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Abstract

The partially stiff system of ordinary differential equations

ex = An. + By + r,,

y = Cx + Dy + r2

is studied by the methods developed in the earlier papers in this series. Here e is a small
positive parameter, x and y are n- and m-vectors respectively, and A is nonsingular. A
useful basis for the solution space of the homogeneous system is constructed and the
method of variation of parameters is used to obtain useful representations of all
solutions. Sufficient conditions are derived under which the formal approximation

0 = Ax + By + r,,

y = Cx + Dy + r2

is close to the actual solution. It is found that purely imaginary eigenvalues for A require
more stringent requirements for the formal technique to be valid. A brief discussion of
the case when A is singular shows that there are a great number of possibilities requiring
consideration for a general theory. It is suggested that local computation of such cases is
likely to be the most effective weapon for any specific system.

1. Introduction

In a previous paper [2], referred to below as Part I, we have considered the
question of constructing useful forms of a basis for the solution space of the
completely stiff linear system

ex = Ax. (1.1)
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12) Stiff systems of ordinary differential equations. Ill 311

Here A is a continuously differentiable n X n matrix for a set of positive values
of e in a neighbourhood of zero, possessing n differentiable eigenvalue functions
\ v . . . ,\n, not necessarily distinct, and a corresponding continuously differen-
tiable eigenvector basis S = (s,, . . . , sn) such that, on the interval of f-values
under consideration, A has the canonical form

A = SAS-1, (1.2)

where A = diag(A,, . . . , \ , ) .
The limitations of this particular set of assumptions have been discussed at

some length in the reference given above. On any interval for which an invariant
ordering of the real parts of the distinct A, holds, we have shown that there is a
fundamental matrix for (1.1) of the form

{S + o(l)}Z, (1.3)

where

d=ndiag{exp Q, (1.4)

where the lower limit of integration is chosen arbitrarily. In the above, S consists
of appropriately chosen eigenvector functions of A.

In general, there is no such simple basis on intervals where the partial
ordering of eigenvalue functions is not maintained. However, an algebraic
algorithm for connecting the fundamental matrices of the form (1.3) on abutting
intervals was devised, and the resulting structure of the uniform basis obtained
was displayed.

A later paper [3], referred to as Part II, used the basis (1.3) to consider the
circumstances under which boundary value problems for the inhomogeneous
system

ex = Ax + r (1.5)

would have solutions, and to obtain qualitative information about the properties
of such solutions.

These investigations were motivated by a desire to provide a well-founded
theoretical basis for possible numerical packages applicable to the solution of
large order stiff systems of nonlinear ordinary differential equations. Our view-
point has been to suppose that a given numerical package has provided a
candidate approximate solution (in some approximate sense) and then to en-
quire as to when we can be sure that the exact problem has a neighbouring
solution.

Such questions are usually answered in the affirmative by the process of
linearizing the problem about the candidate approximate solution and using an
iterative procedure such as the Contraction Mapping Theorem. However, in [3]
we demonstrated that there do exist problems where the candidate approximate
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solution may be a good approximation to a solution of the problem, but that
more delicate fixed-point theorems may be needed to establish this property.

The assumptions involved in this previous work, that the system under
consideration is completely stiff in the sense of (1.1), are far too restrictive, in
that many systems do not display this property. In this paper we will use the
methods developed so far to extend our results to deal with the partially stiff
homogeneous system

ex = Ax + By, (1.6)

y = Cx + Dy, (1.7)

where x and y are n- and /n-vectors respectively, and A, B, C and D are n X n,
n X m, m X n and m X m matrices respectively, defined on an interval of
/-values J, for each e in some neighbourhood of zero, and having continuity and
differentiability properties to be specified. We will establish the existence of a
basis for the solution space of (1.6) and (1.7) in a form that is suitable for the
description of the qualitative behaviour of solutions of this system. Questions of
obtaining suitable particular integrals of the inhomogeneous counterpart of this,
and of satisfying given boundary conditions, then reduce to problems very
similar to those considered for the completely stiff system, and we merely
indicate how such problems may be tackled. We are able to give a sufficient set
of conditions to ensure that formal asymptotic methods give useful approxima-
tions.

For the partially stiff system (1.6) and (1.7), one might expect that there would
also be similar rapidly varying solutions to those of (1.1), because of the
presence of the terms ex = Ax. Moreover, if the x-component of the solution
exhibits such behaviour, we might reasonably expect a similar behaviour in the
y-component. This becomes clear when we observe that if ^ is a fundamental
solution of ^ = D^f, then

j ' * - i C x (1.8)

satisfies (1.7) for any suitable x. If x exhibits the rapidly varying behaviour
alluded to above, and if the terminals of integration in (1.8) can be chosen
appropriately, the integral may be dominated by the properties of the integrand
at/ .

This suggests that we can generate stiff solutions, that is, solutions whose
general behaviour is that of a function whose derivative is large in comparison
with the value of the function itself, by considering solutions of

ex = Ax + B*f ¥-'Cx. (1.9)
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We show in Section 2 that it is possible to organize the integral in (1.8) in such
a way that the expectations that there are n linearly independent such solutions
are confirmed, at least under assumptions comparable to those of Part I, with
the further important restriction that A should not be singular. The construction
in Section 2 is restricted to intervals on which the real parts of all eigenvalue
functions are one-signed but the results are extended, with some restriction, in
Section 4.

We also might expect the existence of solutions that do not exhibit such
rapidly changing behaviour. The results obtained in Part II indicate that the
solutions of (1.7) with this property look like the solutions of

x = -AxBy (1.10)

for most /-values, so that one might look for solutions resembling those of

y = (D - CA~lB)y. (1.11)

We show that this expectation too is confirmed, by applying the methods that
have proved effective in Parts I and II.

However, there is a major difference in the present case, which limits the
generality of the results obtained. If any of the eigenvalues of A is purely
imaginary for the range of /-values under consideration (and an appropriate
range of e values), the results are establishable only for compact intervals of
integration. The problem is not merely one of the method of approach, for there
are known examples where cumulative small errors arising in formal methods
become significant. Thus this failure of the techniques that have been applied in
this series of papers indicates that very delicate questions are involved, and each
example must be considered on its individual merits.

We close this introduction with a comment regarding the notation to be
adopted. In Parts I and II, we took pains to show that the results obtained are
useful in a context in which the data was defined for a limited set of values of e,
a situation occurring frequently in numerical applications. This was done at the
expense of a good deal of complicated use of language and symbolism. In this
paper, we will revert to the simpler language used more commonly in the
asymptotic analysis of singular perturbation problems, in order that the presen-
tation might be clearer. However, it must be borne in mind that, under the
conditions described above, the results obtained could be restated in the form
adopted in the earlier papers. In particular, we do not need our assumptions to
hold for all e in a neighbourhood of zero, but merely for some (possibly as few
as one) value of e in this neighbourhood.
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2. Hie stiff partial basis

We begin our construction of a basis for the solution space of (1.6) and (1.7)
by constructing a partial basis consisting principally of stiff solutions, as de-
scribed in Section 1. We will term this partial basis, for convenience, the stiff
partial basis, and expect that its behaviour will be largely dominated by the
solution of O.l \

If we let ̂  be the fundamental matrix as defined in (1.8), we see that (1.6) and
(1.7) may be satisfied automatically by any solution x given by

ex = Ax + f *"'Cx, (2.1)

with the corresponding y component being given by (1.8).
Because A will play such a central role in our construction, we briefly state

our assumptions regarding this matrix, on the interval / which we choose, for
definiteness, to be [*0, f,].

ASSUMPTION 1. There exists e e (0, BQ] such that A(t, e) has n linearly indepen-
dent eigenvectors s,(f, e) and corresponding eigenvalues \(t, e), not necessarily
distinct, with both sets of Junctions being continuously differentiable on J.

This assumption gives us the canonical form (1.2) on /which will prove to be
of considerable use.

We now seek solutions of the integrodifferential equation (2.1) that may be
expressed in the form

x = SMZb, (2.2)

where S are the eigenvectors of A, Z is given by (1.4) with

(2.3)

while M is an n X n matrix to be specified and b is an n-vector function to be
determined. Direct substitution of (2.2) into (2.1) gives

b = Z-xM-l[e~\AM - MA) - M -S~lSM]Zb

(2.4)

and thus, on integration, we obtain

b = e, + f'z-lM-l[e-\AM - MA) - M -S~lSM]Zb

+ e"1 fZlMlSlB* f\~lCSMZb, (2.5)
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where the lower terminals of integration are yet to be specified, while e,,
i — 1, 2, . . . , / ! is the usual basis in R". By choosing M to have an appropriate
block-diagonal form (see Part I, Section 3) we may ensure that AM = MX for
given e e (0, e0] and each t &.J.

Following the procedure of Part I, we make the further substitution

/3 = exp(-£,)Zb, (2.6)

for each given i, so that, with the above choice of M, we may write (2.4) as

0 = e, -

+ e-1exp(-f,)Z f'z-lM-lS-lB* J**-lCSM exp(f,)/3. (2.7)

If we denote by the symbol Ij a unit matrix that selects the_/th row of any matrix
P by premultiplication IjP, we may write theyth component of the last term of
(2.7) in the form

^ . (2.8)

Evidently Q, represents a linear map on the Banach space Bt of continuous
vector functions /3(f, e) normed, for each e > 0, by

||0||= max {sup|A(f,e)|}, (2.9)

and it is clear that the last term of (2.7) may be written as the direct sum

(2.io)

To investigate further the properties of these component maps, as well as
those of the second term of (2.7), we need to specify the lower terminals of
integration involved in these. Such a choice may be made under appropriate
assumptions about the properties of the eigenvalues of A on / , given as below.

ASSUMPTION 2. There exists an e G (0, e0] such that, for all t e 7, and all
eigenvalue Junctions \ and A, of A, the zeros of Re \ , Im \ , Re(\ — XJ) and
Im(\ — Xj) on J are finite in number and of finite order, while

(i) either Re \ > 0 or Re \ < 0 or Re \ = 0 on J,
(ii) either Re(\ - \J) > 0 or Re(\ - \j) < 0 or Re(\ - Xy) =0onJ, and
(iii) \, T£ 0 anywhere on J.

These will suffice for the construction of our basis on J. The second has
already been employed in Part I for the construction of the basis to the solution
space of the completely stiff system (1.1). It should also be noted that (iii) really
refers only to real eigenvalues; for the vanishing of a complex eigenvalue would
violate our assumption regarding the s, spanning R" for all t G / .
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With these assumptions, we may define the lower limit of integration in (2.1),
and hence in the inner integral of (2.8) to be T,, where

t0 when Re \ > 0 or Re \ = 0, .
/, when Re \ < 0.

For the second term of (2.7), and hence the outer integral of (2.8), we choose the
lower terminal to be aijy where

= lt0 when Re(\. - A,) > or Re(\ - X,) = 0,

°iJ { tx when Re(\ - \) < 0.

These choices ensure that, in general, the integrals involved are dominated by
the values of the integrand at t in the sense that neighbourhoods of other points
in the range of integration do not contribute to significantly large order.
Moreover, they show that there occur up to four types of iterated integral in the
maps Qj, depending on the properties of the eigenvalues concerned. Because of
the complexity of the analysis involved, we investigate the properties of these
maps below for two choices of T, and ay; the others follow by analogy.

When T, = t0 and a/y = f0, we have

Qjfi = e-'exptf, - £,) fe^-QljAf-'S-'B^ f'irlCSM cxp(Qpduds
J'o J'o

(2.13)

= e-1 exp(S) - S,) /""='{ fS=' eKp(-Sj)*jM-lS-lB*ds)*-lCSM

(2.14)

on a change of the order of integration. Integration-by-parts applied to the inner
integral above now gives

= exp(f, -

X *~lCSM expi&pdu. (2.15)

It is now a straightforward matter to invoke results given in Erdelyi [1] and
the Riemann-Lebesgue lemma to show that, provided V^CSM and
d(kfxIjM~xS~lB'fy)/ ds are respectively bounded and absolutely integrable on J,
with values independent of e, the second term of (2.15) is bounded above by a
term

0(1)11011, (2.16)

for all \ and Â  giving the above choices of T, and atJ. Here, o(l) is a term that
vanishes with e uniformly with repect to t G / .
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Explicit evaluation of the first term of (2.15) gives

A,r1/yM15-15^ f'^CSM exp(?,)0rfu

tf, - £,) f V'exptt, - S,)ljM-lS lBCSMfidu. (2.17)

The second of these may be incorporated into the second term of (2.7) (or, more
accurately, theyth component of this term) while, when Re \ ^ 0 on / , the first
term is bounded by a term of the form of (2.16) under appropriate assumptions
about the integrand. When Re \ = 0, however, this term is bounded only, in
terms of the norm || • ||.

When T, = /0, but atJ = tx, we may write, after interchange of the order of
integration,

0,0 = -e-'exptt, - Sj) f ' i f'"
Ji0 v. Jt

(2.18)

Upon integrating by parts, as applied above, and estimating the integrals
produced, we may show that, in this instance,

-exp(?,. - S,)f

(2.19)

Analogous results hold for the other two choices of T, and otj and, as we have
said, we leave the details to the reader.

The results obtained above imply that (2.7) may be written as

0 = e, + 9110 (2.20)

where the map 91L:. <3&e -» %t is given by

91L0 - 60 - %fl + T0, (2.21)

where

|| rp| | = o(l)||0|| for aU 0 e %, (2.22)

while % and £ are defined by

%P= 0 %,fi and 60 = 0 £yft (2.23)
j j
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with

%P = exp(?,. - £,) f exp(f, - ^IjM^M + (S~lS + A~1S'lBCS)M]fidu

(2.24)

and

[' (2.25)

respectively.
If we parallel the procedure of Part I, and choose M to satisfy

Ma + (S~lS + S-lA-lBCS)aMa - 0, (2.26)

where subscripts a denote the restriction of quantities to the subspace spanned
by eigenvectors corresponding to eigenvalues that are all equal, together with a
nonsingular initial choice of M, we may ensure, by means of Assumption 2, that
9^ = 0, while %/%/c are contractive on %e with contraction parameter o(l) in
the sense of (2.16). Thus 5C2 is contractive on <$>e.

There remains the linear map £ given by (2.25). When Re A, ̂  0, this too is
contractive on ©e, by the choice of oip while it is only bounded when Re \ = 0
on/ .

Combining these results, we may write the equation (2.20) as

fi = e, + 91te, + ffip + 973 (2.27)

where ?T is contractive on *3Je in the sense of (2.16), while & has an integral
representation

f' (2.28)

for matrices U and V depending on the matrices used above. When (3, has no
pure imaginary eigenvalues, & = 0, while it is clear from (2.21) that

ffe, = o(l) (2.29)

uniformly for t e J.
It is clear from (2.28) that, under suitable boundedness assumptions about U

andF,

II#"011 < ('. - to)
N{N\yxm, (2.30)

so that, for N large enough and \t1 — to\ bounded, we may iterate (2.27) to a
point where the right hand side is a contraction on %e (with contraction
parameter dependent on iV). This yields the existence of a unique fixed point to
this right-hand side, and hence a unique solution to (2.27). However, this does
not give us the estimates we desire for /3 — e,, so we proceed as follows.
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On any interval [/0, t0 + A] we may write, for the solution /3 of (2.27) already
constructed, with norms || • ||* defined on this interval,

||0 - e,.||* < o(l) + (o(l) + A)||/3 - e , p , (2-31)

where the o(l) are terms that vanish as e —* 0. This yields

HI - e,|r = 0(1), (2.32)
for any finite A < 1/2, which gives the desired estimate on [IQ, t0 + A]. The
same procedure may now be applied to [t0 + A, tQ + 2A], and thence on to tv

provided t, — t0 is bounded independent of e.
The results obtained so far may now be applied to yield our existence result

for the stiff partial basis for the system (1.6) and (1.7).

THEOREM 1. Let Assumptions 1 and 2 hold, and let B and B, C be absolutely
integrable and bounded respectively, independently of e on J. If any \ has its real
part identically zero, let J be bounded independent of e.

Then there exist n solutions xr and yr of the system (1.6) and (1.7) which are
linearly independent on J for appropriate e G (0, e0], and which are given by

xr = SM exp(Q[er + o(l)], (2.33)

exp(U[er + o(l)], (2.34)

r = 1, 2, . . . , n, where rr is defined by (2.11), ^ is as in (2.1), and the o(l) terms
vanish with e uniformly for t 6E / .

PROOF. Our existence result for the equation (2.20), together with the estimate
(2.32) over all of J, give the result (2.33), when we note (2.2) and (2.6). The
second (2.34) follows directly from (2.1). The linear independence of the set is
inherited from that of the xr.

REMARKS.

1. It is important to note that in the above, we need the Assumption 2(iii).
This in fact ensures that A'1 exists on / ; we will examine the consequences of
relaxing this condition later.

2. The hypotheses of the theorem make no mention of the properties of M, ¥
and A. That such properties do hold is ensured by the definition and construc-
tion of these quantities and is inherited from this.

3. Note that the varied equation for M given by (2.26) means that we have to
select different multiples of the eigenvectors s, of A for this partially stiff system
from that choice adopted for the completely stiff system (1.1). The choice (2.26),
which may be written

M + (S~ S + S~ A~ BCS)aM = 0,
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gives us, on each eigenvalue subspace, the appropriate generalization of the
Liouville result.

4. It is important to note from (2.34) that, under the hypotheses above, the yr

behave somewhat like o(l) exp(fr), that is, they display the stiff behaviour of the
xr, though at a higher order in small terms.

3. Hie nonstiff partial basis

We continue our construction of the basis for the solution space of (1.6) and
(1.7) by considering solutions that we will term nonstiff, and hence a nonstiff
partial basis for this solution space, in the sense that they are largely dominated
by the solution of Ax + By = 0 and y = Cx + Dy.

Given that Assumptions 1 and 2 hold, we may, by exploiting the results of
Part I, write down a particular integral of (1.6) in the form

x = e-lXZJ'z*X-xBy, (3.1)

where

X = S(I + o(l)) (3.2)
uniformly on / , while Z is given by (1.4) for f, given by (2.3). Then (1.7)
becomes

y = Dy + e-lCXzf'zlXlBy, (3.3)

which may be converted to

y = xe, + xJ'x'^A-'By + e-'JTzjV1*-1^], (3.4)

where x is a fundamental matrix satisfying the equation

X = (D - CA~lB)x, (3.5)
and e,, i = n + 1, . . . , n + m, form the usual basis vectors in Rm. As yet, we
have not specified the lower terminal of integration in (3.4).

For each e > 0, the right-hand side of (3.4) represents a bounded linear map
on %e in terms of the norm (2.9). To apply the contraction mapping principle to
this, however, we require improved estimates of this operator norm and, to this
end, we consider the properties of the double integral in (3.4), namely

My = e-l
XJ'x-lCXzfzlX-lBy, (3.6)
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which is also a bounded linear map on ®e. Recalling the procedure adopted in
Section 2, we see that this map may be written as the direct sum of maps A/,.,
where

tsKp(Sj)f ^ ) 1 ^ (3.7)

and Ij is the identity matrix as defined in Section 2. We may now specify the
terminals involved in the integrals of (3.7). We choose the lower terminal in each
case to be juy, where

t0 if Re \j < 0 or Re A, = 0 on / ,
_ (3-8)

/, if Re Xj > 0 on / .

By reversing the order of integration, and integrating by parts in (3.7), we
obtain, for /t, = /„,

'o

7 ' ^ ^ (3.9)/ 7 ^ {
Jt0

Ju «*

where, by Assumption 2, Xj: ¥= 0 on / .
When Re Xj s 0, we may, by a second reversal of integration, show that the

second term in (3.9) is bounded in modulus by a term of the form

*0)lly||. (3-10)
where the o(\) vanishes as e -» 0 uniformly for t E. J. When Re Xj = 0, a similar
result holds by applying the Riemann-Lebesgue lemma to the inner integral.

The first term may be evaluated explicitly to give

J'O

(3.11)

where we have noted the canonical form (1.2), and the result (3.2). The last term
represents a linear map on ®e bounded in modulus by a term of the form of
(3.10).

It is not a difficult matter to show that analogous results hold for /i, = tx. We
thus obtain, on incorporating these results into the equation (3.6), that

y = Xe, + Sy + Ty (3.12)

where T is contractive on %e in the sense of (3.10), while Q is a linear map that
is non-zero only when A has purely imaginary eigenvalues, and is given for such
eigenvalues A, by Cy = ©y C,y where

<B,y = C^Y'exptt,)/ W K ) * ~lBy. (3.13)
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We may now apply a similar construction procedure to (3.12) to that used in
Section 2, to obtain the existence of a unique fixed point y £ ® e , Moreover,
since Gj has the particular form (3.13), the estimation procedure used there may
also be applied here, to give the result that

y = Xe, + o(l). (3.14)

We thus arrive at our existence result for the non-stiff partial basis for the
solution space of (1.6) and (1.7).

THEOREM 2. Let Assumptions 1 and 2 hold, with C and B absolutely integrable
and bounded respectively on J, independently of e. If any \ has its real part
identically zero, let J be bounded independently of e. Then there exist m solutions
xr, yr of (1.6) and (1.7) that are linearly independent on J and which take the form

xr = e-'XZJ'z-'X-'By,, (3.15)

yr = x(e, + o(l)), (3.16)

r = n + 1, . . . , n + m, where er, are the usual basis vectors in Rm, and the o(l)
are terms that vanish with e uniformly on J.

PROOF. The solutions yr have been constructed as above. The xr are given
from (3.1) as

xr = e-'XZJ Z-lX~xByr (3.17)

and application of (3.16) together with (3.2) and (1.2) gives the result (3.15).

4. Application of the constructed basis

The properties of the particular set of solutions constructed in Sections 2 and
3 strongly suggest that these two sets together form a complete basis for the
solution space of (1.6) and (1.7). All that we need to establish is the linear
independence of this (full) set.

Thus, suppose that the solutions were not linearly independent on J. This
implies that there exists a non-trivial pair of constant vectors c, £ R" and
C2 £ Rm (or appropriate complex extensions if A has complex eigenvalues in
conjugate complex pairs), such that

v . . . v r = 0 >
Jl Jn + m J[ ^ J

for all t G. J, where the first n columns of the square matrix are formed from xr

and yr give by (2.33) and (2.34), respectively, and the last m columns are formed
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from the corresponding vectors in (3.15) and (3.16). It thus follows from Sections
2 and 3 that (4.1) is equivalent to

SM(In + o(l)) NX~l

P /„ + oO
= 0, (4.2)

where

and

P =

N

(4.3)

(4.4)

with the appropriate convention regarding the lower terminals of integration.
Explicit expressions for the terms denoted by o(l) are available, at some effort, if
required. We note that, under the general hypotheses adopted in the two
previous sections, N may be algebraically large for small values of e at some
values of I but that P is uniformly 0(1). It suffices to establish linear indepen-
dence of the (n + m) solutions to show that the determinant of the matrix for
which an approximation is given in (4.2) is non-zero, that is,

SM(ln +
det

NX~

We note that

det
SMIn

0

(4.5)

(4.6)

is bounded away from zero for any matrix JV0 whose elements are bounded
independently of e and for such a matrix it will be possible to use continuity
arguments to establish (4.5) provided one can select a value of / for which V̂ is
bounded independently of e. For then the solutions would be linearly indepen-
dent throughout the interval. Where A has no purely imaginary eigenvalues, the
Laplace method [1] may be applied to N. It suffices to choose a value of t, not
an end-point (indeed, strictly, bounded away from an end-value by an amount
independent of e) and not a zero of Re \ , for any A,, and then, for such t,
estimates are readily obtained in the form

P = eCZ~lXZ + o(e) (4.7)

and

N = -A'lBX + o(l), (4-8)
respectively, when X has analogous structure to (1.3). In this case, the linear
independence is established.
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When purely imaginary eigenvalues are involved, the situation is somewhat
more complex, and a much more careful scrutiny of (4.4) is required. We
observe that integrals of the form

exp(-ir,/e)f'h exp(/r,/e) (4.9)

have significant contributions from both end-points, as well as from any points
of stationary phase in [f0, t{\. Moreover, unlike the case of the Laplace integral,
these contributions persist throughout all [to, tx] and thus cannot be avoided by
a device like that used to establish (4.7) and (4.8). The asymptotic methods
described in Erdelyi [1] may be used to show that these contributions are
algebraically small in e, if h has absolutely integrable derivatives, with such
integrals being bounded independently of e.

The significance of these results for the expressions N and P is that the
integrals involving Im and /„ alone, and corresponding to purely imaginary
eigenvalues \ , may be treated by these methods, to obtain appropriate esti-
mates, under appropriately stronger assumptions regarding A, B and C. More-
over, because points of stationary phase for exp $r, with \ purely imaginary, he
outside the assumptions by which the results of Sections 2 and 3 have been
obtained, such estimates yield a bounded result for the first integral in (4.4).

However, the terms appearing as o(l) in (4.3) and (4.4) cannot be treated by
such methods as they stand because their derivatives are, in general, large.
Considerably more knowledge is needed about the structure of these terms for,
in the context of integrals like (4.9), they may be oscillatory, involving a term of
the form exp(-/ij/e) that cancels the exp(ii)/e) and renders the analysis inap-
propriate.

A careful scrutiny of the equations (2.15) shows that

= O(e), (4.10)

if A, B and D are differentiable with absolutely integrable derivatives, such
integrals being bounded independently of e. The other two integrals occurring
can be shown to be O(e) if the corresponding image of e, is O(e). Consideration
of the circumstances under which this may be true forces us to accept an
exceptional case, which arises when two distinct (imaginary) eigenvalue func-
tions take equal values at some point in the range (and thus induce a point of
stationary phase in an integral analogous to (4.9)). Otherwise, the necessary
estimates can be obtained, to give N bounded values at e —* 0.

Similar considerations apply to the operators described by equation (3.9). We
do not propose to investigate this exceptional case further here, since we note
that at points where distinct imaginary eigenvalue functions meet, our original
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assumptions were already restrictive, so that such points, in a general treatment,

need a discussion more general than our present investigation. Thus we are led

to the following result.

THEOREM 3. Let Assumptions 1, 2 and the hypotheses of Theorems 1 and 2 hold
on J for some e £ (0, e0], where e0 is appropriately small. If there are any purely
imaginary eigenvalue functions of A, let

(i) no distinct pair of such eigenvalue functions be equal , or equal to any
complex eigenvalue function at any point of J and

(ii) A, B and D have absolutely integrable derivatives on J, with such integrals
bounded independently of e.

Then the solutions described by Theorems 1 and 2 form a complete basis for the
solution space of the system (1.6) and (1.7).

PROOF. The hypotheses given above are sufficient to make N bounded as
e -* 0 and allow us to use the continuity argument described earlier to deduce
linear independence on J.

REMARKS.

1. It is worth noting that the above hypotheses are excessive and in fact it may
be that careful examination of the estimates of N and P would reveal that the
smallness of P would cancel the unboundedness of N to enable us to deduce
that the determinant of (4.1) was non-zero for small e.

2. It can also be seen that, under the assumptions above, the stiff solution
corresponding to the purely imaginary eigenvalue function \r has

x, = {s, + O(e)}exp(W = Xr exp(U (4-11)

while the corresponding yr is

yr = */'*~lCXrr exptt,)- (4.12)
J'o

Except in a n e-neighbourhood of /0, in which y r rises from zero to jo in smoothly

on, the value of the integral can be obtained from

which may be evaluated by asymptotic means, with contributions coming from
both /0 and t. The contribution from t0 leads to a term e¥, (constant), which
could be subtracted out by using a multiple of the non-stiff solutions con-
structed in Section 3. The difference between such solutions and e^c must be
included in the O(e) term in Xr, which serves to emphasize the fact that the basis
we have constructed, while mirroring exponential changes, is not really a
clear-cut separation of stiff and non-stiff solutions.
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Similarly, if we examine a stiff solution corresponding to an eigenvalue
function having positive real part, we have

xr = (sr + o(l)}exp(U (4.13)

while the corresponding yr, given by

Vr = * rvcxrexPa)
J'o

may be expressed in the form

yr = {-CA-% + o(l)}expttr) (4.14)
save near t = t0.

We turn now to the inhomogeneous system

ex = Ax + By + r,, (4.15)

y = Cx + Dy + r2, (4.16)
where r, and r2 are prescribed absolutely integrable functions. Let So denote the
matrix previously denoted by SM. Then the previous results give as a fundamen-
tal matrix

/„ + O(e) -A~*B + 0(e)

eCA~l + O(e2) Im + O(e)

which we shall write as

S0Z 0

\S0Z 0

[

Gl o x
The method of variation of parameters leads to solutions of the form

G
S0Z 0

0 X

- lo - l ft

0 x"'

and we note that the terminals may be chosen so that for almost all / the
integrals involving Z may be estimated locally. Approximate expresssions for G
may then be used to generate approximations for the particular solution so
generated.

More instructive however is to note that the calculations may be interpreted in
a number of ways. Thus let y denote the w-vector portion of the solution
generated in this way and x the corresponding n-vector. Then the process of
satisfying (4.15) is equivalent to writing x as GxS0Zy and writing eGxS^Zy = By
+ r, so that

x = e-lGxSQz{ J'z-lSolGtl(By + r,) + constant!
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and choosing the terminals appropriately. The Laplace estimation then gives,
save near end-points,

x = -A~\By + r,) + O(e) or Ax + By + r, = O(e).

A similar argument leads to the fact that y satisfies

y = -C{A'xBy + r,} + £>y + r2 + O(e).

Thus we are led to the following result.

THEOREM 4. Let no eigenvalue function of A be purely imaginary on J. Then, for
t bounded, independent of e, away from all points of J where we have vanishing real
parts or where two different eigenvalue functions have equal real parts, the
solutions of the reduced system

AXQ + By0 + r, = 0, (4.17)

y0 = Cxo + Dy0 + r2 (4.18)

differ from those of the full system (4.15) and (4.16) by terms which are uniformly

small.

REMARK. Note that we have excluded purely imaginary eigenvalues, since they
do not yield localized stiff solutions. In straightforward cases of purely imagin-
ary eigenvalues we expect similar results to apply, but we would draw attention
to the fact that the result is vitally dependent on the behaviour, not merely the
estimates, of integrals of the form

where h may involve terms like e*1 exfX-J,), so that caution is required with the
heuristic solutions when purely imaginary eigenvalues occur.

We close this section by considering the implications of attempting to extend
our basis across the common point of two intervals / , and J2 on which the basic
hypotheses necessary for the constructions of Sections 2 and 3 to proceed hold.
Such end-points will be characterized as points at which either Re \ = 0 for
some / (but Im \ ^ 0), or there is a change in the ordering of the real parts of
the eigenvalue function \ of A.

As we have already demonstrated in Part I, the process by which we may join
bases on two abutting intervals is a purely algebraic one, depending only on the
construction of a suitable transformation matrix that continuously transforms
one set of end-values into another. The continuation properties of differential
equations then give the desired extension and the only point at which the fact
that e is small is needed occurs in the construction of such a matrix.
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We may exploit the process used in Part I by considering the non-stiff
solutions of Section 3 as stiff solutions having zero eigenvalues. In this way, the
original system (1.6) and (1.7) may be considered as a completely stiff system,
and the question of continuing the basis from / , = [t0, /,] into J2 = [tlt t2] may
be considered by the methods adopted for Section 5 of Part I. The crossing set
of that reference may be augmented in the present case by appending those
eigenvalue functions whose real parts become zero at.', and which are increasing
on [/0, / , ] . With this interpretation the results established in Part I extend to
partially stiff systems.

5. When A is singular

Throughout the previous sections we have found it necessary to assume that A
is non-singular in order to make the analysis go. In particular, we have been
unable to develop even the stiff partial basis in Section 2 even though the case A
singular presented no problems at all for the completely stiff system discussed in
Part 1. This is perhaps not surprising in view of the fact that, near a zero of an
eigenvalue function \ , , the corresponding eigen-space Ra might be considered as
locally describing a non-stiff component of the system rather than a stiff one. If
this is an appropriate view, then the failure may not be associated with the
methods adopted in this series of papers but may represent an inherent difficulty
in partially stiff systems. We therefore choose to examine informally the plausi-
ble behaviour of solutions as a means of gaining some understanding of the
difficulties which would have to be overcome. We do not attempt to prove our
assertions but merely to establish that there are an extreme number of possible
variations and that an analytic approach aimed at covering all cases would
appear doomed to failure. If this view is accepted, then the practical alternative
for such systems is to use sufficiently small numerical integration step sizes
locally near singular points of A so that there the system need not be considered
to be stiff. We hope here to demonstrate that there is little real alternative for
large order systems for which numerical integration techniques are required.

Consider, as a first illustration, a system for which A is singular at the right
hand end of an interval which we shall label (0, 1) for convenience. Then our
results apply on the interval (0, /0), where t0 is bounded away from 1 indepen-
dent of e. Let us examine what happens if we attempt to use the method of
Section 2 by letting t0 tend formally to 1. The specific eigenvalue function \ ,
which vanishes at 1 can vary in both its multiplicity and the order of its zero,
and the issue could be further complicated by a failure of 5 to have rank n, a
possibility we have avoided throughout this series of papers. If one examines
equation (2.26) one recognizes that the point / = 1 is a singular point for the
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differential equation fixing the appropriate eigenfunction representation SM. In
fact, singularities of A in equation (2.26) have a similar effect to a local failure of
a non-singular differentiable matrix S. If the zero of the eigenvalue fnction ^ is
simple, then t — 1 is a regular singular point and the behaviour of Ma in the
neighbourhood of 1 can exhibit all the variety of behaviour associated with such
points. It is possible that M can be smooth and regular but it can also be
unbounded or singular. For irregular singular points, associated with a higher
order zero of \ , even more complex behaviour is possible. We content ourselves
with looking at cases where M so defined varies as (1 — ty for some ft. If we
now examine equation (2.24), we see that, if

S-*BCS = (S~lBCS)a,

there is no difficulty introduced there by the singularity of A. More generally,
one is faced by considering integrals of the form

s)-\l - s)"ds,

where, moreover, if /x is not small, there will be additional strings of terms as
only the dominant terms have been included. We merely note that in general
such integrals become logarithmically large as / —* 1 so that approach cannot be
expected to work. The calculation shows however that significant effects are
beginning to enter as / -» 1 before the method has failed.

We believe however that the nature of the results which will apply can be seen
by following the heuristic argument underlying our derivation of the integral
equations used. Thus, following the argument leading to equation (1.9), we
might argue that a stiff solution might reasonably be expected to be given by

ex = Ax + B*f'*-lCx. (5.1)

For simplicity, let us assume that the eigenvalue function \ is simple and is
positive on (0, 1), and that scales are chosen so that Aa(l) = - 1 . Then the best
which can happen is that changes in the eigenvalue function do not matter so
that, if we take zs,(l) as being the significant component, the awkward solution
might behave like

a = -(1 - i)z + hf'z, (5.2)

where h is derived from BC{\). In the best of circumstances this might serve as a
locally dominant operator for the most interesting stiff solution. Standard
heuristic arguments suggest that there will be a range of values of (1 — /) of
order e'^2 in which a balance is to be expected between all three terms in
equation (5.2).
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Thus we introduce a new variable T = e~1/2(l — /) and we have

dz

Here we have used the fact that the point / = 1 is a regular point of the original
system, if not of the transformed asymptotic system, to claim that the integral to
/ = 1 has meaning. A differentiation then yields

For large values of T, one solution of this equation behaves essentially as
exp(-T2/2), which is the appropriate representation of exp(e~1/o \») scaled to its
value at t = 1. The behaviour of the solution near T = 0 is dependent on the
value of h and an indication can be seen if the magnitude of h is moderately
large. Thus, if h is positive and reasonably large, the solution can be expected to
oscillate for moderate values of r while, if it is negative and large, the solution is
likely to be monotone for moderate values of T.

If both m and n were 1 we would expect that we could make the argument
rigorous but, as the size of the system increased, we must expect that much more
complex behaviour is likely to occur. It is for these reasons that we believe that
an attempt to develop a general asymptotic theory by analytic means is inap-
propriate. It is possible that generating integral equations along the lines of (1.9)
and (2.5)may prove an effective means of developing local means of numerical
integration near singular points of A. We would further suggest that a similar
approach using fixed bases may also be the appropriate technique for dealing
with the neighbourhoods of points where there is local failure of the eigenvectors
to span R".
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