A Determinantal Expansion for a Class of Definite Integral
Part 5. Recurrence Relations
By L. R. Shenton
(Received 17th December, 1954).

1. We develop here the recurrence relations for the generalised
C.F.’s introduced in Part 3 (Shenton! 1956). In the main the
discussion will be limited to second order C.F.’s, but results for higher
orders will be given when these are not complicated.

We shall give three forms of recurrence relation, one involving
recurrent determinants, and another corresponding to the even and odd
parts of a Stieltjes C.F. In addition we shall show how to write down
directly the recurrence relations for a second order C.F. being given
the first order C.F. Several numerical examples are given in illus-
tration.

2.0. We consider the C.F. * corresponding’’? to a determined
Stieltjes moment problem, and write

.F(z)___-\‘dxlx(x)zﬁ b_2 IQ b, 250, )
Ox-i-z z+ 14241 +
and for the ““ contracted ”’ form

F(z) = ay a @y (2)

z4+c¢,—z4+cp—24+¢ — ...

where @y = boy bos, 1, §>0; ag = by,

* * *

Cg = bogq + boyy s> 1; b, =b,, 8>1, b, = 0.

L We shall refer to the previous four papers on this subject as $4, $2, §3, and $4,
respectively.

2 Stieltjes preferred to write the *‘ corresponding ” C.¥. in the form

1111
ay? +a, 4 agz 4 a, + ...

F(z) =

a
in which case the Stieltjes moment problem is determined if Za; diverges, the a’s being
1

positive.
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The st convergent of (1) will be written x, (2)/w, (z), and that of
the even part xo, (2)/we, (2), where xo(2) = 0, xi(2) = by, wy (2) = 1,
w,(z) = z. In the notation of §3 the expression (2) becomes

. K, 1 (B a;)
F(z) =1.i.s. 00201 0 U (3)
( ) s—>w K, (ﬂo: ao)
where 8, = 2 + ¢, .1, a, = /@, , ; and K, (B, ao) i8 a continuant deter-
minant of order s with elements B, B;, ... along the diagonal through
(1, 1) and elements ag, a,, ... along the diagonals through (2, 1) and

(1, 2).
The second order C.F. can be written?
¢ d¢ (Z) 3 Ks—l(')’la B]: al)
F(z,, = = l.1.5. @ (4a)
(21 z:) J(x + 24) (35 + z2) g=>w 0 K.e ()’0- BO’ aO)
0
where ay=/(As .1 2), (4b)

Ba‘—" (p + Cc+1+cs+2)\/as+1:
y@ = q +Pcs+1 +Cf-§-l+ a;* +ax+1s

*
L]

a* =a, s> 0, a* =0,

0
(x+2)(@+2)=22+pr+g>0,22=0.

* Similarly the third order C.F. may be expressed as

t d . K, (8, ¥4 Bys @
Flew 220 = | oy (e ) = L% O K oy ey
where ’
a; =14/ (@518 28 _3),
Bi=(pP+ ¢ 1+ CGooat+cCora) V(g 10, 0), (5b)

Ye={q+DP (s 1751 2) +'cf+2+Ca+2ca+1+c§"‘,_1+ag;2+as+1+a':. }\/a3+1,
Sy=r4gcs1tpe; +ed  FPla 1t al ) +ag 10, 220,16 41

* *
+2as ¢ 1+e, c(’
a* =a, >0, ay =0,

(x+z)@+2)(r+z)=2+pr2fqgzrt+r>02=>0.

1 Ks (05 Bo» @9) is a determinaxt of order s with elements v,, v;, .... along the

diagonal through (1, 1), By, B;.... along the diagonals through (2, 1) and (1, 2),
and a4, @), ... along the diagonals through (3, 1) and (1, 3). The determinant
K (vo, Bos ay)is symmetric with elements in five diagonals only, and may be regarded
as a form of g2neralised continuant. The extension of the notation is obvious.
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2.1 To develop the numerators and denominators of (4a) and
(5a) in terms of recurrent determinants we require the following
lemma,

v f
Lemma. IfK, <h,, g; fl1 ) is a determinant of order s with elements
1’71

fis fos .. along the diagonal through (1, 3), g,, g,, ... along the diagonal
through (1, 2), hy, hy, ... along the diagonal through (1, 1) and so on,
then?

R I\,_l(gl’ f Ka—l hngl' f:

/ f kg, ’fz l ,f

KJ-2(glv ! >K.,(90» ! 1 >= 92
}?’Z’gzl’le hl’ gl;fll

T—I2 K, (g ,f >
=6f ! 0 l’ l’f
The proof is straightforward. For consider K,(go,{:’ . 1)
1 gl’ 1 *

Delete the first and last rows and columns, and use the remaining
array as & pivot.? The result then follows. We now deduce that

8- 2
I i Koo (%0 1)
=0 N R4

fl > K ( fl
K3‘1<gl’h219121f21 e g”h‘zvg;: ;)

) (.
K‘, ’ K - 90,
<g0 hl'gi’f} T hng}vﬁ)
Applying (6) to the numerator and denominator of (4a) we find
F (2, 2) = L i.s. aow -

s =>m l Uss Vs+1' ’

A determinant of the form K.;( g“’h{u o~ f,') of order s, with elements f,, f,, ...

along the first superdiagonal, g, 4., ... along the principal diagonal, &,, k., ... along the
first subdiagonal, and so on, will be referred to as a recurrent determinant, or simply a
recurrent. By expanding a recurrent of this form by its last row, it will be seen that it
follows a fourth order recurrence relation. Similarly a recurrent with n subdiagonals
may be shown to follow a recurrence relation of order n + 1.

2 See for example A. C. Aitken, Determinants and Matrices (fourth edition,
Edinburgh, 1946,), pp. 48-49.
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¥*
where UJ=K‘ (ﬁ*l,a-l )
~ " 0, Bo» a0
V":KJ— ( )ao )
! BO Y1y ,Blaal
W,=K,_ 2<Bn o >
Y2 B2a Qg
ﬂfzﬁs,af=a,,s>0; 'Btl=0' ail:l'

and the recurrents U,, V,, W, follow the relation

Yy=P\ - 2?/&—1’—73—20'3*;3?/3—2'*'50—3(13—3aa—4y8—-3_ as—aa,z_ 4%s—5Ys- 0 (8)

with Uy=1, U,=0, U,=0, s<0,
V,=1, V, =8, V=10, s<1,
W, =1, W,= B, W,=0, s<2?2

the values of a,, B,, v, being given in (4b).

The st approximant to F (z, z,) depends upon the six terms
Uy, Usi1, Voo Vo1, Wy, W, 1, each of which follows a recurrence
relation of order four. Hence to advance the approximation process
one stage, it is necessary to evaluate a value of each of U,, V, W,,
and this will involve twelve calculations. We shall show in a later
section that | V,, W, .| and | U,, ¥,,: | (or equivalent expressions)
follow recurrence relations of order five, so that there is perhaps an
economy to be gained by this method.

A decreasing sequence of upper bounds may be derived from the
expression.

o m) =@ —4p) " ag— @— 197"
0

and it is not difficult to show that the difference between the sth
approximations that arise from (9) and (4a) is

(@ + 3p)* di (x)
24+ pxr+q

(9)

_.l 2y —~1 H a
(g — ip?) an % (10)
K, (yo, Bos 29)

it being assumed that ¢ — 1p?> 0.

2.2 For third order C.F’s we require the following extension of
the lemma:
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) 1(1) (]
gor (i oy |7 T o
R T VAR LU LN
where Q:)‘) = Ka (g/bf,\ . 1 1 1
A+1? Wi hA+2’ 9riw fA+2 ’
0 = K, <h wh )
M Wty kl-l-l’ 91“: f/ll+1 :

The proof depends on pivotal condensation methods and closely
follows that of the lemma. Each determinant in the compound
determinant in (11) is replaced by a compound determinant, using
identities similar to (6). For example

-1 (0) (o)
I f. 0= Q“' Q" -1 ’
- * 0) (1) :
A=0 Qs ) Q!

We find in this way the relation

-2 s—1

G Tk, (i, e O )
A=0

7’1;
- 1 1 1
A= .1 }Ll »9; ’f1

(1) (0) (=1
Qs- 2 Qs-l QJ

Q. ¢ ey | (12)
a () (-1
QB Qs+1 Qs +2
it being assumed that f; =+ 0, A= —~1,0,1, ..., s — 1.

Returning now to (5a) we derive from (12) an expansion for a
third order C.F. in terms of recurrent determinants, namely

= dy ()
F (@, 2 2) _j (x + 2) (& + z) (T+2)

. . I Us_ly Vsa W,4!4.1 l
o l;-lésrn‘ o | Xx—ls V.n ]‘V8+1 l (13)

- al
where G U,=K,_. (Bl' Y25 835 Y35 Bas aa) ’

)
V‘=K3-_1(ﬁo, >’

Y1, 32, Y2 32’ ag

W . K (B* ail >
s \ - Yos 817 Y1 Bl’ ay ’

*
X, =K, 1< et )3
+\Bos ‘)’i 1 S0s Yoo Bo» @
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(”) af = Qg Br =Bu Yj‘- = Yy 8§ = 0;
ai1= at2= 1’ Bfl": Bt‘g: 0’ ‘yt 1= 0’
a,, Bs, ¥s O, being given in (5b);

(iii) the recurrénts U,, V,, W,, X, follow

— ¥ * *
ys—B,_g ys—l_‘y,_ g Og_ 3 ys—2+83—2 Qg3 Az 4 ys- 3—¥Ys—-3%s—3 03—40-.:-5!/:—4

F B3G50 Ys5 — B3 Oy 0«;"_5 A5 Cs_7 Yg—
with U,=1, U, =B, U,=0, s<2,
V,=1, Vy= B, V,=0, s<1,
W, =1, W,= o0, W,=0, s<0,
X_,=1, X, =0, X, =0, s<—1.

It will be seen that each of the elements U,, V,, W,, X, occurring
in the st convergent of a third order C.F. follows a sixth order re-
currence relation, so that in setting up approximations to F (z,, z,, z;)
we have to perform in general twenty-four calculations to obtain each
new approximation. Similarly for a C.F. of order n associated with
the function F (2, z,, ..., 2,), each approximation consists of the
ratio of two nth order determinants, an element of either determinant
consisting of a recurrent which satisfies a recurrence relation of order
2n. In general then each new approximation to F (z, z,, ..., 2,) will
involve 2n (n 4+ 1) calculations, followed by the evaluation of two nt
order determinants.! We shall consider these more general C.F.’s and
the associated recurrence relations in a forthcoming paper.

3. A Fifth Order Recurrence Relation.

3.1 We now establish a recurrence relation for the symmetric
determinant K, (k,, g,, f;). Expand K, by its last row and column.

I A referee has indicated to me that the recurrence relation followed by these two-

2
nth order determinants will be of order<:) in general, or a little less owing to the

symmetry involved. Thus for a third order C.F. thc numerator and denominator of
the sth convergent will very likely satisfy a recurrence relation of order mineteen.
Even if this recurrence could be found it might well be too complicated to be of much
value, and the method of compound recurrent determinants seems to have a distinct
advantage for C.F.’s of order three or more.
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Then
K,=h K, ,—g]_, Ki—2+4 29, foce K* ,— 2 by 1 K,
+f32—2ff-3 Koo (14)
s=4,6,...,

where ' K* =

fs—?
ga—l
j:v ~1 gs

and K,_, is the matrix consisting of the elements of K,_, (Pys 915 fr)-
For example,

hy N f
* hl 9 . *
K; = ) K3 = % hy 9.
fi 9.
e gs
But expanding K¥ by its last row, we have
K, =g, K,_.1 — fi_ K} 1, s=3,4, .... (15)

Eliminating K* from (14) and (15), we find
gs—-2 KJ = (hJ Js—2 _fs—2 gs—1> K3_1
—(g.s—l 95—2 - ha—l fJ—2> (g.!—-l K -2 gs—Qfs—f.’ Ka—3>

—ff_3fs_z<h,_2 et = frms ot Koca 4 frma S22 91 Ko (10
8=3’4,,,,, K_2=K_1=0,K0=1.

The recurrence relation (16) satisfied by K, (%, ¢y, f1) is of order five.

By a slight modification of the method employed here it may be

shown that the recurrence relation for the asymmetric determinant

K, <h1 ,gi’ ff11>is of order six, but we do not require it in the present
1’71
context.
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There are three interesting special cases:
(a) f; = 0, when (16) reduces to

Ka = hs Ke—l - 92

s§—1

Ks—?:

a8 we should expect since K, (h,, g,, 0) is now a ‘ continuant” type
of determinant.
(b) g; = 0, when (16) becomes
Ks = ha K.s—l - h:-lff_“,Ks—s +f32_2f‘v2_3 Ks—b'

which is the recurrence relation for the product of two ** continuants,”
and indeed !

Koy (b, 0, f1) = K, (B, f7) Ko (RS™, 13%),
K23+1 (hys O’fl) = K’8+1 (h:’ f1*) K, (k;*,f;*),
where R¥=ho 1,  fr=f2-1,
hs** = h23, fs** = f?x'
We shall treat the third example of reducibility in § 4, for it turns

out to have several applications.

3.2 Now applying (16) to (4a) we may write the second order

C.F. as
F (2, 2,) = lis. a, ﬁf, (17)
s> Vs
where K, ()'o, ﬁo’ ao) = Vs 7];]:1 a;, Ks—l (')/11 ﬁp al) = Uy AHI a -

and u,, v, follow the recurrence

03181_3.7/3':(')’s—-lsi_:’_as—lﬁ‘:_z)ys—l_(ﬁ;_23;_3—‘)’s-—2)(ﬁ‘:_2y8—2"'3:_3?/3—3)
—(yes B = @s B )Yt a_ B Ly ., (18)

where ,B:\/ a,,.1 =B, and a;, B, vs a; are given in (4b), the initial

values being
uy =0, a, u, =1, ) Ay Uy =y, u, =0, §<<0;

- - = 2 -
vy =1, T, ¥, = Vg, @ a3V =yoy1 — B, v,=0, s<0.

! The result has been noted by T. Muir, Proc. Edinburgh Math. Soc. ii (1884), 16-18,
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3.3 As an illustration consider the ¢“J”’ fraction expansion, con-
vergent for z > 0.

Jl = _ 1 & a4 o (19)
ox+z z4+i—24t—24+%f—-2431-..0

where a, = s/ (16s* — 4), from which we deduce the second order C.F.
expansion .

1

j _dz_ —2-1arc tan 21 = Lis. ¢ ,2% 0, (20)
0 %% 422 s=> Vs

where %, and v, follow

@ Ys = (2*+a;+1) ys-1 + (P41t 2—F) (ys—o—Ys_3)
- (Zz+as-—3+i) Ys—4 + a;_3 Ys-5, 8=23,4, ..., (21)

and the initial values are
u,=0, <0, uy=0, %, =12, 1, =3 (602%4 24);
v,=0, §<0, vo=1, ;=4 (322+1), v,==3 (60224424 3). (21a)
For example, using (21) it will be found that
(3u3=16 (5252t 41022 4-45),
| 3vs=16 (525204 58524+ 1352° + 3),
3u,=132,30025+ 153,300z + 41,30022+ 1,800,
13v4=132,300z8+ 197,40028+80,640244-8,10022+ 75.

The expansion indicated in (20)-(21) is not the same (apart from the
approximations for s = 0, 1) as the even part of the hypergeometric C.F.

LB b by b
22+ 1 4224+ 1 224+ ...,

[

I

2z~! arctan z—1 =

n

where b, = 5%/ (4s% — 1).

4. A Reducible Case of the Fifth Order Recurrence Relation.

4.1 The recurrence relation (16) reduces to a fourth order one
when the C.F. in (2) takes on the special form

Fzy=% %4 % @ . (22)
Z2—2 — 2 — 22— -

Proceeding formally at first and writing K,., (y,, Bi o) = T¥
K, (vos Bos ap) = T,, we find that the recurrence for 7* and 7', becomes

https://doi.org/10.1017/50013091500014280 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500014280

176 L. R. SEENTON

Y= (q + a,) Ys—1+ a5y (¢ — Pz + o1+ a,.2) Ys—2
~ Q105 2(q — PP+ Ay 1 Ay o)Yeg — A5y Qo y_3(q+ as_3) Ys—sy

+a,_4 a’s—2af_3 g4 Ys—3, 8 =23, 4,...,
(23)
where g = 2, 2,, p = 2, + 2,, T,=0,s8<0, Tr =0,5<0.

Now (23) may be written

(Da (y) — Qs q)s—l (?/) =0, (24)
where d),(y) = Yy — (q + a, — as..l) Ysor — a’s-—l(za’a—l - Pz + 2q) Ys—2
(25)

— Qs Q2 (q -+ Ag_o — as-l) Ys—3 + Ay a’f_2 Ag—3 Ys--4a-
But it is easily verified that ®, (T) = 0. Hence from (25)
T,=@+a—a_ )T+ a3 (20, —p2+29) T,

(26)
+ as-185_2(9 + a,_o — a‘x—l) T 3—a,, a'f_2 3T,y
§8=2,3, ...,
with T,=1, Ty=q + a, T,=0,8<0.
Similarly it will be found that
V. (T*) —a,_, ¥, y(T*) =0, (27)
s-1
where Y(T*)=D(T*) — 2 I a,
A=0
But since ¥,(7'*) = 0, it follows that the recurrence for T is
Tj(. = (q + a, — as—l)T:e_l"*’ As 1 (2a’s—l_pz+2q) Tig
=1
+a.¢—la‘s—2 (q+as—2—as—l) Ts*_s—asu-laf_zax—:& T;*_4 +2 ;H Axy
1= 0

§=2,3,..., (28)

s

with T* = ay T* =0,s<0.

4.2 Returning to §2 we observe thatin (1) b,>0,s=1,2, ....
Hence c, cannot be zero for a Stieltjes C.F. Ve may ask the question
then as to how the value of ¢, in (22) must be restricted so that for
certain values of z; and z, it will be true to assert that

Fo) = Fe) _ pi TV
2y — 21 $—2x 3
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We can give at this stage only a partial answer to this question,
First we refer to the theory of the Hamburger moment problem. Let
the expansion in descending powers of z of F(z) be

o B p
F(z) z+z?+;54+“' (29)
and assume that
a, >0, §=0,1,2, ..., (30)
2 #2—”1/2)1 = w0 .
n=1

Then there exists a unique bounded non-decreasing function ¢(x) in
the interval (—w, ) such that? Ixz”dz/:(x) = pzm,sz"“d{,b(x) = 0,
-0 -

All we have to do now is to justify the Parseval expansion for

f{f(x)}w' (2) where f(z) = {(x+2) (z+z)},

- w

= "2y +t) (2Ht) d(),

the argument being similar to that used in §2 of $4. It turns out
then, using the theorem of M. Riesz (Shohat and Tamarkin, loc. cit.,
p. 62) regarding the solution of a determined Hamburger moment

problem, that under the conditions in (30) we have
(a1 {z1=x1+iy1,
=|—"——=Lis L . (31)

F(ZD 22) j(x+z1) (x+z2) s T3 22=x1_1y1’

provided in addition (z4-2,) (x+2,)>0 for all real x. Again using
(34) and (35) of S4 we can set up a decreasing sequence of upper
bounds, the difference between corresponding st approzimants being

I al/(yfl’_l’,), where y, = Imz.
A=0
Secondly it may be possible to justify (31) if we are given a
b
definite integral for the C.F. in (22) of the formj il/;(_z: and can

justify the application of Parseval’s theorem as in §B of 2. 1t would

! See for example Shohat, J. A. and Tamarkin, J.D., The Problem of Moments, p. 5
and p. 19 (New York : American Mathematical Society, 1943).
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be of some interest to know what are the weakest restrictions on the
a’s in (22) to justify a statement similar to (31).

4.2. We now give several examples in illustration.
Example 1. Let
F(z) = tan (327Y),

so that pizn = 2B, .1 (282 —1)/(2n+2)1,
where B, is a Bernoulli number and B, = 1/6, B, = 1/30 etc. Using
Lambert’s C.F.! for F(z) we have a,=1, a,=(16s2—4)"1, s=1, 2,...
Moreover it is easily verified that p,;f" ~1/m, so that (30) is satisfied.
Hence with the appropriate value of a, in (26) and (28) we have

sinh y! s {yl +0, (32)

- - L. = Li.s ¢ — ;
% (cosh y! 4 cos xll) ,]_;o T, 2 =2+ @:1/1
* Zy = Xy — 1Y;.
where 2} (27 + y?) =21, y; (2% +y?)=y,. In particular if 2,=3, y,=4
then AT* = 398, 499, 385, 800, AT, = 19, 896, 118, 681,110 where A~?
=a,a;a,a,a, giving the lower bound 0-020, 029, 001, 243, 260, and
using the corresponding upper bound it turns out that the error in
this cannot exceed 16 x 10~%5.
1n a similar way, taking F(z) to be 22—cot ($2~'), so that a,=1/6,
= [(48 4 2) (45 +6)]"1, s =1, 2,...., it may be shown that
H 1
i S S W
y1 (cosh y — cos z}) T,
In each case the recurrence relation for T, is (26) and that for 7% is
(28) with the appropriate value of ¢,, s=0,1, 2, ....

» Y+ 0. (33)

Example 2. It has been indicated by Stieltjes 2 that
T sech(3nz)dx 1 12 2¢ 32

1 | sechigmzjox 1 17 2 3°

ZI x+ 2 PR L O (34a)

-—

© g 1
%}—xcosech (2nx)dx=!. 12 23 34 ,Im (2) + 0. (34b)
z+2 z2— 2 — 2 — 2z —...

It may be shown that the Hamburger moment problem is determined
in each case ?, and it follows that for z; =2, + iy, 2, =2, — iy, y, + 0

1 See for example Perron, O., Die Lehre von den Kettenbriichen, p. 354,
(Berlin, 1913).

2 Correspondance d’ Hermite et de Stieltjes, p. 360 (Paris, 1905).

3 Compare also Wall, H. S., Continued Fractions, p. 366, Example 2 (New York,
1948) We may also recall that the Hamburger moment problem

pn = Ix"e-blldx, y=|z|9%a>1,5>0,n=0,1, 2,..is determined.

-
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the second order C.F.’s indicated in (31) converge to the corresponding
value of F(z,, z,).

@K

Ezample 3. Let F(z) = jg(x)dx

x4z’

where g(z) = e‘*f/\/(21r), with Im (2) + 0, so that

=1 1 2 3 . (35)
ZR—=2— 22— 2—...
From P. 3, §B of $2 we can conclude that the second order C.F. con-
verges for %, + 0, and indeed

T glwds T
Jm(:c-i—xl)z-i-yf: s Ty

where
Ty =@+ +1) Tra+2(6—1) (s — 1+42 —a2)I7,
+E -1 —-2)@+y-1)T —(—1)(s—22(s—-3)T}*,
+2(s — 1)1, §=2,3,..., (36

and the recurrence for 7', is exactly the same except that the factorial
term is omitted. The initial values are

’I’f=0,s<1, Tf:l

T,=0,8<0, Ty=1, T1=xf+yf+l.

A numerical example will be found in §C 4 of S2.

5. A Recurrence Relation with Even and Odd Parts.

6.1 For the C.F. given in (1) there are recurrence relations
corresponding to the even and odd parts, namely

Woy(2) = Way_1(2) + b2y Was—2(2),
(37)

w23+1(2) = 2Wos(2) + bggi1 Wae—1(2).
The question naturally arises as to whether there is a similar structure
for higher order C.F.’s. We give here the result for a second order C.F.
Starting with the form of the denominator of (4a) given in (30) of $4,
we have, assuming for the moment z, + z,,
K (yo, Bo» 20) = | Way(2)), Woss2(22) | + (22 — 24), (38)

= k2a,
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say. Using (37) we readily find that

kgs = Yoy + basy1 bog kge 2, (39)
where Ys = W(2,)W,(25).
Similarly if
kg1 = | wosa(21), Wasya(2e) | + (22— 2), (40)
then oy 1 = Yos—1 + Doy bos_ 1k, —s. (41)
But Yoo = Yzo—1 + Do Yaums + bae Oy, (42)
where O2s—1 = Wos—1 (21) Wasp (2) + Was—1 (22) Was—2 (7))

= (2, + 25) Yas—2 + bas_y [Wy_alz)was_3(2:) + way_o(22)was _5(21)]-
Hence Oss-1 = (21 + 22)¥Y25—2 + 2bos1Y2s—3 + Doy 18255023,
and so from (42) we have
Yos — Yoo — b2 yoy_0 = bas(21+22)420 -2 + 262005 12,3
+ b23b2s—1(?/23-2~yzs~3—b§s_2?/2s—4),
from which, using (39) and (41), we deduce
ko=l 1 + bog(zy + 2o + bosy1 + boy -+ boy 1) loss o
— bogbos _1b2s (21 + 25 + bay - bag_y + bay_5)kss_y
— bybas 107 5 bys_gkoe s + b23b23—1b§s_2b23_3b23_4k23_6. (43)

5.2 Similarly from (37) it follows that

Yasi1 = %1%l + bzs+1yzs—1 + bos 11Dy, (44)
where Dy, == 2,Wo5(21 ) Was—1(2) + 25W,5(25) Was—1(21)
= (21 +22)Yos -1+ Ba[21Wes _o(21)wse 1 (20) F 2505 _s(20)ws, _1(2))],
or Dy, = (2, + 220251 + 221250505 _2 + boghos 1@y _s. (45)
Thus
Yosp1 = %1%l + b§s+1y23—1 4 bosy1(z) 4 2,)Y0e—1 + 22,2505, 4 1bosyes o
+ bas1bos(Yos—1 — 2129y 052 — b?z.s—l?/zs—s)» (46)

and so by (39) and (41) it appears that
k2s+1 = lezk‘.’s + b‘.’s+1(z1 + (23 + b23+2 +‘ b23+1 + bi’s)k‘,’.y_l
— b2s+lb2sb2~x—l(zl + 2z, 4 st+1 + bos + bog_1)ko, 3 (47)
- b2s+1b23b‘.’s—1b2s—2z2z1k23—4 + b23+1b2sb§s—1b23—2b23—3k2s—5-

In the derivation of the recurrence formule (43) and (47) it has
been assumed that s is large enough to avoid initial value idiosyn-
crasies. Allowance being made for these we finally have the theorem :
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If the Stieltjes moment problem is determined and

_ Tdb@) by b, by by by b

F(2) 02 20 Dl
0x+z=z+l+z+l+z+l+...
* %
then 1. 1. s. ,Ifz_' — lim I‘i —_ w, (48)
s=>n Ko s—>= k, 2y — 2

where
(i) k* and k, follow, for s =2, 3, ...,
Was 1 =22Wo_g + Ggs_1Wys_3 — Pos1Was-5 — 2122Y2s-1Was -6 T Oos. 1Was -7
Wog = Wae_1 + QpWps_o — Bst'?.a—-t — VoW 5 + O20W2s 6
(i) &y =0, kf =k} = by, k* =0, <0,
ko =1, by = 2,25, ky = 2425 + bo(2s + 22 + b3 + by), k, = 0, $<0,
(lll) a, = bz + 2, + b:+1 4+ by + by 1), Bs = b,b, 20,1,
Ys = brba-lbs—zbs—sy 9, = babl~1bf—2b8—3b8—4’
(iv) (@ + z;) (x + z,)>0fort x> 0.

It may be established that the ¢ odd’ part k¥ _,/k;,_, arises from the
second order C.F. associated with the integral in the expression

el = Fal) _y, Tx(m + 2 + 2)dY(x)

2 — % (x 4+ 2z)®@ + 29)
where zdi(x ) is taken as the weight function. The ‘odd’ part of the
sequence, unlike that of a Stieltjes C.F., does not in general provide a
set of decreasing upper bounds, but there is a remarkable property
which we now consider. - :

5.2 We shall prove the following identities :

) (1)
— B2.r+1 U?s+l U23+2

bos 1 — 1o = P ,=0,1,2, ... (49a)
28 'S4
D)4 (1)
tyy — by = — B%q?f'-”?ﬁl 8=1,2, ... (49b)
25 -1 fb2g
where
@ Waze) — ws(z)) 8 *
s = —22 ___"‘“Zl ’ Bs = 4£[1 b,:, t, = ka /k‘,,

1 It has been assumed throughout that z,+z,, butit is easily shown that the theorem
still holds if z, =z, and (x +%,)°> O for x > 0.
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Introducing the expressions appearing in (30) and (47) of $4 for ¢,
we have (z; + z,)

bas o(2y — 29)3kakeos 1 (bosn — tog) (50)
= I Wesr1(2y), w23+2(22) l X, — {wazul(zz)wz.s+2(zl)

— Zzw2c+1(zl)w2:+2(zz)} Y,
where

X, = néss1(z1, 22) + 22€0,,1(20, 21) — (21 + 22) Bago,
Y,=2B,,, — Nas.1(215 2g) — Nasy1(2es 1),

§as1(21s 22) = Xoog1(22)Wasy2(21) — Xoog2(21)Wari1(22),

Nos+1(21y Z2) = X2s51(21)Wesy2(20) — Xeo+2(21)Was 41(25)-
Now since 75a,41(2, 2) = Ba,,0, the right member of (50) becomes

(2g — 2 Woy 11(21)Was 4 2(22) pos 1 (215 22) + Waeya(2)Wogy ol 2y )ph2s 1205 21)},

where Mgy 1(21s 20) = Xaeoo(2)Woy1(22) — Xooy1(22)Wasr2(21) + Basyo,
and from which (49a) follows after simplification.! The proof of

(49b) is similar, We now deduce the expansion, valid under the
conditions of the theorem in (48),

w (—1Y+1B. ULy W

Flz, 2) = % (=1 T L

s=1 s-1%s

This is the third type of expansion for F(z, 2z,), the other two, given
in earlier parts, being

(51)

o Bs, U(i) 2
Flz,2) = 2 ——2%%2_&&, (52)
$=0 2siv2s.4 2
© (0) [#)]
by B Usy Us, (53)
2129 s=1 ]Cr_)s_] k?s.g_l
where Ui(‘) =" - + (z2—2).

o ; w:(:l) wa(z‘.’)

The expansions in (51)-(53) bear a striking resemblance to those for a
first order C.F., namely

® 1) s+l
Py = & ST -~ (54)
s=1 W, 1%,
= 5 _&&L (55)
s=0 Wos Way_ 2
sy B (56)

s=1 Wae_1Wa
where w, = w,(z).

1 The results in (49) still hold if z, =z, and we merely introduce the confluent
forms of ks and T/
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Under the conditions set down in §2, (55) gives an increasing
sequence (56) a decreasing sequence and (54) an enveloping sequence!,
provided zis real and positive. Correspondingly (52) gives an increasing
sequence and (53) a converging sequence when z, and 2, are complex
conjugates with Im 2z, + 0. We can go a little further than this. Suppose
the interval (0, o ) is “ reducible,” i.e., it may reduce to a sub-interval
(a, b) if Y(x)=y(a) for z<a, a=0, and (z)=y(b) for z>b, b >a. Now
using the fact that the zeros of w,(z) are distinct and lie entirely
within 2 (— b, — a) and recalling that the degrees of the highest terms
in wy,(x) and wg, 1(x) are s and s + 1 respectively, we easily see that 3

US,)H >0, Ui?H >0, for z; <z, < —b,
(67a)
U(:,,) <0, U(:,.)N <0,
Uils)>0, for z,= 2, > —a. (57b)
Hence for 2, <z, < — b it follows from (49) that {{,} is an increasing
sequence, whereas this is not necessarily so for z,>2, > —a. Again

suppose z,> 0,2, < — b butz,> | 2, | . Then U is clearly positive.
But it is known (see $1, (18)) that

b 9
-‘. (@ + 21) (% + 25) ¢ () dp(x) = Biyia(z, — )2 k?sk‘.’s-}—?; (58)

where {g,(z)}is an orthogonal system with respect to the weight
function (x + 2,) (% 4 z,) df(z). We deduce from (58), since k, = I,
the inequalities for the even denominators

k4> 0, kyi2 <0, fzz >0
(59)
by <0, kyps> 0. L, < — o
The result given for the odd denominators may be proved in a similar
way. Hence {t,} is a decreasing sequence for z,>0, 2,<~ b, z,> | 7 | .

Lastly suppose 2, and z,>0. Then U"> 0, U’> 0, and so from (52)
and (53) {t,} is an enveloping sequence. A summary of the various
possibilities appears in Table 1.

! ie. s, < F <s, , wheres, is the sum of the first  terms of the series.
 Exceptionally, w,, ,; (x) always has a zero » = 0.

3 It is assumed now that z,, z, are entirely real.

https://doi.org/10.1017/50013091500014280 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500014280

184 L. R. SHENTON
TABLE 1.
NATURE OF SERIES FOR SECOND ORDER C.F.
SERIES
Arguments (51) (62) l (53)
7 = Z,, Im(z) + 0. C I C
H< —b,zy<<—b. I I I
2,>0, 20 < —b, = |2 | . D D D
7;>0,2,>0, E I D

C = Converges, D = Decreases, I = Increases, ¥ = Envelopes.

6. Numerical Illustrations.

F(z)=l 1 1 l

Example 1. 24142z +14...°

1 [t/ (42~ — 1) dx
E;jo x4z ’
for z > 0.

The second order C.F. for F(z, z) = {zv/ (22 + 42)} "}, 2> 0,

is given by lim ¢, where
S=>w

ky =1,k =1, by =22 ky =224 22 4 2,
and k] , k, follow
Wos1 = 22Wgy 5 + (22 -+ 3)wos 5 — (22 + 3)wo, 5 — 2P0, g + Wiy 17,
Woe=Wgs 14 (22+ 3)Wes -2 — (224 3)Wa, - s —Was _ 5 + Was s, §=2,3,...,
kf=0,s<0, k, =0, 8<0.

From Table 1 the sequence {{,;} is enveloping. In particular with z=1
the limit of the convergents is 1/4/5 and the first twenty are shown in

Table 2
TABLE 2.
8 ' P : k, t 8 k k, 2,
1)1 | 1.0 11 10866 24276 |0-4476
2 | 1) 5 02 12 28416 63565 |0-4470
3 6, 10|06 13 74431 166405 |0-447288
¢ 1 ‘ 30 [0-37 | 14 194821 435665 |0-447181
5. 36l 7afod |15 510096 | 1140574 |0-447227
6 199 (043 | 16 | 1335395 | 2986074 |0-447208
7 235: 515 (0-456 | 17 | 3496170 | 7817630 |0-447216
8| 600 1355|0443 | 18 | 9153025 | 20466835 |0-4472125
9 | 1590, 3540 [0-449 | 19 | 23963005 | 53582855 |0-4472140
IOI 4140 ' 9276 |0-4463| 20 | 62735880 | 140281751 |0-4472134
| R ———  ]0-4472136
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A
+l4z4+14..0
__l_r*\/{xm—x)}dx A>0
T 27, z(x 4+ 2) T 2> 0

Ezample 2. F(z2) = 1
. z

With A = } we consider F(v/2, —1/2) = lim ¢,
s> =

where Ic:e = X, /4%, k, = Y,/4’, and the recurrence for X, and Y, is

Wag. 1 = — 8wy, .2 + 3wa, -5 — 3wy, 5 + 8w, _g + wo,_ -,

Woy = 4035 _1 - SWoy 5 — 3Wys_ g — 4Wys_5 + Wy, g, §=2.3,...,
with

X, =4,X,=16,Y,=1,Y,=—8,Y,=—30,

X,=0,s<0, Y,=0,5<0.

The sequence { — t,} steadily increases to } {1/(2 + 1v/2) — /(2 — v/2)},
and a few values are stated in Table 3.

TABLE 3.
s —t, s | —1,
1; 05 8 0-541186
2| 053 9 0.541193
3! 0537 10 0-541195
4 | 0-5396 11 0-5411958
5 ' 0-5408 12 0-54119602
6 ! 0-5411 13 0-54119608
7 0-54116 o 0-54119610

Example 3. From

3]

at+2 3 a4+ 3

Flzp=1 @ 1 atl 2 3
241424 1 +24+ 1 424+ 1 +...

e~ %zt g

=—1j—— a>0,2>0,
I'(a) z+2z
0

we derive the C.F. for F(iz, — ¢z) which we write

1 Fe-zxe-ldx .
Q“”=Pmﬂ e ks, 2+ 0,
0

where k;* and %, follow
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Wos_1 = 22Wy_z + (8 — 1) (2a + 38 — 4)w,,_,4
—(—=1)(s—2)(a+s—2)(a+ 3s —5)wy_s
—{(s—1)(s—2)a+38—2)(a+ s — 3)22wy_,
+(s—1)(s—2)*(s—3)(a+s8—2)(a + 8 — 3)wy_1,

Was = Wae-1+ (@ + 8 — 1) (@ + 35 — 2)wy, _»
—(s—1(@a+s—1)(a+s—2)(2a + 35 — 4) wy,_,

—(s—=1)(s—2)(a+s—1)(a -+ s — 2)wy_s
F+—1)(—2)(a+s—1)(a+s—2)2(a+s— 3wy

§=2,3, ...,

with

ke =0,k =ks =1,kg=1,k =22k =2 + a(a + 1);

k¥ =0,k =0 for s<O0.

The sequence {t,} is increasing and {f,,,} is convergent.
the coefficients in the recurrence relations for ®(1, 1) are set out in
Table 4, and they are to be read off from the penultimate row

upwards.

Thus, suppose we have found the values of k,

s =1, 2, 3 and 4; then from the column for s = 5 we see that

ky = 1.ky + 14k; + 0.k — 20.k;, — 4k, + 0.k _,, and similarly for k:‘ .

TABLE 4.

RECURRENCE COEFFICIENTS FOR ®(1, 1).

In particular

for

| ol 24
| 0] —4!—12
0|0 —8|—20|—84
olo o] of o
204, 10| 14/ 24
E 11 1
s|2|3l 4] 5| 6]

72| 432 864 .
—36! —72|—144"

——144;——360;—-528

o, o ol

30 44 52
1 1] 1

S I

| 9 l

7

2880 '

4800 | 12000 18000

—240| —400| —600| —900
—1040 ' —1400| —2400! —3060
0 0 0 0

70 80 102 114

1 1 1 1

10 11 12 13

A sequence of decreasing upper bounds is made available from
220(1,2) =1— 20 (3, 2)

using the appropriate second order C.T. arising from

‘-'I>(2?~,z)=1

3 1 4 2 5

3

6

4 7

4l dz+ldz4ldz 4l dz414..."

The corresponding multipliers in the recurrence formulae are, when
z, = 1, 2z, = — 1, those in Table 5.
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TABLE 5.
RECURRENCE COEFFICIENTS FOR O (3, 1).

i 480, 240 | 360 2160 | 15120 | 10080 47040 33600 | 120960

| —24| —40| —120| —180, —360 | —504| —840 —1120 —1680 | —2160

96| —56| —440 —300 | —1260 —936 | —2856 | —2240 —5600 —4560 | — 9936

ol 0 0 0 0 0 0 0 0 0

12 98| 22| 50 42 78 68| 112| 100 152, 138] 198
1 1 1 1! 11 1 1 1 1 1
2 ¢ 5| 6 st 9] 10 1| 12, 13 14

Proceeding in this way we are led to the approximations given in
Table 6, which also includes similar ones for ®(1, 2).

TABLE 6.

UPPER AND LOWER BOUNDS FOR @¥(1, 1) and ® (1, 2).

(1, 1) f (1, 2)
8 (L) (2) s (1) )

4 052 0-74 4.7 0196 0-205
8| 0612 0653 | 8| 01992 | 0-1998
12| 06199 06284| 12| 019931 | 0-19954
16| 06200 06227) 16| 0-19946| 0-19953
20| 06204 | 0-6217| 20| 019950 | 0-19952

24| 0-6209 | 0-6216

(1) and (2) refer to lower and upper bounds respectively.

It will be noticed that the rate of convergence for ®(1, 1) is rather slow,
and that after 24 terms we can only assert that 0-6209<®(1,1)<0-6216.
For ®(1, 2) the situation is better and twenty terms give accuracy in
the fourth decimal place. Of course we could determine another
set of upper bounds using (10), merely adding s! s!/{z%ks,} to t,,:
however, there seems to be little improvement introduced in this way.
According to Ser (1938) the values of the integrals are @(1, 1)=0-62145,
®(1, 2) = 0-199510.

7. Conclusion.

We intend to develop on another occasion the expansion of
generalised C.F.’s using the compound determinants of § 2, each
element of these determinants being a recurrent. We shall give two
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types of recurrence formulae, and show that the evaluation of the
convergents of a generalised C.F. of any order can be made a practical-

proposition.
I would like to put on record my appreciation of some stimulating

remarks, and criticisms, of a referee.
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