisation ability, as highlighted by Miller et al. (2019). Despite
these limitations, ML-based approaches are rapidly expanding,
especially for coastal extreme impacts, underscoring both their
potential and the need for further methodological improvements.

As groundwork for an upcoming research project on seasonal-
scale coastal impact prediction, this study investigates the evolution
of wave storm clusters and evaluates whether their behaviour and
impacts differ from those of individual events.We use a data-driven
approach to assess how storm characteristics, hydrodynamic con-
ditions, and initial shoreline position influence shoreline change
(dSL). Statistical analyses andML techniques are applied to identify
key drivers of storm-induced morphological change and charac-
terise the evolution of clustered storm behaviour. This study also
seeks to advance understanding of the mechanisms and impacts of
clustered storms and evaluate their significance for seasonal-scale
shoreline change predictions. The structure of the paper is as
follows: Materials and methods section outlines the materials and
methods; Results and discussion section presents the results along
with a discussion of their implications for predictive modelling,
including limitations of the ML approach and recommendations
for future impact-based seasonal prediction studies; and Conclu-
sion section concludes with key findings.

Materials and methods

Study site

Hasaki coast, located in Kamisu City of Ibaraki Prefecture, Japan,
features a nearly straight sandy beach approximately 16 km long,
facing the North Pacific Ocean (Figure 1). The beach is charac-
terised by medium-sized sediment with a diameter of approxi-
mately 0.18 mm (Katoh, 1995; Gunaratna et al., 2019), showing
minimal variation along the cross-shore profile (Katoh, 1995). Due
to the absence of significant alongshore bathymetric feature vari-
ations, it is classified as a longshore uniform beach (Kuriyama,
2002). With a tidal range of 1.45 m – where high, mean, and low
water levels are 1.25, 0.65, and �0.20 m, respectively – and a mild

Figure 1. Location of the Hasaki coast in Kamisu City, Ibaraki Prefecture, Japan. The
offshore wave gauge and the Hasaki Oceanographical Research Station (HORS) pier
locations are marked on the map. Additional photographs and details about the
research station are available on the Port and Airport Research Institute website
(Port and Airport Research Institute, 2025).
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beach slope, Hasaki is considered a microtidal dissipative beach
(Kuriyama, 2002). Based on long-term wave characteristics, Banno
et al. (2020) reported that wave conditions at Hasaki are generally
more energetic in February, March, and October due to extratrop-
ical cyclones and late-summer typhoons. They also observed that
wave periods are slightly longer in August due to typhoon-
generated swells, while swell effects in September are less evident
in monthly mean values despite frequent typhoon activity.

Wave observations

We use two-hourly wave observations from the Nationwide Ocean
Wave information network for Ports and Harbours (NOWPHAS)
over the period 1987–2022. These data were obtained from a
seabed-mounted ultrasonic wave gauge at a water depth of 24 m
off Kashima Port (location shown in Figure 1). Wave direction is
measured by aDoppler-type directional wavemeter; however, wave
directional data (θ) are only available from July 1991 onwards. For
missing directional values, we substitute the long-term mean wave
direction. The annual mean significant wave height (Hs) and period
(Ts) are 1.32 m and 9.07 s, respectively. In addition to significant
wave data, we also use mean wave height and period (H0 and T0),
the highest one-tenth wave height and period (H1=10 and T1=10 ),
and the maximum wave height and period (Hpeak and Tpeak), all of
which are pre-processed to address outliers and missing data.
Outliers are identified using the interquartile range method, sup-
plemented by expert judgement specific to the study site, while
missing data are excluded based on NOWPHAS guidelines.

Storm dataset

Site-specific storm thresholds are defined using a combination of
minimum wave heights, minimum storm duration, and meteoro-
logical independence criteria, following the methods proposed by
Harley (2017) and Nagai and Ogawa (2004). Nagai and Ogawa
(2004) present site-specific wave height thresholds of 1.5 and 2.5 m
for Hasaki, with threshold values varying depending on shoreline
characteristics across Japan. However, they do not specify criteria
for minimum storm duration or inter-event time gaps. Therefore,
we adopt the statistical approach of Harley (2017) and define a
minimum duration of 6 h and a meteorological independence
criterion of 48 h. This 48-h interval balances the frequent occur-
rence of storms at Hasaki, avoiding overly broad clustering that
masks individual storm effects, while also ensuring sufficient sep-
aration between events to assess their impacts. A storm must
therefore last at least 6 h with Hs exceeding 1.5 m and include at
least one instance where Hs exceeds 2.5 m (Thilakarathne et al.,
2023, 2024a).When the time gap between two ormore storm events
is less than 48 h, we consider them as one clustered event. Figure 2a
shows examples of an individual storm event and a clustered storm
event, the latter comprising three storm pulses (May–June 2018).
Applying these criteria yields 405 individual storm events and
96 clustered storm events. The temporal distribution of these
events, along with the number of storm pulses in clustered events,
is shown in Figure 2b. Due to 99% of the Hs data being missing
between 2008 and 2013, only seven storm events are identified
during this period. As our temporal evolution analysis relies on
annual and 3-year mean values, these events are excluded from the
analysis of storm evolution and associated impacts.

Following storm event identification, wave and storm charac-
teristic datasets are compiled. A total of 16 features are used in the
ML approach to predict dSL. These include 11 wave parameters,

the month of the storm, storm duration, pre-storm shoreline
position, and a storm power index. Moreover, the number of storm
pulses is included as a predictor to represent storm clustering
characteristics, where a single pulse indicates an individual event
and multiple pulses represent the number of storms within a
clustered event. The storm power index is calculated usingmethods
adapted from Dolan and Davis (1994) and Karunarathna et al.
(2014), as shown in Equation 1.

SP =H2
s�max �D (1)

where SP is the wave storm power, Hs�max is the maximum
significant wave height, and D is the storm duration (i.e. the time
during which Hs exceeds the 1.5 m threshold, for both individual
and clustered wave storms).

Cross-shore profile observations

We use 500 m long cross-shore profiles, recorded daily from
January 1987 to March 2011 and weekly thereafter, to quantify
shoreline and beach changes following storm events. These profiles
are obtained by the HORS (Banno et al., 2020), which conducts
surveys along a 427-m-long pier at 5-m intervals. The local
coordinate system, ranging from �115 m (landward) to 385 m
(seaward), is adopted for the present analysis. Profile elevations are
referenced to the Hasaki datum level (Tokyo Peil �0.687 m)
(Kuriyama, 2002).

Figure 2. Key elements of the data processing workflow: (a) Storm identification using
a two-threshold approach based on significant wave height (Hs). The selected period
(May–June 2018) shows one individual and one clustered storm event (the latter
comprising three pulses); (b) chronological distribution of identified individual and
clustered storm events from 1987 to 2022, with the y-axis indicating the number of
pulses per event (individual storms consist of a single pulse); and (c) example cross-
shore profile from the HORS, showing the beach zone (�40 m to +60 m) used for
volumetric erosion calculations. The dotted line represents the minimum recorded
elevation and serves as the datum for estimating daily beach volumes within the
shaded area, from which volumetric beach change (dV ) is calculated. Elevations are
referenced to the Hasaki datum level, and cross-shore coordinates follow the Hasaki
coordinate system.
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The shoreline position at high water level (1.252 m) fluctuates
between �35.67 and 45.76 m. Accordingly, we define the beach
section between �40 and 60 m, based on Hasaki coordinates, for
calculating volumetric beach changes (dV ) (Figure 2c). First, we
calculate the daily beach section volumes of the shaded area in
Figure 2c, using the dotted line, which represents the minimum
recorded elevation, as the datum. Shoreline change (dSL) and dV
are then calculated using pre- and post-storm shoreline positions
and beach volumes. Erosional values are considered positive, while
negative values indicate accretionary events.

Machine learning models and training

We train bothMLmodels using 16 predictors (input features), with
the only predictand (target output) being dSL , which shows a
strong correlation with dV (see Supplementary Figure A1). While
the dataset includes 501 storm events, substantial for coastal stud-
ies, it remains relatively small by machine learning standards. We
use 80% of the data (400 events: 324 individual and 76 clustered) for
training and the remaining 20% (101 events: 81 individual and
20 clustered) for testing, applying a random data-splitting function
from the scikit-learn library (Pedregosa et al., 2011).

Support vector regression model setup

The support vector regression (SVR) algorithm operates by map-
ping inputs into a high-dimensional space, using kernels such as
radial basis function (rbf) and polynomial (poly) (Awad and
Khanna, 2015). It constructs a hyperplane that minimises devi-
ations within a specified error margin (epsilon). The model
emphasises support vectors, which are critical training points near
the margin, to ensure robust generalisation. The regularisation
hyperparameter (C) controls error tolerance, while epsilon defines
the permissible prediction error range. SVR is well-suited for
relatively small datasets, making it an appropriate choice for the
present study, which includes only 501 storm events. To optimise
hyperparameters for balancing model complexity and prediction
accuracy, we employ a grid search approach with 5-fold cross-
validation. This method involves systematically evaluating
180 combinations of kernel types (rbf, poly), regularisation
strengths (C: 0.1, 1, 5, 10, 25, 100), error margins
(epsilon: 0.01, 0.1, 0.2), and kernel coefficients
(gamma: ‘scale’, ‘auto’, 0.001, 0.01, 0.1).
The grid search identifies the best hyperparameters as C = 25,
epsilon = 0.2, kernel = ‘rbf’, and gamma = 0.01.
However, the performance difference on the testing set between
gamma = 0.01 and gamma = ‘scale’ is minimal, and the
latter yields better training performance. Therefore, we select
gamma = ‘scale’ for the final model.

Deep neural network setup

The feedforward deep neural network (DNN), implemented using
the Keras API in TensorFlow (Abadi et al., 2015), consists of inter-
connected layers through which information flows in one direction,
from input to output. It learns complex nonlinear patterns by
adjusting internal weights through backpropagation.We test a range
of architectures with one or two hidden layers and different neuron
counts (16, 64, 128, and 256) to identify a suitable configuration for
dSL prediction and to benchmark its performance against SVR.
Additionally, we explore different dropout rates (0.2, 0.3, and 0.4),
learning rates (0.001, 0.005, 0.01, and 0.05), and batch sizes (16, 32,

and 64) to optimise training stability and generalisation. Based on
testing performance across these trials, the final architecture includes
an input layer, one hidden dense layer with 64 neurons using a
Rectified Linear Unit activation, and a linear output layer for con-
tinuous regression. A dropout layer with a rate of 0.1 follows the
hidden layer to mitigate overfitting. The model is trained using
stochastic gradient descent with a learning rate of 0.01 and momen-
tum of 0.8. Mean squared error (MSE) is used as the loss function.
Training is run for 1,000 epochs with a batch size of 64 and early
stopping (patience = 32) to prevent overfitting.

Skill metrics

To evaluate the ML model performances, we employ the mean
absolute error (MAE), MSE, the coefficient of determination (R2 ),
and Pearson’s correlation coefficient (r), as defined in Equations 2–5,
respectively.

MAE=
1
n

Xn
i= 1

yi�byi�� �� (2)

whereMAEmeasures the averagemagnitude of absolute prediction
errors, yi is the actual values, byi is the predicted values, and n is the
number of samples.

MSE=
1
n

Xn
i= 1

yi�byi� �2
(3)

where MSE represents the average squared prediction error, pena-
lising larger errors more severely.

R2 = 1�
Pn

i = 1 yi�byi� �2Pn
i= 1 yi� y

� �2 (4)

where R2 quantifies the proportion of variance in the dependent
variable explained by the model, and y is the mean of actual values.

r =

Pn
i = 1 yi� y

� � byi�by� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1 yi� y
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1 byi�by� �2
r (5)

where r measures the linear correlation between actual and pre-
dicted values, and by is the mean of predicted values.

Results and discussion

Seasonal changes in the beach morphology

We define the seasons based on meteorological conventions:
winter (December–February, DJF), spring (March–May,
MAM), summer (June–August, JJA), and autumn (September–
November, SON). Table 1 presents the seasonal mean values of
individual and clustered storm characteristics and their associ-
ated beach changes (dSL and dV ). We then select the erosional
events for further analysis, and Figure 3 shows radar plots of the
mean values of storm characteristics (SP and storm count) and
associated erosional beach changes (dV and dSL) for individual
and clustered events across the four seasons, with radial axes
scaled to enable finer comparison among the four features.

Winter (DJF) emerges as the most morphodynamically active
season, recording the highest number of erosional events
(96, including 22 clusterings). It records seasonal mean values for
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SP (2,584.59 m2� h), dSL (8.30 m), and dV (22.55 m3/m), all
associated with clustered storm events. These patterns align with
previous findings (Dorman et al., 2004; Eichentopf et al., 2020),
emphasising the role of extratropical cyclones in driving high-energy
waves, sustained sediment transport, and shoreline retreat during
winter months. Spring (MAM), with transitional characteristics
between the intense winter season and the relatively calm summer
(JJA), displays moderate activity of erosional events (71, including
19 clusterings), where the seasonal mean value of SP (1,185.64m2�h)
for individual erosional events is significantly higher than that for
accretional events (603.51m2�h).Mean accretionary volumetric beach
changes for both individual and clustered events show similar values
in the winter and spring seasons.

Autumn (SON) storms, although often underemphasised, play a
significant role in shaping coastal geomorphology at Hasaki. While
recording slightly fewer erosional events (89, including 19 cluster-
ings) than winter, autumn exceeds all other seasons in storm
intensity and beach erosion, with the highest seasonal mean values
of SP (3,023.30 m2�h), dSL (11.67 m), and dV (33.55 m3/m), all
associated with clustered storm events. The significant beach
changes during autumn are largely due to high typhoon activity
in September and October, when elevated sea surface temperatures
and a weakened Pacific high-pressure system make Japan particu-
larly vulnerable to intense tropical cyclones (Nayak and Takemi,
2023). These findings highlight the importance of considering not
just storm frequency but also storm intensity, especially the often

overlooked autumn storm dynamics, when developing coastal
management strategies at sites like Hasaki.

As expected, a smaller number of storms, both clustered and
individual, occur during the summer. However, the mean dV value
for individual events is comparable to that of winter. Due to the
limited number of clustered events (7), we do not focus on them
when drawing conclusions.

Role of storm clusters

Figure 4a shows the distribution of erosion magnitudes: dSL and
dV (from left to right, respectively). Figure 4a-i and a-ii shows
results for individual storms, which generally exhibit lower erosion
magnitudes with near-symmetric distributions centred around
minimal beach change. Figure 4a-iii and a-ivpresents the same
analysis for clustered storms, revealing a rightward skew–indicative
of asymmetric distributions toward higher erosion magnitudes and
underscoring the severe geomorphic impacts of storm clustering.

During 2005–2007, the mean dSL from clustered storms was
11.62m of retreat, significant but not the highest among all periods,
while the associated dV reached 37.71 m3/m of erosion, marking
the largest 3-year mean beach change recorded. This highlights the
disproportionate impact of storm clustering on different beach
zones: while the swash zone may exhibit limited retreat (reflected
inmoderate dSL), overall sediment removal across the 100-m-wide
beach remains substantial.

Figure 3. Radar plots of normalisedmean values of individual and clustered storm characteristics and their associated erosional (excluding accretionary) beach changes across the four
meteorological seasons: winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Each axis represents one of the following features, arranged clockwise from the top: storm count
(C), mean storm power (SP; Equation 1), mean shoreline change (dSL [m]), and mean volumetric beach change (dV [m3/m]). Uniform radial scaling across all subplots enables direct
seasonal comparison. The highest recorded value of each feature across all seasons is highlighted to aid comparison with the corresponding value in each season.

Table 1. Seasonal distribution of individual and clustered storm events (shown in parentheses), including their storm power (Equation 1) and associated impacts
on beach morphology: mean shoreline change, dSL [m], and mean volumetric beach change, dV [m3/m]

Number of events Storm power [m2�h] Mean shoreline change [m] Mean beach change [m3/m]

Season Erosional Accretional Erosional Accretional Erosional Accretional Erosional Accretional

Winter [DJF] 74 (22) 54 (10) 994.63 (2,584.59) 852.34 (1,622.35) 3.23 (8.30) �1.73 (�2.82) 13.78 (22.55) �12.73 (�12.56)

Spring [MAM] 52 (19) 44 (12) 1,185.64 (2059.07) 603.51 (1,319.50) 3.69 (5.54) �2.00 (�2.51) 10.68 (13.36) �11.06 (�12.59)

Summer [JJA] 40 (7) 18 (0) 938.87 (1,615.60) 1,058.56 (–) 6.70 (8.20) �0.11 (–) 12.99 (21.20) �5.99 (–)

Autumn [SON] 70 (19) 53 (7) 1,336.47 (3,023.30) 1,285.79 (1,312.19) 6.10 (11.67) �1.88 (�1.09) 16.62 (33.55) �14.22 (�12.43)

Note: Seasons are defined based on meteorological conventions: winter (December–February), spring (March–May), summer (June–August), and autumn (September–November). Erosional
values are considered positive, while negative values denote accretionary events.
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Similarly, during 2002–2004, clustered storms produced a mean
shoreline retreat of 12.13 m (dSL) and a mean volumetric erosion
of 29.19 m3/m (dV), despite the occurrence of only three erosional
clustered events. These results demonstrate that dV is a more
robust indicator of erosion severity than dSL alone, as it captures
the cumulative and directional impacts of closely spaced high-
energy events occurring before natural recovery. Supporting this,
Harley (2017) emphasised that the internal sequence and direc-
tionality of waves within storm clusters can intensify beach erosion
beyond the combined effects of individual storms. Supplementary
Table A1 provides a comprehensive summary of SP values and the
associated beach erosional and accretional impacts of individual
and clustered storms.

Benchmarking ML models

Support vector regression
Figure 4b-i and b-ii shows the performance of the SVR model on
the training and testing datasets, respectively. The model achieves

reasonable performance on the training dataset (MAE: 2.34 m,
MSE: 14.19 m2, R2: 0.66, r: 0.82). However, its testing performance
is substandard (MAE: 3.94 m, MSE: 30.93 m2, R2: 0.18, r: 0.44),
indicating that significant improvements are needed to develop a
more generalised predictive application. The clear difference
between training and testing performance suggests that the model
may be overfitting the training data, limiting its ability to generalise
to unseen cases. When using a fixed sigma value of 0.01 instead
of the‘scale’ parameter for the kernel width, signs of overfitting
in the training set disappear, but testing performance remains
nearly unchanged. The ‘scale’ setting adapts the kernel width
based on the data distribution, which can lead to overly complex
decision boundaries that fit noise in the training data, thereby
causing overfitting.

Deep neural network
Unlike SVR, training a DNN model requires an additional valid-
ation set during the backpropagation process. Accordingly, 20% of
the training data is used for validation (16% of the total wave
storms: 64 individual events and 16 clustered events), following
standard practice in deep learning workflows. Figure 4c-i and c-ii
shows the DNN model’s performance on the training and testing
datasets, respectively. The model does not achieve satisfactory
results on either set. On the training dataset, the DNN yields
MAE = 3.92 m, MSE = 27.85 m2, R2 = 0.33, and r = 0.63. On the
testing dataset, the performance is similarly limited, with
MAE = 3.86 m, MSE = 27.56 m2, R2 = 0.27, and r = 0.54.

Learnt lessons and future directions
Despite trialling multiple train–test splits by varying the ran-
dom_state parameter, both ML models consistently failed to
generalise to unseen data. This suggests that the poor performance
stems not from sampling variability. Instead, it is due to funda-
mental limitations in the dataset, particularly the small sample size
and a sparse set of predictive features. We optimised SVR hyper-
parameters via grid search and explored various DNN architec-
tures; therefore, model configuration is unlikely to be the primary
issue. The only geomorphic input used in the present analysis was
pre-storm shoreline position, which constrained the models’ ability
to capture key physical processes of nearshore morphodynamics.
Our unsuccessful attempts to model dSL further highlight the need
for richer, more diverse input data.

As shown by Seenath (2025), simplified physics-based models,
such as the one-line theory or the Bruun rule, also struggle to
reproduce shoreline behaviour when limited input data are avail-
able. To enhance predictive capability, ML approaches should
integrate additional geomorphic and hydrodynamic indicators,
such as nearshore bathymetry, sediment characteristics, and tidal
and current data, which can be obtained through field surveys,
remote sensing, or both. For example, recent advancements in
remote sensing may enable the extraction of beach cusp or sandbar
features, such as wave breaking zones, which reflect key geo-
morphic processes. Complementary insights from experimental
and field-based studies on surf zone sandbar erosion and sea-
level-driven morphological change further underscore the import-
ance of accounting for sediment transport dynamics and their
interaction with hydrodynamic forcing in predictive modelling
(Islam et al., 2024; Enayatighadikolaei et al., 2025). Access to such
high-quality, standardised datasets would improve model training
and support wider applicability across diverse coastal settings.

Although the current ML models in this analysis underper-
formed, we consider these results a useful baseline. ML approaches,

Figure 4. Distributions of shoreline change (dSL) and volumetric erosion (dV ) values
for individual storms (a-i, ii) and clustered storms (a-iii, iv). Performance of the SVR (b-i
and b-ii) and DNN (c-i and c-ii) models on training and testing datasets for predicting
shoreline change (dSL ) across all storm events. Evaluation metrics – MAE, MSE,
coefficient of determination (R2), andPearson’s correlation coefficient (r) – are provided
within (b) and (c).
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particularly when integrated with simplified physical models, can
offer efficient, scalable alternatives where resource-intensive
models, such as Delft3D or XBeach, are not feasible. ML can extract
insights from diverse data sources and help identify patterns not
easily captured by traditional methods. However, realising this
potential requires improved feature engineering and access to large,
openly shared coastal datasets with high spatial and temporal
resolution. Therefore, we highlight the importance of open data
sharing to advance ML-driven approaches for coastal modelling
and beach change prediction.

Temporal evolution of storm dynamics

Approximately 80% of the identified storm events are classified as
individual events, with the majority (60%) leading to erosional
impacts (Figure 4a), as would be expected given the energetic nature
of such events. From 1987 to 2022, the annual number of storms
shows a trend of increase, primarily due to an increase in the
frequency of occurrences of severe wave conditions at Hasaki,
indicating a possible impact of climate change (Figure 2b) and
Supplementary Table A1. Mori et al. (2010), using an atmospheric
general circulationmodel and a global wavemodel, have highlighted
the further intensification of wave heights of the future climate at
middle latitudes impacting the Japanese coasts. However, the rise in
erosional storm frequency is particularly attributed to an increased
occurrence of individual storms rather than clustered events.

SP (Equation 1) quantifications indicate that clustered storms
generally exhibit greater power than individual storms, which aligns
with their typically longer durations. Over the 36 years, the mean
annual SP shows an increasing trend for both individual and
clustered storms with erosional impacts on the beach, reflecting a
broader intensification of the extremewave climate.However, excep-
tionally high values for clustered events are observed in 1996
(5,357.19 m2�h), 1998 (4,257.64 m2�h), and 2014 (7,794.47 m2�h),
while such extreme annual means are not evident for individual
storm events. Although the dV values for both erosional individual
and clustered storms increase with storm power, their dSL values
decrease, emphasising that dV is a more reliable indicator of erosion
severity than dSL , as it captures the cumulative effects of wave
sequence and directionality within storm clusters.

Conclusion

This study reveals the seasonal and temporal complexities of wave
storm-induced beach erosion at Hasaki beach, emphasising the dis-
proportionate influence of clustered storm events on shoreline ero-
sion, particularly during high-energy autumn and winter months.
While less frequent clustered storm events are not the dominant cause
of all erosional events, its cumulative impacts (high-energy wave
interactions) are significant and require targeted attention in predic-
tion frameworks. The observed long-term increase in SP , alongside
stable shoreline change but rising volumetric erosion, suggests that
storm energy alone does not fully explain morphological trends.

The poor generalisability of SVR and DNNmodels underscores
the need for more comprehensive predictor features and larger,
high-quality datasets, highlighting the importance of open data
sharing to advance ML applications in coastal modelling. Despite
substandard ML performance, this study lays the groundwork for
developing an improved impact-based, seasonal shoreline predic-
tion system, which will be the focus of future research. Integrating
detailed geomorphic data, storm dynamics, and seasonal variability
will be essential to build robust, generalisable tools that better

support coastal management and planning. Overall, these findings
underscore the need for seasonally adaptive, morphology-informed
forecasting tools to support more effective and resilient coastal
management.
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