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Abstract

We study impatient customers’ joining strategies in a single-server Markovian queue
with synchronized abandonment and multiple vacations. Customers receive the system
information upon arrival, and decide whether to join or balk, based on a linear reward-
cost structure under the acquired information. Waiting customers are served in a
first-come-first-serve discipline, and no service is rendered during vacation. Server’s
vacation becomes the cause of impatience for the waiting customers, which leads
to synchronous abandonment at the end of vacation. That is, customers consider
simultaneously but independent of others, whether to renege the system or to remain. We
are interested to study the effect of both information and reneging choice on the balking
strategies of impatient customers. We examine the customers’ equilibrium and socially
optimal balking strategies under four cases of information: fully/almost observable and
fully/almost unobservable cases, assuming the linear reward-cost structure. We compare
the social benefits under all the information policies.

2020 Mathematics subject classification: primary 60K25; secondary 68M20, 90B22.

Keywords and phrases: equilibrium balking strategy, information policies, multiple
vacations, social benefit, strategic customers, synchronized abandonment.

1. Introduction

Waiting is an unavoidable annoyance for most people in this digital age, but they
become more sensitive towards the level of information and the quality of service they
receive. They might spare a little more time in a queue, if they receive proper care from
the management. When their waiting times get extremely large, the impatience rises
and they may decide to leave the queue before receiving service. This phenomenon
in queueing literature is referred to as reneging or abandonment, which takes place
in many real-life situations. Customers’ impatience might be due to their long wait
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in queue, poor quality of service they receive or the absence of server (vacations).
Queueing models with customer abandonment and various vacation policies were
investigated thoroughly because of their diverse applications in productions, computer
communications and other fields.

Markovian queueing systems with server vacations where the source of customers’
impatience is the unavailability of the server, have been studied by Altman and
Yechiali [2] and Yechiali [20]. The main presumption in their work is that customers
carry out independent abandonments, that is, each customer upon encountering the
vacation state, initiates his own patience timer which is independent of the patience
times of other customers, and abandons the system once the timer expires. Similar
to these works, Adan et al. [1], Economou and Kapodistria [7] and Kapodistria [13]
considered vacation queueing models with impatient customers, but instead of
independent abandonments, they assumed that impatient customers wait for a certain
transport facility to abandon the system. They called this type of abandonment
as synchronized or binomial abandonment. A third type of reneging, known as
sequential or geometric abandonment, was presented by Dimou et al. [6], Dimou and
Economou [5]. Both synchronized and sequential abandonments are incited by remote
systems, where users have to look for the arrival of the secondary transport facility
(with different capacity depending on the type of abandonment) to abandon the system.

The analysis of queueing systems with strategic customer behaviour has attracted
interest in recent years, as it provides invaluable insight into the economic aspects
of real-world systems. Extensive work on strategic queues were reported by Hassin
and Haviv [11] and Hassin [9]. The introduction of server vacations into the
strategic queueing games was initiated by Burnetas and Economou [4]. They studied
equilibrium balking strategies of rational customers in an M/M/1 queue with setup
times under four information cases. Variants of Markovian vacation queues with
optimal strategic behaviour have been discussed in the literature (see [8, 14, 15, 19, 21]
and the references therein).

The strategic behaviour of impatient customers in a Markovian setup was first
studied by Assaf and Haviv [3]. They considered a processor sharing single-server
Markovian queue, where customers know the number of customers waiting in front of
them before making their abandonment decisions. They may choose to abandon the
queue when it grows beyond a specific threshold value. Assaf and Haviv derived the
symmetric ε-Nash equilibrium reneging strategies, and showed the stationarity with
respect to the queue length. Several researchers complemented their work by studying
the abandonment behaviour in unobservable queues. Hassin and Haviv [10] studied
customers’ abandonment in a single serve Markovian queue, where customers are
rewarded if served within a fixed time and there is no reward if served after that. They
assumed that a customer either completes service or reneges while in service, but he
never reneges while waiting. Customers select a deadline and renege if their services
do not end within that deadline. Haviv and Ritov [12] studied the symmetric Nash
equilibrium reneging strategies under an increasing and convex waiting cost structure.
Motivated by the remote service systems such as telephone call centres, several
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researchers [16, 18, 22] studied the equilibrium abandonment behaviour of impatient
customers in a multi-server Markovian setup. All the above models presented the
equilibrium abandonment behaviour of impatient customers in Markovian queues
under the unobservable and observable cases separately. Recently, Panda et al. [17]
presented a thorough analysis of customers’ abandonment behaviour in both the
cases. They analysed the impatient customers’ strategic behaviour in an M/M/1 queue
with server vacations and sequential abandonment where the source of customer
impatience is the absence of server (vacation). During the server’s vacation, waiting
customers become impatient and decide sequentially whether they will abandon
the system or not, depending on the availability of a secondary transport facility.
This type of abandonment is motivated by the operation of a perishable inventory
system.

In this paper, we are complementing the initial work of Panda et al. [17] to
include synchronized abandonments. In the case of synchronized abandonments, every
arriving customer at an abandonment epoch decides, independent of others, either
to abandon or stay in the system with a certain probability. Thus, the probabilities
associated with customers are simultaneously determined, and the number of
customers in the system reduces in accordance with a binomial distribution. From an
economic point of view, this model has applications in the areas of wireless sensor
networks and cloud computing. This prompts us to extend previous research [17]
featuring the equilibrium and optimal social behaviour under different scenarios of
information. We study a Markovian queue with multiple vacations and synchronized
abandonments under these scenarios. We assume four cases of information: the fully
observable, almost observable, fully unobservable and almost unobservable cases.
Whenever the system becomes empty, the server takes a vacation. At the vacation
completion epochs, if the system is empty it takes another vacation. Otherwise,
each present customer decides independently of the others, whether to abandon
the system with probability p or remain in the system with probability q = 1 − p.
We obtain customers’ equilibrium balking and optimal social behaviour under each
information level. Then we compare their strategies and compute the optimal social
benefit. We find the stationary analysis of the system-length distribution and the
mean sojourn times in all of the cases. The impact of various parameters on the
equilibrium and optimal social thresholds have been represented through numerical
experiments.

The main contributions of this work may be outlined as follows.

• We derive closed-form expressions for the computation of the customer
equilibrium and social optimal strategies under the fully/almost observable and
almost/fully unobservable cases. Equilibrium strategies are nondecreasing in the
observable cases, and corresponding strategies are concave in the unobservable
cases.
• A mixed dominance between the equilibrium threshold strategies (ne(0) in

vacation and ne(1) in regular service) is observed. The condition of dominance
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is established. This behaviour is due to the synchronized abandonment of
customers in the vacation state.
• Social benefit of the almost unobservable case dominates that of the fully

observable case. Thus, revealing more information to the impatient customers
is not beneficial for the social benefit of the system. Social benefit function is
always concave in the unobservable case, whereas in the observable case, it is
concave for specific model parameters.

The paper is organized as follows. We outline the dynamics of the model in
Section 2. In Section 3, we study the model for observable cases and separately
obtain the stationary analysis of the two information (fully and almost observable)
cases. In Section 4, we present the strategic behaviour of customers in the almost
and fully unobservable cases. We also find the equilibrium threshold and socially
optimal behaviour of customers in all the information cases. Section 5 depicts some
numerical results, and discusses the corresponding findings under each information
policy. Section 6 concludes the paper.

2. Description of the model

We assume a single-server queueing system with multiple vacations, wherein
customers enter the system according to a Poisson process with rate λ. Service
is rendered to customers individually by a single server, and service times are
independent and exponentially distributed with rate µ. The server can be in two
modes: regular service (active) mode or vacation (inactive) mode. Customers are
served with rate µ in the active mode, and no service is provided in the vacation
mode. The server takes a vacation, if the system becomes empty at the end of a
service completion epoch. At the vacation completion epoch, the server goes on
another vacation if the server gets the system empty; otherwise, it switches to active
mode and starts serving the present customers exhaustively. We assume multiple
server vacations of exponentially distributed vacation times with rate φ. Customers
become impatient during the vacation mode and carry out synchronized abandonments
on the availability of a secondary transport facility. The transport facility arrives at
the system at the end of each vacation period. When a vacation period ends, the
customers take a decision whether to abandon or remain in the system. Each present
customer at the abandonment/vacation completion epoch stays in the system with
probability q or leaves the system with probability p = 1 − q, independently of the
others. At every abandonment epoch, the number of customers is reduced according to
a binomial distribution as a result of the synchronized departure of some of the present
customers. We assume that the arrival process, the service and vacation times, and the
abandonment process are mutually independent.

Let N(t) be the number of customers in the system at time t, and

ζ(t) =

{
0 if the server is on inactive mode (vacation),
1 if the server is in active mode (busy).
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The process {(N(t), ζ(t)) | t ≥ 0} is a continuous time Markov chain (CTMC) with state
space Ω = {(n, i) | i = 0, 1, n ≥ i}. The nonzero transition rates are

q̂(n,i),(n+1,i) = λ n ≥ i, i = 0, 1, q̂(n+1,1),(n,1) = µ n ≥ 1,
q̂(1,1),(0,0) = µ, q̂(n,0),(n,1) = φqn n ≥ 1,

q̂(n,0),(n−k,1) = φ

(
n
k

)
pkqn−k 1 ≤ k ≤ n − 1, n ≥ 1, q̂(n,0),(0,0) = φpn n ≥ 1.

Using these transition rates, the steady-state balance equations for the model are

λπ0,0 = µπ1,1 + φ

∞∑
j=1

p jπ j,0,

(λ + φ)πn,0 = λπn−1,0 n ≥ 1,

(λ + µ)π1,1 = µπ2,1 + φ

∞∑
j=1

jqp j−1π j,0,

(λ + µ)πn,1 = µπn+1,1 + λπn−1,1 + φ

∞∑
j=n

(
j

j − n

)
qn p j−nπ j,0 n ≥ 2,

where πn,i = limt→∞ P{N(t) = n, ζ(t) = i | i = 0, 1 and n ≥ i} is the stationary probability
distribution of the CTMC {(N(t), ζ(t))}. The normalization condition for solving the
balance equations is

∞∑
n=0

πn,0 +

∞∑
n=1

πn,1 = 1. (2.1)

Figure 1 presents the transition rate diagram of the CTMC. We are concerned in
the behaviour of customers, when upon their arrival they decide whether to enter
or balk the system. We presume that each customer gets a reward of R units for
finishing service. Further, there is a waiting cost of C units per time unit that gather.
during which they remain in the system. We define a linear cost-reward function
to analyse a customer’s expected net benefit subsequent to completion of service
as ∆ = R − CT (n, i) (or ∆ = R − CE(W)), where T (n, i)(E(W)) corresponds to the
mean sojourn time of an arriving customer in observable (unobservable) queue. The
customers take decisions only at their arrival instants to maximize their expected
net benefit. Because customers are permitted to take their decisions, and there is
a homogeneous reward-cost structure for all customers, the system can model as a
noncooperative and symmetric game among the customers. We are interested only in
the balking/joining strategies of impatient customers, not in the reneging strategies
of impatient customers. We assume that their decision is irrevocable, that is, retrials
of customers (both balking and reneging customers) are not allowed. Further, the net
benefit of balking customers and reneging customers is zero.
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Figure 1. Transition rate diagram of the original model.

3. Analysis of the observable queues

In this section, we assume that upon arrival, customers are informed of the system
length (observable queues). Further, it can be studied under two levels: (1) fully
observable case, that is, arriving customers observe the state of the server and the
system length; (2) almost observable case, that is, arriving customers observe only the
system length. Based on the information available, customers take a decision at their
arrival instant whether to join or to balk the system. We will study the fully observable
case followed by the almost observable case in the next section.

3.1. Fully observable queue In this case, arriving customers have exact system
state information before making decision, whether to join or to balk. The equilibrium
balking strategy in the fully observable case is a pure strategy of threshold type. We
are interested to find the balking threshold ne(i), such that an arriving customer enters
the system at state i (i = 0, 1), if the number of the customers present upon arrival does
not exceed the specified threshold. Thus, a pure threshold strategy defined by the pair
(ne(0), ne(1)) and the form of balking strategy is “observe (N(t), ζ(t)) when arriving at
time t; join if N(t) ≤ ne(ζ(t)) and balk otherwise”.

Theorem 3.1. In a fully observable M/M/1 queue with synchronized abandonments and
multiple vacations, there exists a unique equilibrium threshold strategy

(ne(0), ne(1)) =

(⌊1
q

(
µR
Cq
−
µ

φq
− 1

)⌋
,
⌊
µR
C

⌋
− 1

)
,

such that a customer who observes the system at state (N(t), ζ(t)) upon arrival, enters
if N(t) ≤ ne(ζ(t)) and balks otherwise.

Proof. An arriving customer who observes the system in state (n, i) will join the
system, if the service completion reward is higher than his total waiting cost. Let
∆ f o(n, i) represent the expected net benefit of a tagged customer who observes the
system state (n, i) on arrival and decides to join, which is given by

∆ f o(n, i) = R −CT (n, i),
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where T (n, i) = E(S | N = n, ζ = i) is the expected mean sojourn time of the tagged
customer who finds the system in state (n, i) upon arrival. Conditioning on system
state, we have the following system that represents the mean sojourn time of the tagged
customer:

T (0, 0) =
1
φ

+
q
µ
, (3.1a)

T (n, 0) =
1
φ

+
nq2

µ
+

q
µ
, n ≥ 1, (3.1b)

T (n, 1) =
n + 1
µ

, n ≥ 1, (3.1c)

where (n + 1)/µ is the mean service time of the tagged customer who finds n customers
in the system on arrival, and 1/φ is the mean residual vacation time. The primary
presumption regarding the reward cost structure is that a customer is willing to join
the queue, upon arrival to an empty system. Specifically, the reward for service must
be higher than the total waiting cost of an arriving customer who finds the system
empty (state (0, 0)). When an arriving customer encounters the system on state (0, 0),
his sojourn time will be p/φ or q(1/φ + 1/µ) if he abandons or remains in the system,
respectively. Thus, his mean sojourn time is (1/φ + q/µ), which is given in (3.1a). We
assume

R > C
(1
φ

+
q
µ

)
for the equilibrium analysis of the balking strategies in all cases. If the tagged customer
encounters system state (n, 0) and decides to abandon the system with probability p,
his mean sojourn time will be his waiting time till vacation completion. If he decides
to remain in the system with probability q, then his mean sojourn time will be the sum
of his waiting time till service completions of n customers and his own service time.
His waiting time will depend on the number of customers that decide to remain in the
system at the vacation completion or abandonment epoch. If m customers remain in
the system with probability q, and the rest n − m customers abandon the system with
probability p, then his mean sojourn time is

1
φ

+

n∑
m=0

(
n
m

)
pn−mqm m + 1

µ

with probability q. Thus, we have

T (n, 0) =
p
φ

+ q
(1
φ

+

n∑
m=0

(
n
m

)
pn−mqm m + 1

µ

)
,

which on simplification results in (3.1b). Similarly, if the tagged customer finds
the system state (n, 1) upon arrival, then his mean sojourn time will be the sum of
(n + 1) service times with mean µ−1. As the customers are indistinguishable and only
interested in maximizing their own benefit, there is a symmetric game among the
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customers. We are interested to compute the Nash equilibrium solution of this game.
That is, under this equilibrium (threshold strategy) all joining customers are benefited,
and a customer deviating from this will not be benefited.

Thus, an arbitrary customer who confronts n customers in the system on arrival,
strictly prefers to enter the system if ∆ f o(n, i) > 0 and is indifferent between entering
and balking if ∆ f o(n, i) = 0, and does not join the system if ∆ f o(n, i) < 0. Hence, the
customer arriving at time t will join the system if and only if N(t) ≤ ne( j), where
(ne(0), ne(1)) are found by solving ∆ f o(n, 0) = 0 and ∆ f o(n, 1) = 0. �

Remark 3.2. The literature on queueing games with vacation reveals that in the fully
observable case, the equilibrium balking threshold in the busy period always dominates
the equilibrium balking threshold in the vacation period. Because the queue forms
quicker in case of a vacation period as opposed to regular service period, the relation
among the thresholds ne(0) < ne(1) is prevalent in literature. Here, this dominance
relation holds under certain restrictions on the behaviour of the impatient customers.
We derive the condition of dominance (ne(1) > ne(0)) to be q > q∗, where

q∗ =
µ

φp
C − Rφp
µR −C

.

Whenever the dominance condition fails, that is, q ≤ q∗, the threshold of an inactive
server is higher than that of an active server. This peculiar behaviour of the thresholds
is the effect of synchronized abandonment of impatient customers in the inactive mode
of the server that brings down even higher thresholds in vacation to very small values.
Some numerical experiments also agree with it under certain variation in the model
parameters.

3.1.1 Socially optimal balking strategy. Next, we are interested in the social
benefit of all joining customers under the equilibrium threshold (ne(0), ne(1)) and
the socially optimal joining thresholds (n∗(0), n∗(1)), where n∗(i) is the threshold that
optimizes the social benefit of all customers when they join the system in state (n, i). To
compute this, we need the stationary analysis of the fully observable system under the
equilibrium threshold strategy (ne(0), ne(1)). In our Markov chain analysis, we have
assumed the relation ne(1) > ne(0).

Lemma 3.3. Consider a fully observable M/M/1 queue with synchronized abandonments
and multiple vacations, in which customers follow the threshold policy (ne(0), ne(1)).
Then the stationary probabilities {πn,i | (n, i) ∈ Ω f o} are given by

πn,0 =

(
λ

φ

)δn,ne(0)+1( λ

λ + φ

)ne(0)
π0,0, n = 0, 1, . . . , ne(0) + 1,

πn,1 = ψnπ0,0, 1 ≤ n ≤ ne(1) + 1,

where ψn and π0,0 are given in (3.3), and δi, j = 1 for i = j and 0 otherwise, is the
Kronecker delta function.
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Figure 2. Transition rate diagram for the threshold strategy (ne(0), ne(1)).

Proof. Assuming that all customers follow the same threshold strategy (ne(0), ne(1)),
the fully observable model works as a finite buffer M/M/1 queue, with buffer capacities
ne(0) during vacation and ne(1) during normal service. The transition rate diagram of
the underlying CTMC is depicted in Figure 2.

In the limiting case, define the stationary probability distributions as

πk,0 = lim
t→∞

P{N(t) = k, ζ(t = 0)}, 0 ≤ k ≤ ne(0) + 1,

πk,1 = lim
t→∞

P{N(t) = k, ζ(t = 1)}, 1 ≤ k ≤ ne(1) + 1,

where πk,0 (πk,1) is the probability that there are k customers in the system in steady-
state when the server is on vacation (busy). We obtain the stationary probabilities from
the system of balance equations given below

λπ0,0 = µπ1,1 + φ

ne(0)+1∑
j=1

p jπ j,0, (3.2a)

(λ + φ)πn,0 = λπn−1,0, 1 ≤ i ≤ ne(0), (3.2b)

φπne(0)+1,0 = λπne(0),0, (3.2c)

(λ + µ)π1,1 = µπ2,1 + φq
ne(0)+1∑

j=1

jp j−1π j,0, (3.2d)

(λ + µ)πn,1 = µπn+1,1 + λπn−1,1 + φ

ne(0)+1∑
j=n

(
j

j − n

)
qn p j−nπ j,0, 2 ≤ n ≤ ne(0) + 1,

(3.2e)

(λ + µ)πn,1 = λπn−1,1 + µπn+1,1, ne(0) + 2 ≤ n ≤ ne(1), (3.2f)

µπne(1)+1,1 = λπne(1),1. (3.2g)
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From (3.2b) and (3.2c),

πn,0 =

(
λ

λ + φ

)n
π0,0, 1 ≤ n ≤ ne(0),

πne(0)+1,0 =
λ

φ

(
λ

λ + φ

)ne(0)
π0,0.

Using the equations (3.2a) and (3.2d)–(3.2f), we have

πn,1 = ψnπ0,0, 1 ≤ n ≤ ne(1) + 1,

where

ψ1 =
ρq (λ + φ)
φ + λq

[
1 −

(
λp
λ + φ

)ne(0)+1]
,

ψ2 = (1 + ρ)ψ1 −
φq
pµ

ne(0)∑
j=1

j
(
λp
λ + φ

) j
− ρq (ne(0) + 1)

(
λp
λ + φ

)ne(0)
,

ψn+1 = (1 + ρ)ψn − ρψn−1 −

( q
p

)nφ

µ

ne(0)∑
j=n

(
j

j − n

) (
λp
λ + φ

) j

− ρp
( q

p

)n( ne(0) + 1
ne(0) + 1 − n

) (
λp
λ + φ

)ne(0)
, n = 2, 3, . . . , ne(0) + 1,

ψn+1 = (1 + ρ)ψn − ρψn−1, n = ne(0) + 2, . . . , ne(1).

We have thus expressed all stationary probabilities in terms of the only unknown
π(0, 0), which can be obtained using the normalization condition

π0,0 =

[
λ + φ

φ
+

ne(1)+1∑
j=1

ψ j

]−1
. (3.3)

�

The probability of balking is equal to Pbalk = πne(0)+1,0 + πne(1)+1,1 due to the PASTA
property (Poisson Arrivals See Time Averages). Thus the effective arrival rate is λ(1 −
Pbalk). If all joining customers follow the equilibrium threshold strategy (ne(0), ne(1)),
then the social benefit per time unit in equilibrium, denoted by ∆s(ne(0), ne(1)), can be
expressed as

∆s(ne(0), ne(1)) = Rλ(1 − ψne(0)+1π0,0) −C
(
λ(λ + φ)
φ2 +

ne(1)+1∑
n=1

nψn

)
π0,0

−

(
R −

C
φ

)
λ2

φ

(
λ

λ + φ

)ne(0)
π0,0.

A social planner is interested to find the joining thresholds for which the social benefit
of the whole system is optimized. Denoting the socially optimal threshold strategy
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by (n∗(0), n∗(1)), the social planner wants to optimize ∆s(n(0), n(1)). A closed form
expression for the socially optimal strategy is intractable. However, it is possible to
evaluate these thresholds numerically using softwares that helps to solve unconstrained
integer programming problems.

Remark 3.4. When the dominance condition fails, that is, q ≤ µ(C − Rφp)/φp(µR −
C), the equilibrium thresholds satisfy ne(1) ≤ ne(0). Under this situation, the steady-
state distribution in this case can be computed by solving the following system of
balance equations:

λπ0,0 = µπ1,1 + φ

ne(0)+1∑
j=1

p jπ j,0 (3.4a)

(λ + φ)πn,0 = λπn−1,0, 1 ≤ i ≤ ne(0), (3.4b)
φπne(0)+1,0 = λπne(0),0, (3.4c)

(λ + µ)π1,1 = µπ2,1 + φq
ne(0)+1∑

j=1

jp j−1π j,0, (3.4d)

(λ + µ)πn,1 = µπn+1,1 + λπn−1,1 + φ

ne(0)+1∑
j=n

(
j

j − n

)
qn p j−nπ j,0, 2 ≤ n ≤ ne(1), (3.4e)

µπne(1)+1,1 = λπne(1),1 + φ

ne(0)+1∑
k=ne(1)+1

ne(0)+1∑
j=k

(
j

j − k

)
qk p j−kπ j,0. (3.4f)

From (3.4b) and (3.4c)

πn,0 =

(
λ

λ + φ

)n
π0,0, 1 ≤ n ≤ ne(0),

πne(0)+1,0 =
λ

φ

(
λ

λ + φ

)ne(0)
π0,0.

Using the equations (3.4a) and (3.4d)–(3.4f), we have

πn,1 = ψnπ0,0, 1 ≤ n ≤ ne(1) + 1,

where

ψ1 =
ρq(λ + φ)
φ + λq

[
1 −

(
λp
λ + φ

)ne(0)+1]
,

ψ2 = (1 + ρ)ψ1 −
φq
pµ

ne(0)∑
j=1

j
(
λp
λ + φ

) j
− ρq (ne(0) + 1)

(
λp
λ + φ

)ne(0)
,

ψn+1 = (1 + ρ)ψn − ρψn−1 −

( q
p

)nφ

µ

ne(0)∑
j=n

(
j

j − n

) (
λp
λ + φ

) j

− ρp
( q

p

)n( ne(0) + 1
ne(0) + 1 − n

) (
λp
λ + φ

)ne(0)
, n = 2, 3, . . . , ne(1).
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Figure 3. Transition rate diagram for the threshold strategy ne.

3.2. Almost observable queue In this section, we examine the almost observable
queues. The customers upon arrival before making decisions, observe the system
length, but they are not informed about the server state, that is, they cannot differentiate
whether the server is on vacation or busy period. A pure threshold strategy is defined by
(all arriving customers apply the indistinguishable threshold for joining) considering
ne(0) = ne(1) = ne in the fully observable case. The balking strategy has the form
“observe N(t) at arrival instant t; join if N(t) ≤ ne and balk otherwise”. The state space
of the representing Markov chain is

Ωao = {(k, 0) | 0 ≤ k ≤ ne + 1} ∪ {(k, 1) | 1 ≤ k ≤ ne + 1},

and the transition rate diagram is specified in Figure 3.
The system-length distribution can be obtained by solving the balance equations

(3.5), which are deduced from the system of balance equations (3.2) by substituting
ne(0) = ne(1) = ne:

λπ0,0 = µπ1,1 + φ

ne+1∑
j=1

p jπ j,0, (3.5a)

(λ + φ)πn,0 = λπn−1,0, 1 ≤ i ≤ ne, (3.5b)

φπne+1,0 = λπne,0, (3.5c)

(λ + µ)π1,1 = µπ2,1 + φq
ne+1∑
j=1

jp j−1π j,0, (3.5d)

(λ + µ)πn,1 = µπn+1,1 + λπn−1,1 + φqn
ne+1∑
j=n

(
j

j − n

)
p j−nπ j,0, 2 ≤ n ≤ ne, (3.5e)

µπne+1,1 = λπne,1 + φqne+1πne+1,0. (3.5f)
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Following the analysis similar to the fully observable case, we get the stationary
distributions of the above system of balance equations

πn,0 =

(
λ

λ + φ

)n
π0,0, n = 0, 1, . . . , ne,

πne+1,0 =
λ

φ

(
λ

λ + φ

)ne

π0,0,

πn,1 = ψnπ0,0, 1 ≤ n ≤ ne + 1,

where

ψ1 =
ρq (λ + φ)
φ + λq

[
1 −

(
λp
λ + φ

)ne+1]
,

ψ2 = (1 + ρ)ψ1 −
φq
µp

ne∑
j=1

j
(
λp
λ + φ

) j
− ρq(ne + 1)

(
λp
λ + φ

)ne

,

ψn+1 = (1 + ρ)ψn − ρψn−1 −
φ

µ

( q
p

)n ne∑
j=n

(
j

j − n

)(
λp
λ + φ

) j

− ρp
( q

p

)n( ne + 1
ne + 1 − n

) (
λp
λ + φ

)ne

, n = 2, 3, . . . , ne.

Now, using the normalization condition, we compute

π0,0 =

(
λ + φ

φ
+

ne+1∑
j=1

ψ j

)−1
.

3.2.1 Equilibrium and socially optimal balking strategy. Let T (n) be the mean
sojourn time of a tagged customer who notices n customers in the system upon arrival.
The expected net benefit of an arriving customer who decides to join when observes n
customers ahead, is ∆ao(n) = R −CT (n). Conditioning on the state of the server which
has been withstood by the tagged customer, we get

T (n) = T (n, 0)P(ζ = 0 | N = n) + T (n, 1)P(ζ = 1 | N = n),

where P(ζ = i | N = n) is the probability that the tagged customer gets the server at
state i, given that there are n customers in the system. Applying the PASTA property,
we have

P(ζ = 0 | N = n) =
πn,0

πn,0 + πn,1
=


λn

λn + ψn(λ + φ)n n = 0, 1, . . . , ne,

λne+1

λne+1 + ψne+1φ(λ + φ)ne
n = ne + 1,

P(ζ = 1 | N = n) =
πn,1

πn,0 + πn,1
= 1 − P(ζ = 0 | N = n), n = 1, 2, . . . , ne + 1.
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Thus, the mean sojourn time of the tagged customer who observes n customers in the
system, becomes

T (n)

=


(
µ + φq
φµ

+
q2n
µ

)
λn

λn + ψn(λ + φ)n +
n + 1
µ

ψn(λ + φ)n

λn + ψn(λ + φ)n , 0 ≤ n ≤ ne,(
µ + φq
φµ

+
q2n
µ

)
λn

λn + ψnφ(λ + φ)n−1 +
n + 1
µ

ψnφ(λ + φ)n−1

λn + ψnφ(λ + φ)n−1 , n = ne + 1.

Clearly, the number of customers in the system, T (n), is an increasing function of n.
This is intuitive, as a customer who notices more numbers in the system after joining
will have to wait longer than the customer who encounters fewer numbers in the system
for a fixed abandonment rate. Alternatively, one can find the derivative

d
dn

T (n) =
1
µ

λnq2 + ψn(λ + φ)n

λn + ψn(λ + φ)n +

[ (1 − q)(qn + n + 1)
µ

−
1
φ

]
ψnλ

n(λ + φ)n

{λn + ψn(λ + φ)n}2
,

which is always positive for n ≥ 1. Now for the tagged customer who finds n customers
in the system and decides to join, given that all other customers follow a threshold
strategy ne, his expected net benefit will be

∆ne,ao(n) = R −C
n + 1
µ

ψn(λ + φ)n

λn + ψn(λ + φ)n −C
(
µ + φq
φµ

+
q2n
µ

)
λn

λn + ψn(λ + φ)n .

Since T (n) is an increasing function of n, we have ∆ne,ao(n) a decreasing function of
n for a fixed threshold strategy ne. To show that such a threshold exists, we define the
functions

f (n) =

(
µ + φq
φµ

+
q2n
µ

)
λn

λn + ψn(λ + φ)n +
n + 1
µ

ψn(λ + φ)n

λn + ψn(λ + φ)n , n ≥ 0,

g(n) =

(
µ + φq
φµ

+
q2n
µ

)
λn

λn + ψnφ(λ + φ)n−1 +
n + 1
µ

ψnφ(λ + φ)n−1

λn + ψnφ(λ + φ)n−1 , n ≥ 1,

One can check that f (n) ≤ g(n) for n ≥ 1. Now, define the following decreasing
sequences S1(n) = R −C f (n), n = 0, 1, 2, . . . and S2(n) = R −Cg(n), n = 1, 2, . . . , such
that both satisfy S2(n) ≤ S1(n) for n ≥ 1. We have S1(0) = R − CT (0) > 0; otherwise,
no customer will join when the system is empty. Note that

lim
n→∞

S1(n) = −∞ = lim
n→∞

S2(n).

Hence, there exists a finite nonnegative integer nU , such that S1(i) > 0 for
i = 0, 1, 2, . . . , nU and S1(nU + 1) ≤ 0. Since, S2(n) ≤ S1(n) for n ≥ 1, we have,
S2(nU + 1) < S1(nU + 1) ≤ 0. Using the similar arguments for the sequence S2(n), that
is, S2(0) > 0 and S2(nU + 1) ≤ 0, we get a finite nonnegative integer nL ≤ nU such that
S2(nU + 1),S2(nU),S2(nU − 1), . . . ,S2(nL + 1) ≤ 0 and S2(nL) > 0. Hence, the threshold
strategy ne satisfies ne ∈ {nL, . . . , nU}.
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If the tagged customer finds n(≤ ne) customers ahead of him and decides to enter
when all other customers follow the same threshold strategy ne, his expected net benefit
is equal to ∆ne,ao(n) ≥ ∆ne,ao(ne) = S1(ne) > 0. So, in this case, the customer’s decision
to join brings a positive net benefit for him. Hence, the tagged customer prefers
to join the system. On the other hand, if the tagged customer finds ne + 1 (higher
than the threshold ne) customers ahead of him, and decides to enter when all other
customers follow the same threshold strategy ne, his expected net benefit is equal to
∆ne,ao(ne + 1) = S2(ne + 1) ≤ 0. So, in this case, the tagged customer’s decision to enter
is not beneficial for him. Hence, he prefers to balk. Therefore, every threshold value
ne in between nL and nU is an equilibrium threshold in the almost observable case.

To calculate the benefit of all the present customers in the system, we need to find
the effective arrival rate λeff = λ(1 − Pbalk), where Pbalk is the probability of balking
and is given by

Pbalk =

(
λ

φ

(
λ

λ + φ

)ne

+ ψne+1

)
π0,0.

Now, the social benefit per time unit, when all the customers follow the same
equilibrium threshold strategy ne is

∆s(ne) = Rλ(1 − ψne+1π0,0) −C
(
λ(λ + φ)
φ2 +

ne+1∑
n=1

nψn

)
π0,0

−

(
R −

C
φ

)
λ2

φ

(
λ

λ + φ

)ne

π0,0.

Similar to the fully observable case, a socially optimal threshold strategy n∗ under
which the social benefit of the whole system is optimized, can be computed
numerically by solving ∆s(n) = 0. Although this computation is less complex than
that of the fully observable case, a closed form expression is still intractable.

4. Analysis of unobservable queues

In the unobservable queues, customers are not aware of the information on the
system length at their decision making stages (whether to balk or join the system),
but they have the information about the state of the server. Based on the server state
information, unobservable queues can be categorized into the following: (i) almost
unobservable, that is, arriving customers know the server state ζ(t) before making join
or balk decision; (ii) fully unobservable, that is, arriving customers do not have any
information about the server state before making decisions. In the almost unobservable
case, a mixed equilibrium strategy is specified by a pair (d0, d1), where d0 (0 ≤ d0 ≤ 1)
is the joining probability, when the customer wishes to join the system during vacation
mode and d1(0 ≤ d1 ≤ 1) is the joining probability, when the customer wishes to join
the system during normal service mode. Similarly, a mixed strategy is assigned by
the joining probability d, in the fully unobservable case. In both the cases, we are
interested to find the Nash equilibrium mixed joining strategies.
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Figure 4. Transition rate diagram for the mixed strategy (d1, d0).

4.1. Almost unobservable queue We first consider the almost unobservable case,
where, upon arrival, customers are aware of the state of the server. Suppose that
all customers in the system follow a mixed joining strategy (d0, d1). The associated
queueing model is the same as the original one with potential arrival rates λdi to the
system when server state is i. The state space of the Markov chain {(N(t), ζ(t)), t ≥ 0} is
Ωau = {(n, 0), (n + 1, 1) | n ≥ 0}, and the state transitions are demonstrated in Figure 4.
The existence of the stationary probabilities πk,i for (k, i) ∈ Ωau is guaranteed by the
stability criteria λ < µ, and the probabilities can be computed by solving the following
balance equations:

λd0π0,0 = µπ1,1 + φ

∞∑
j=1

p jπ j,0,

(λd0 + φ)πn,0 = λd0πn−1,0, n ≥ 1, (4.1a)

(λd1 + µ)π1,1 = µπ2,1 + φq
∞∑
j=1

jp j−1π j,0, (4.1b)

(λd1 + µ)πn,1 = µπn+1,1 + λd1πn−1,1 + φ

∞∑
j=n

(
j

j − n

)
qn p j−nπ j,0, n ≥ 2. (4.1c)

We define the probability generating functions (PGFs) as

Π0(z) =

∞∑
n=0

πn,0zn and Π1(z) =

∞∑
n=1

πn,1zn, |z| ≤ 1.

Multiplying (4.1a) by zn, n ≥ 1 and then simplifying, we obtain

Π0(z) =
φ + λd0

φ + λd0 − λd0z
π0,0 =

∞∑
n=0

(
λd0z

φ + λd0

)n
π0,0. (4.2)

Multiplying (4.1b) and (4.1c) by an appropriate power of zn and summing over n,

(λd1 + µ)Π1(z) = λd1zΠ1(z) +
µΠ1(z)

z
− µπ1,1 + φΠ0(p + qz) − φΠ0(p). (4.3)
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Using (4.2) and simplifying (4.3) for Π1(z), we get

Π1(z) =
λd0qz(φ + λd0)π0,0

(φ + λd0q − λd0qz)(µ − λd1z)
. (4.4)

Extending equation (4.4) in partial fractions,

Π1(z) =
λd0q(φ + λd0)π0,0

λd1(φ + λd0q) − λd0qµ

[ ∞∑
n=0

(
λd1z
µ

)n
−

∞∑
n=0

(
λd0z

φ + λd0q

)n]
. (4.5)

Further simplification of (4.3) and (4.5) yields

πn,0 =

(
λd0

φ + λd0

)n
π0,0, n ≥ 0, (4.6)

πn,1 =
d0q(φ + λd0)π0,0

φd1 + d0q(λd1 − µ)

[(
λd1

µ

)n
−

(
λd0q

φ + λd0q

)n]
, n ≥ 1, (4.7)

Using the normalization equation (2.1), we get

π0,0 =
φ(µ − λd1)

(φ + λd0)(µ − λd1 + λd0q)
.

These results can be summarized in the following lemma.

Lemma 4.1. In the almost unobservable queue with synchronized abandonment
wherein all customers follow a mixed balking strategy (d0, d1), the stationary
distribution is

πn,0 =
φ(µ − λd1)

λd0(µ − λd1 + λd0q)

(
λd0

φ + λd0

)n+1
, n ≥ 0,

πn,1 =
d0qφ(µ − λd1)

(φd1 + d0q(λd1 − µ))(µ − λd1 + λd0q)

[(
λd1

µ

)n
−

(
λd0q

φ + λd0q

)n]
, n ≥ 1.

The probability that the system is on vacation (or busy) state, denoted by π0 (π1), is
computed as

π0 =

∞∑
n=0

πn,0 =
µ − λd1

µ − λd1 + λd0q
, (4.8)

π1 =

∞∑
n=1

πn,1 =
λd0q

µ − λd1 + λd0q
. (4.9)

The conditional mean system length when the server is on vacation state and on busy
state, are denoted by E(N | ζ = 0) and E(N | ζ = 1), respectively, and are derived as

E(N | ζ = 0) =

∑∞
n=1 nπn,0

π0
=

Π
′

0(1)
π0

=
λd0

φ
,

E(N | ζ = 1) =

∑∞
n=1 nπn,1

π1
=

Π
′

1(1)
π1

=
φµ + λd0q(µ − λd1)

φ(µ − λd1)
,
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where Π
′

0(z) and Π
′

1(z) represent the first derivatives of Π0(z) and Π1(z), respectively,
with respect to z. The average number of the customers in the system is

E(N) =

∞∑
n=1

nπn,0 +

∞∑
n=1

nπn,1 =
λd0(µ − λd1)

φ(µ − λd1 + λd0q)

[
1 +

q(φµ + λd0q(µ − λd1))
(µ − λd1)2

]
.

4.1.1 Equilibrium and socially optimal balking strategy. Now consider a tagged
customer who finds the server on state i (i = 0, 1) upon arrival. The conditional mean
sojourn time of the tagged customer who decides to join the system with server state i,
given that others follow the same mixed strategy (d0, d1) is

W(0, d0, d1) =

∑∞
n=0 T (n, 0) πn,0∑∞

n=0 πn,0
, W(1, d0, d1) =

∑∞
n=1 T (n, 1) πn,1∑∞

n=1 πn,1
.

Using (3.1b) and (4.6), we obtain

W(0, d0, d1) =
1
φ

+
q
µ

+
λd0q2

µφ
.

Similarly, using (3.1c) and (4.7) yields

W(1, d0, d1) =
1
µ

(
1 +

φµ + λd0q(µ − λd1)
φ(µ − λd1)

)
.

The expected net benefits of a customer that finds the server on state i upon arrival and
decides to join the system when all customers follow the same joining strategy (d0, d1)
are

∆au(0, d0, d1) = R −C
(1
φ

+
q
µ

+
λd0q2

µφ

)
,

∆au(1, d0, d1) = R −
C
µ
−C

(
φµ + λd0q(µ − λd1)

µφ(µ − λd1)

)
. (4.10)

Consider the different cases of equilibrium analysis for the joining probabilities d0
and d1 with the corresponding Nash equilibrium solutions denoted by de(0) and de(1),
respectively. First, we consider a tagged customer who discovers the server on vacation
mode upon arrival and joins the system with probability d0 if he earns a positive net
benefit. The equilibrium joining probability de(0) is analysed under the following two
cases.

Case 1 (C((µ + qφ)/φµ) < R ≤ C((µ + qφ + q2λ)/φµ)). In this case, if all customers
who discover the server at state 0 enter with probability d0 = 1, then the tagged
customer who decides to enter has ∆au(0, d0, d1) ≤ 0. Hence, d0 = 1 can not be an
equilibrium strategy. On the other hand, if all other customers join with probability
d0 = 0, then the tagged customer entering the system has ∆au(0, d0, d1) > 0. The tagged
customer is benefited more by joining than balking. Hence, d0 = 0 can not be an
equilibrium strategy. Therefore, a unique mixed Nash equilibrium strategy d0 = de(0)
exists for which customers are indifferent between entering and balking the queue.
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This unique strategy de(0) is obtained by solving ∆au(0, d0, d1) = 0 for d0, and is given
by

de(0) =
1
λq2

(Rµφ
C
− µ − φq

)
.

Case 2 (C((µ + qφ + q2λ)/φµ) < R). In this case, the best response is 1, that is, the
tagged customer is always benefited by joining the system irrespective of the decisions
taken by all other customers. Hence, de(0) = 1 is the only equilibrium strategy.

Next, we consider the equilibrium mixed strategies for a tagged customer who
discovers the server on normal service mode upon arrival. From (4.10), the expected
net benefit of the tagged customer is given by

R −
C
µ
−C

(
φµ + λd0q(µ − λd1)

µφ(µ − λd1)

)
=


C
q

(1
φ
−

q
µ − λd1

)
− R

p
q

in Case 1,

R −
C
µ
−

C
µ − λd1

−
Cλq
µφ

in Case 2.

To find de(1), we study some subcases of both Cases 1 and 2:

Case 1a:

C
(
µ + qφ
φµ

)
< R ≤ C

(
µ + qφ + q2λ

φµ

)
and R < C

(
µ − λ − φq
pφ(µ − λ)

)
,

(de(0), de(1)) =

( 1
λq2

(Rµφ
C
− µ − φq

)
, 0

)
;

Case 1b:

C
(
µ + qφ
φµ

)
< R ≤ C

(
µ + qφ + q2λ

φµ

)
and C

(
µ − λ − φq
pφ(µ − λ)

)
≤ R ≤ C

(
µ − φq

pµφ

)
,

(de(0), de(1)) =

( 1
λq2

(Rµφ
C
− µ − φq

)
,
µ

λ
−

Cφq
λ(C − Rφp)

)
;

Case 1c:

C
(
µ + qφ
φµ

)
< R ≤ C

(
µ + qφ + q2λ

φµ

)
and C

(
µ − φq

pµφ

)
< R,

(de(0), de(1)) =

( 1
λq2

(Rµφ
C
− µ − φq

)
, 1

)
;

Case 2a:

C
(
µ + qφ + q2λ

φµ

)
< R and R < C

(2
µ

+
λq
µφ

)
,

(de(0), de(1)) = (1, 0);
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Case 2b:

C
(
µ + qφ + q2λ

φµ

)
< R and C

(2
µ

+
λq
µφ

)
≤ R ≤ C

(1
µ

+
1

µ − λ
+
λq
µφ

)
,

(de(0), de(1)) =

(
1,
µ

λ
−

Cµφ
λ(Rµφ −C(φ + λq))

)
;

Case 2c:

C
(
µ + qφ + q2λ

φµ

)
< R and C

(1
µ

+
1

µ − λ
+
λq
µφ

)
< R,

(de(0), de(1)) = (1, 1).

Remark 4.2. If we assume λ ≥ µ, a unique Nash equilibrium mixed strategy
(de(0), de(1)) “observe ζ(t) and join with probability de(ζ(t))” exists, where the mixed
equilibrium strategy is (de(0), de(1)). Here Case 1a and Case 2a are the same as the
previous case when λ ≤ µ. Other cases are:

Case 1b:

C
(
µ + qφ
φµ

)
< R ≤ C

(
µ + qφ + q2λ

φµ

)
and C

(
λ − µ + φq
pφ(λ − µ)

)
≤ R,

(de(0), de(1)) =

( 1
λq2

(Rµφ
C
− µ − φq

)
,
µ

λ
−

Cφ q
λ(C − Rφp)

)
;

Case 2b:

R > C
(
µ + qφ + q2λ

φµ

)
and C

(2
µ

+
λq
µφ

)
≤ R,

(de(0), de(1)) =

(
1,
µ

λ
−

Cµφ
λ(Rµφ −C(φ + λq))

)
.

Remark 4.3. Substituting p = 0 and q = 1, the model reduces to M/M/1 queue
with multiple vacations. Taking λ < µ, a unique Nash equilibrium mixed strategy
(de(0), de(1)) “observe ζ(t) and join with probability de(ζ(t))” exists, where
(de(0), de(1)) is given as:

Case 1 (C((µ + φ)/φµ) < R ≤ C((µ + φ + λ)/φµ)).

de(0) =
1
λ

(Rµφ
C
− µ − φ

)
;

Case 2 (C((µ + φ + λ)/φµ) < R).

R −
C

µ − λd1
−

C(φ + λd0)
µφ

=


C
φ
−

C
µ − λd1

in Case 1,

R −
C

µ − λd1
−

C(φ + λ)
µφ

in Case 2.

The above expressions match exactly with the expressions of Burnetas and
Economou [4, p. 222] by replacing the vacation parameter φ with θ.

https://doi.org/10.1017/S1446181120000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000115


[21] Strategies with vacations and synchronized abandonment 109

Figure 5. Transition rate diagram for the mixed strategy de.

The social benefit of the system when all customers follow the same joining strategy
(d0, d1), is

∆s(d0, d1) = λ (π0d0 + π1d1)R −C E(N)

= R
λd0(µ − λd1 p)
µ − λd1 + λd0q

−C
λd0(µ − λd1)

φ(µ − λd1 + λd0q)

[
1 +

q(φµ + λd0q(µ − λd1))
(µ − λd1)2

]
=

λd0

µ − λd1 + λd0q

[
R(µ − λd1 p) −

C(µ − λd1)
φ

{
1 +

q(φµ + λd0q(µ − λd1))
(µ − λd1)2

}]
,

where π0 and π1 are given by (4.8) and (4.9), respectively. Here, λ (π0d0 + π1d1) is
the effective arrival rate of the system. The social planner’s objective is to optimize
the expected social benefit, that is, a social planner is interested to find the socially
optimal joining strategy (d∗0, d

∗
1) under which the social benefit of the whole system

is maximum. The analytic expression for the socially optimal strategies is intractable,
but its numerical computation is easier to compare with the observable cases.

4.2. Fully unobservable queue In the fully unobservable system, arriving
customers do not know the state of the system before making their join or balk
decision. However, they are aware of the model parameters. The customers’ decision
is to choose a joining probability d (0 ≤ d ≤ 1), which will optimize their individual
benefit. If all arriving customers join the system with probability d, then we have an
M/M/1 vacation queueing system with synchronized abandonments, where the arrival
rate is λd, the service time and vacation times are exponentially distributed with rate µ
and φ, respectively. The stability condition for the queueing model is λd < µ. The state
space Ω f u for the Markov chain {(N(t), ζ(t)), t ≥ 0} is same as Ωau, and the transition
rate diagram is illustrated in Figure 5. The stationary distributions {πk,i | k ≥ i} of the
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system can be obtained from the balance equations, given below:

λdπ0,0 = µπ1,1 + φ

∞∑
j=1

p jπ j,0,

(λd + φ)πn,0 = λdπn−1,0, n ≥ 1,

(λd + µ)π1,1 = µπ2,1 + φq
∞∑
j=1

jp j−1π j,0,

(λd + µ)πn,1 = µπn+1,1 + λdπn−1,1 + φ

∞∑
j=n

(
j

j − n

)
qn p j−nπ j,0, n ≥ 2.

For computation of the equilibrium mixed strategies, we obtain the stationary
distribution from Lemma 4.1 by substituting the joining probabilities d0 and d1 by
d, given that all customers follow the same mixed strategy d:

πn,0 =
φ(µ − λd)
λd(µ − λdp)

(
λd

φ + λd

)n+1
, n ≥ 0,

πn,1 =
qφ(µ − λd)

(φ + q(λd − µ))(µ − λdp)

[(
λd
µ

)n
−

(
λdq

φ + λdq

)n]
, n ≥ 1.

The probability π0 = P(ζ = 0) that the system is on a vacation mode and the
probability π1 = P(ζ = 1) that the system is on active mode are calculated as

π0 =

∞∑
n=1

πn,0 =
µ − λd
µ − λdp

, π1 =

∞∑
n=1

πn,1 =
λdq

µ − λdp
.

The average number of the customers in the system is

E(N) =

∞∑
n=1

n(πn,0 + πn,1) =
λd(µ − λd)
φ(µ − λdp)

[
1 +

q(µφ + λdq(µ − λd))
(µ − λd)2

]
.

Applying Little’s law, the mean sojourn time of a customer who upon arrival decides
to join the system is

W(d) =
E(N)
λd

=
µ − λd

φ(µ − λdp)

[
1 +

q(µφ + λdq(µ − λd))
(µ − λd)2

]
.

Differentiating the above expression with respect to d yields

W ′(d) =
λµq[p(µ − λd)(φ + λd − µ) + φ(µ − λdp)]

φ(µ − λd)2(µ − λdp)2 .

By taking λ < µ and d ∈ [0, 1], we get W ′(d) > 0. Therefore, W(d) is strictly increasing
for d ∈ [0, 1].
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4.2.1 Equilibrium and socially optimal balking strategy. We examine a fully
unobservable queue with multiple vacations and synchronized abandonments, where
arriving customers pursue a common strategy d such that the system is stable (that is,
λd/µ < 1). The expected net benefit of a tagged customer who decides to enter is

∆ f u(d) = R −C
µ − λd

φ(µ − λdp)

[
1 +

q(µφ + λdq(µ − λd))
(µ − λd)2

]
, (4.11)

∆ f u(0) = R −C
(
µ + φq
µφ

)
,

∆ f u(1) = R −C
µ − λ

φ(µ − λp)

[
1 +

qµφ + λq2(µ − λ)
(µ − λ)2

]
.

Since, the net benefit function ∆ f u(d) is strictly decreasing and changes sign in (0, 1)
for

R ∈
(C(µ + φq)

µφ
,

C(µ − λ)
φ(µ − λp)

(
1 +

qµφ + λq2(µ − λ)
(µ − λ)2

))
,

we get a unique solution d∗e ∈ (0, 1) to equation (4.11). Thus, the tagged customer’s
best response is to join the system with probability d∗e . When

R ∈
[ C(µ − λ)
φ(µ − λp)

(
1 +

qµφ + λq2(µ − λ)
(µ − λ)2

)
,∞

)
,

the net benefit of a tagged customer is always positive for any d ∈ (0, 1). Thus,
the tagged customer’s best response is to join the system with probability 1. Note
that ∆ f u(d) < 0 for every d, if 0 < R < C(µ + φq)/µφ. So, the best response of a
customer upon arrival is to balk, and the unique equilibrium point is d = 0. Thus, there
always exists a unique Nash equilibrium strategy de if the tagged customer decides to
enter into the system, assuming R meets certain conditions. Consequently, the Nash
equilibrium strategy is stated as follows:

de =



0 R ∈
(
0,

C(µ + φq)
µφ

]
,

d∗e R ∈
(C(µ + φq)

µφ
,

C(µ − λ)
φ(µ − λp)

(
1 +

qµφ + λq2(µ − λ)
(µ − λ)2

))
,

1 R ∈
[ C(µ − λ)
φ(µ − λp)

(
1 +

qµφ + λq2(µ − λ)
(µ − λ)2

)
,∞

)
.

Remark 4.4. If we assume λ ≥ µ, a unique Nash equilibrium mixed strategy de “join
with probability de” exists, where de = d∗e for R/C > (µ + φq)/µφ; here d∗e is the unique
solution to (4.11).

When all customers pursue the above equilibrium mixed strategy de, the social
benefit per time unit in equilibrium can be represented as ∆s(de), and can be computed
using (4.11). Next, we are interested in the joining strategy that optimizes the social
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benefit of the whole system. The social benefit per time unit when all customers follow
a joining strategy d is

∆s(d) = λd(R −CW) = λd
(
R −

C(µ − λd)
φ(µ − λdp)

[
1 +

q(µφ + λdq(µ − λd))
(µ − λd)2

])
.

Since ∆s(d) is differentiable on [0, 1], the first two derivatives are

∆′s(d) = λ(R −CW(d)) − λdCW ′(d), ∆′′s (d) = −λC[W ′(d) + dW ′′(d)],

where

W ′′(d) =
qλ2µ

φ

[2((µ − λdp) + p(µ − λd))(φµp + (µ − λd)(φ + λd − µ))
(µ − λd)3(µ − λdp)3

+
(2(µ − λd) − φ)

(µ − λd)2(µ − λdp)2

]
.

Since W ′′(d) > 0, so ∆′′s (d) < 0, for all d ∈ [0, 1], hence, ∆s(d) is concave down in the
closed interval [0, 1] and has a unique optimal point, say d∗ ∈ (0, 1) at which the social
benefit is maximum. Thus, the socially optimal joining strategy of customers in the
fully unobservable case is given by

d∗ =


R/C −W(d)

W ′(d)
if (R/C −W(d))/W ′(d) ∈ (0, 1),

1 if (R/C −W(d))/W ′(d) ∈ [1,∞).

5. Numerical results

In this section, we discuss numerical results to show the effectiveness of the
model studied here. The behaviour of the strategic customers under two distinct
strategies is discussed with several model parameters. In particular, the equilibrium
joining strategies and socially optimal behaviour for the observable models and the
unobservable models are presented under different situations. The role of information
on the social benefit of the system is also discussed. Maple 17 software is used to
get the numerical data for the queueing systems with several model parameters. The
numerical experiments are presented in three facets. In the first set of experiments
(Figures 6–9), the equilibrium threshold strategies for the observable cases and in the
second set of experiments (Figures 10–13) equilibrium joining probabilities for the
unobservable cases are presented for different queueing parameters. In the third set of
experiments (Figures 14–17), the social benefit of the system is presented for all the
information cases.

In the first set of experiments, the effect of service, vacation, reward and
abandonment on the strategic customer behaviour under controlled information is
discussed. The behaviour of the equilibrium threshold of joining against service
rate (Figure 6) in the observable vacation models with customer abandonment is
similar to that of the thresholds in the observable vacation models without customer
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Figure 6. Equilibrium threshold strategies versus µ for an observable model with λ = 1.0, φ = 0.5,
p = 0.2,R = 20,C = 5.

Figure 7. Equilibrium threshold strategies versus φ for an observable model with λ = 1.0, µ = 2.5,
p = 0.2,R = 20,C = 5.

abandonment. Customers not having the server state information follow a threshold
strategy in between the strategies of customers that encounter the server on vacation
and that encounter the server on regular service mode. The difference among
equilibrium thresholds increases with increasing service rate. A similar behaviour
of the equilibrium thresholds is observed in Figure 8 for smaller values of service
reward. Here, the difference among the equilibrium thresholds decreases with increase
in R up to 30, the thresholds coincide in the interval [30, 32] and after 32, ne(0)
surpasses ne(1). This may be due to the increase in congestion level during vacation,
which in turn aggravate the system resulting in customer abandonment. Figures 7
and 9 show the behaviour of impatient customers on varying vacation rate and
abandonment probability, respectively. Note that when the vacation rate is smaller
than one and the abandonment probability is at most 0.3, the relationship among the
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Figure 8. Equilibrium threshold strategies versus R for an observable model with λ = 1.0, µ = 2.5,
φ = 0.5, p = 0.2,C = 5.

Figure 9. Equilibrium threshold strategies versus p for an observable model with λ = 1.0, µ = 2.5,
φ = 0.5,R = 20,C = 5.

thresholds, ne(0) < ne < ne(1) is intuitive. As the vacation rate increases, the mean
vacation time decreases, which results in shorter expected sojourn times for waiting
customers. Thus, the waiting time of the rest customers decreases substantially due to
the shorter expected sojourn time during vacation. This information about the smaller
queue length attracts more customers to join the system, as a result, the threshold
increases.

Secondly, the customers without any information on the number of customers ahead
of the queue, follow a mixed strategy of joining or balking the queue. Customers
with only the server state information, do not get any benefit in case of a system
with the fast server, but have a visible effect when they join a slow server system.
The effect of the server speed on the equilibrium joining probabilities is shown
in Figure 10. The queue length information is more helpful than the server state
information under a dynamic service rate. This is also true for other model parameters
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Figure 10. Equilibrium joining strategies versus µ for an unobservable model with λ = 1.0, φ = 0.5,
p = 0.2,R = 3,C = 1.

Figure 11. Equilibrium joining strategies versus φ for an unobservable model with λ = 1.0, µ = 1.5,
p = 0.2,R = 3,C = 1.

as seen from the numerical results (Figures 11, 13). The equilibrium thresholds are
always nondecreasing functions of the parameters whereas the equilibrium mixed
strategies are both nonincreasing for some values and nondecreasing for other values
of the parameters. When customers are not aware of the system state, their equilibrium
behaviour is to “follow the crowd” situation. There is no benefit of having the server
state information in a system with slower arrivals as in Figure 12. But this has a
positive effect in a system with more arrivals. In Figure 11, the equilibrium joining
probabilities increases for φ ∈ [0.2, 0.35] and with vacation times becoming shorter,
customers encountering busy server are less interested to join because of the presence
of more impatient customers during the previous vacation period. When few customers
leave the system due to impatience, new arrivals are interested to join the vacation
state expecting shorter waiting times. When more impatient customers abandon the
system, it is more beneficial for the arriving customers to join the vacation state. It
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Figure 12. Equilibrium joining strategies versus λ for an unobservable model with µ = 2.5, φ = 0.5,
p = 0.3,R = 2.5,C = 1.

Figure 13. Equilibrium joining strategies versus p for an unobservable model with λ = 1.0, µ = 1.5,
φ = 0.5,R = 3,C = 1.

adds negative externalities on the arriving customers who decide to enter the busy
state, see Figure 13.

Finally, we discuss the social benefit under the four information settings, and
present a comparative study among them. In Figure 14, the social benefit increases with
increasing service rate, independent of the information policy. It is better to follow one
information policy (either queue length or server state) than their combined one (fully
observable case). For a fast server (µ > 2.4) there are negligible differences in the social
benefit under the full and no information policy. Similar behaviour of the social benefit
function against the server vacation rates is seen in Figure 15. The social benefit is a
concave function and attains maximum value 4.345098 unit at φ = 0.4. In Figure 16,
the social benefit is also a concave function under the observable, and no information
case and constantly increases for the system revealing server state information only.
Revealing more information to impatient customers helps in increasing the social
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Figure 14. Social benefit versus µ for different information policies with λ = 1.0, φ = 0.5, p = 0.2,
R = 5,C = 1.

Figure 15. Social benefit versus φ for different information policies with λ = 1.0, µ = 1.5, p = 0.2,
R = 5,C = 1.

benefit only when few customers leave the system, see Figure 17. As more customers
leave the system, the server state information policy outperforms other information
policies resulting in higher social benefit for the system. It is observed that disclosing
server state information always helps to increase the social benefit in the unobservable
case. In the observable case, it may be beneficial under some specific situations. For
example, hiding the server state information increases the social benefit when the
service rate is less than 2.5 unit (Figure 14) and also when customers are less impatient
(Figure 17). On the other hand, hiding the server state information is not beneficial for
a congested system (Figure 16) as well as for longer server vacations (Figure 15).
In each experiment, the social benefits in the observable systems are bounded by
the social benefits in the unobservable systems. The social benefit in the server state
information (almost unobservable case) dominates that of the combined queue length
and server state information (fully observable case). This confirms that revealing more
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Figure 16. Social benefit versus λ for different information policies with µ = 2.5, φ = 0.5, p = 0.2,
R = 5,C = 1.

Figure 17. Social benefit versus p for different information policies with λ = 1.0, µ = 1.5, φ = 0.25,
R = 5,C = 1.

information to the impatient customers is not beneficial for the social benefit of the
system as a whole. A social planner has to play an important role in controlling the
availability of appropriate information to the impatient customers.

6. Conclusion

In this paper, we analysed the customers’ equilibrium and optimal social behaviour
in Markovian queues with multiple vacations and synchronized reneging under
fully/almost observable and almost/fully unobservable information cases. We have
developed closed-form expressions of the stationary state probabilities using a
recursive method. The social benefit based on various parameters of the information
level has been examined under the corresponding strategies. The sensitivity analysis of
the equilibrium thresholds in observable cases and equilibrium joining probabilities in
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unobservable cases are carried out by varying several model parameters. The effect
of customers synchronized abandonments on the equilibrium strategies under the
observable and unobservable models is presented. The dominance relation between
the equilibrium thresholds is derived. The presented model, on one hand, can
provide strategic customers with useful insights in decision making under a variety
of information policies, and guide them whether to follow or avoid the crowd. On
the other hand, it can provide useful information on the system manager to get the
maximum benefit out of the impatient customers. A simultaneous study of the balking
and reneging strategies in this problem is more challenging and is left to explore
in future. It would be beneficial to consider enhancement of this methodology for
the study of single/multiple working vacation models with this pattern of binomial
transitions. This work may also be extended to incorporate arbitrarily distributed
service demands or batch-arrival queue with synchronized abandonments.
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