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ABSTRACT

For estimating the shape parameter of Paretian excess claims, certain
Bayesian estimators, which are closely related to the Hill estimator, have
been suggested in the insurance literature. It turns out that these estimators
may have a poor performance - just as the Hill estimator - if a certain
location parameter is unequal to zero in the Paretian modeling. In an
alternative formulation this means that a scale parameter is unequal to 1.
Thus, it suggests itself to add the scale parameter in the modeling and to deal
with Bayesian estimators of the shape and scale parameters in a full Paretian
model. These estimators will be applied to fire and motor reinsurance data.
The performance of these estimators will be illustrated by means of Monte
Carlo simulations.
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1. INTRODUCTION

We deal with an excess-of-loss reinsurance cover for the excess claims z over
a certain priority u. First, let us assume that the normalized excess claims
yt = z/u and their arrival times /, up to time T can be distributionally
described by a Paretian distribution function

Fa(y) = \-(l+yya,y>0, (1)

with unknown shape parameter a > 0, and by a homogeneous Poisson
process with unknown intensity A > 0. Keep in mind that the mean and,
respectively, the variance of a Paretian distribution does not exist if a < 1
and a < 2.
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Given the data (t],y\), ..., (tk,)>k), the maximum likelihood estimate
(MLE) of (A, a) is

Hereby, a is the Hill estimator (in the original paper by Hill (1975) a random
threshold, namely the /rth largest order statistics, is utilized instead of a fixed
threshold u). One obtains an unbiased estimator of a (cf. Rytgaard, 1990)
with minimal variance (cf. Schnieper, 1993) if a is replaced by

k- 1

Another early reference to the Hill estimator, applied to excess claims, is
Reiss (1989).

Next, Bayesian estimators of A and a are defined for independent gamma
priors. We merely deal with Bayesian estimators with respect to the
quadratic loss function. Therefore, these estimators are expectations of
posterior distributions. For the general background of Bayesian estimation
we refer to the books by Hartigan (1983) and Klugman (1992).

The gamma densities iprtC and ips^ with shape parameters r, s and
reciprocal scale parameters c, d are taken as priors for A and a. Recall that

A,c(x) = —- (cx)r^ exp(-ex), x > 0.

The mean, variance and coefficient of variation (that is the standard
deviation divided by the mean) are r/c, r/c2 and r~'/2. The mode is equal to
(r — \)/c for r > 1 and equal to zero, otherwise.

The Bayesian estimates of A and a are

(cf. Hill (1975), Rytgaard (1990), Schnieper (1993) and Hesselager (1993)
and the literature cited therein). It is apparent that the estimators in (2) and
(3) are asymptotically equivalent as k tends to infinity. Also, these estimators
are identical if we formally take r = s = c = d=0 which corresponds to
the use of improper priors with densities l/x.

Next, we study fire and motor reinsurance data in that context. These
case studies will be continued in Section 4 after the preparations made in the
Sections 2 and 3.

Case Study 1 (Fire Reinsurance Data). The claim sizes in Table 1 were
extensively investigated by Schnieper (1993) and further discussed in Reiss
and Thomas (1997). The original claim sizes are detrended, indexed and

https://doi.org/10.2143/AST.29.2.504620 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504620


A NEW CLASS OF BAYESIAN ESTIMATORS IN PARETIAN EXCESS-OF-LOSS REINSURANCE 3 4 1

made anonymous. Our attention will be focused again on the estimation of
the shape parameter a for a Paretian modeling.

TABLE 1

CLAIMS SIZES OVER A PRIORITY OK U = 22.0 MILLION NKr FROM 1983 TO 1992.

Year Claim size Year Claim size

1983
1984

1986

1987

1988
1989

42.719
105.860
29.172
22.654
61.992
35.000
26.891
25.590
24.130

1990

1992

23.208

37.772

34.126

27.990

53.472

36.269

34.088

25.907

Applying the Hill estimator, the value a = 2.219 is obtained by Schnieper.
As noted in Reiss and Thomas (1997), an application of the MLE,
implemented in Xtremes, for the generalized Pareto model (see Section 2)
yields an estimate a = 3.9. We remark that the MLE in the Xtremes
program is numerically evaluated with the moment estimator taken as the
initial value. The visual insight, gained from mean excess functions, speaks
in favor of the later estimate. Thus, the estimated upper tail of the claim size
distribution is less heavy than found by Schnieper. A related remark holds
with respect to the collective claim degree distribution with a gamma prior as
presented in Schnieper (1993). This should also have some impact on the
choice of the prior for the shape parameter a.

The estimates of the shape parameter a given in the next example will be
confirmed to some extent by the investigations in the subsequent sections.

Case Study 2 (Motor Reinsurance Data). These claim size data are taken
from Rytgaard (1990). The reinsurer has access to claim sizes exceeding
u = 1.5 millions over a period of five years. This data set was further
investigated by Hesselager (1993).
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TABLE 2

CLAIMS SIZES OVER U = 1.5 MILLIONS DURING FIVE YEARS.

Year

1

Claim size

2.495

2.120

2.095

1.700

Year

2

Claim size

1.650

1.985

1.810

1.625

Year

3

Claim size

3.215

2.105

1.765

1.715

Year

5

Claim size

19.180

1.915

1.790

1.755

It is mentioned by Rytgaard that "For fire losses, we will usually expect an a
near 1.5 - for motor liability an a perhaps near 2.5". The Hill estimate and a
certain linear credibility estimate of a are 2.314 and 2.496. Hesselager
specifies a gamma prior for a with parameters s = 11.1 and d = 5.6 and
obtains a Bayesian estimate 2.24 of a.

In the subsequent section, we suggest to include a scale parameter a > 0
in (1) and to compute Bayesian estimates of A, a and a.

It is well known that the Hill estimator is still consistent in the extended
model, yet this estimator is inaccurate for larger parameters a (see, e.g.,
Reiss and Thomas (1997), pages 120 and 149). Because of the close
relationship between the estimators in (2) and (3) one may conjecture that
this remark is also relevant for the Bayesian estimator a of a.

2. INCLUDING A SCALE PARAMETER IN THE PARETIAN MODELING

OF EXCESSES

Our statistical model for normalized excess claims y = zju over the priority u
consists of Pareto dfs

Fa^{y) = \-{\+yl(T)-a,y>^ (4)

with shape and scale parameters a, a > 0.
Next, we describe in detail the relationship between the scale parameter a

and the location and scale parameters /i and 77 of an initial Paretian tail.
Assume that the actual claim size df F(x) is close to a Pareto df of the form

Wa^ix) = 1 - 0 ^ \ , x > M + 77, (5)

in the upper tail (that is, for all values x exceeding a higher priority
u> pL + rj). Then, the exceedance df
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is close to W$ (x) = Wa^u-^x) for x > u. If one deals with normalized
excesses y = z'fii = (x - u)/u instead of exceedances x, one arrives at a df Fa%a

with a scale parameter

( 7 = 1 — fl/u

as mentioned in (4). This argument also reveals why the Hill estimator -
being the MLE for the submodel with a = 1 - is consistent within the full
model defined in (4) when the priority u goes to infinity as the sample size
increases.

The parametrization in (4) is similar to the parametrization taken for the
generalized Pareto family. The standard generalized Pareto dfs are given by

W7(x) = 1 - (1 + 7*)~1/7, 1 + 7* > 0, (6)

with Pareto and certain beta dfs when 7 > 0 and 7 < 0, and the standard
exponential df as a limiting case when 7 goes to zero. In (4) we have
a = I/7 > 0 and the factor 7 is omitted. We refer to Falk et al. (1993),
McNeil (1997), Embrechts et al. (1997) and Reiss and Thomas (1997) for
more details about the generalized Pareto family.

Case Studies 1 and 2 (Continued). For the data sets presented in Section 1,
the MLE for the generalized Pareto model attains a value within the present
submodel of Pareto distributions. The MLE attains the values a = 3.9,
a = 2.13 in Study 1 and a = 1.6, a = 0.48 in Study 2.

It becomes apparent why there can be a greater discrepancy between the
Hill estimate and the MLE in the generalized Pareto model: the larger actual
scale parameter puts more weight on the upper tail of the Pareto df. If such a
Pareto df is estimated, yet a = 1 is kept fixed in the modeling, then the
heavier weight in the tail due to the larger actual a must be compensated by
a smaller estimated shape parameter.

The performance of the Hill estimator and the MLE in the generalized
Pareto model may be characterized in the following manner: whereas the
Hill estimator and related estimators have an excellent performance if a = 1,
they may have a large bias otherwise. On the other hand, the MLE in the
generalized Pareto model has a smaller bias if a ^ 1, yet always a larger
variance. Therefore, it is desirable to make the Bayesian estimation principle
applicable to the full Paretian model for excesses.

We make some further remarks about the Bayesian modeling in the
Paretian framework. Arnold and Press (1989) consider Paretian dfs of the
form Ga,a — 1 — (x/a)~a, x > a. Thus, the additional parameter a is the
lower endpoint of the support of the df and the nature of the modeling
becomes completely different from ours. Bayesian inference within the
generalized Pareto model is also discussed in Pickands (1994).
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3. BAYESIAN ESTIMATORS IN THE FULL PARETIAN MODEL

Given the pairs of excess times and excesses (t\,y\), ..., (tk,yk), one may
deduce (e.g., from Theorem 3.1.1 in Reiss (1993), where densities are
established in a point process framework) that the likelihood function for
our joint model of Poisson times with intensity A and Paretian marks under
parameters a and a is determined by

L(X,a,r) ex (\a/a

Here, oc expresses that both sides are proportional.
The Bayesian estimators of A, a and a are denned for independent priors

with gamma densities Vv a n ^ Vv a s priors for A and a and another density
p as prior for a. The posterior density is

h{X,a,a) oc L(X, a, a)ipr^(X)ipS:d(a)p(a).

Letr1 = r + k, c1 = c+T, s1 = s + k, and d'{a) = d + Y,i<k l o s ( l +WCT)- I n

addition, let p be the probability density such that

p(a) oc

Check that

h(X,a,a) = {)

One recognizes again the well-known fact that the posterior for A is
independent of those pertaining to a and a, yet there is a dependence
between the posteriors of a and a. The joint density i's',di(a){a)p{(J) of a a n d
a is represented by the marginal density p with respect to a and the
conditional density Vv,rf'(<r) °f a g i v e n a- The conditional density is again a
gamma density. This representation considerably simplifies the further
computations and, also, gives some insight in the relation between the shape
and scale parameters. We see no possibility to define a conjugate prior for a
and a as it was done for A and a.
Check that the Bayesian estimates of A, a and a are

\* r + k

f
a* = / ap(a)da.
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We see that the Bayesian estimator of a is just the estimator in (3), if the
prior distribution - and, thus, also the posterior - is a point measure with
mass equal to one at a = 1.

Gamma priors were chosen for the parameters A and a in the restricted
model because they possess the nice property of being conjugate priors. This
property still holds in the full model in so far that the conditional posterior
for a is again a gamma distribution. Such a natural choice seems not to exist
for the scale parameter a.

After some Monte Carlo simulations for small sample sizes, we decided
to take reciprocal gamma distributions instead of gamma distributions as
priors p for a. We remark that this is identical to taking gamma priors for
the reciprocal scale parameter r = 1 /a and estimating the functional
parameter T(T) = 1/r.

Notice that a random variable X has a reciprocal gamma density

^(x/bril+a)eM-b/x), x>0, ' (8)

with shape and scale parameters a, b > 0, if 1/Xhas the gamma density ^
A prominent example of a reciprocal gamma density is the sum-stable Levy
density with index a = 1/2. The mean, variance and coefficient of variation
are b/(a - 1), b2/((a - \f(a - 2)) and ( a - 2 ) " 1 / 2 , if a > 1 and a > 2,
respectively. The mode is equal to b/(a+ 1).

If the hyperparameters a and b are not estimated from the data, then it
can be plausible to choose these parameters such that ^)aj, is centered around
a = 1. In our applications, we take a different centering because there is a
greater deviation between the value a = 1, suggested by asymptotic
considerations, and the value obtained by the MLE in the generalized
Pareto model. The choice of the centering influences the Bayesian estimation
to some greater extent if this method is applied to data sets of smaller sizes.

4. APPLICATIONS AND SIMULATIONS

To give a first insight, we simulate the Hill estimator under Paretian samples
of size k = 20. The distributions of the Hill estimator are represented by
kernel densities based on 4000 simulated data. The Paretian data are
generated according to the distribution Fa „ in (4) with parameters a = 4 and
(7 = 0.5, 1, 2.

One recognizes the unfavorable performance of the Hill estimator if a
deviates from 1. This property also becomes apparent from the fact that the
Hill estimator is not invariant under a scale parameter. We remark that the
performance of the Hill estimator improves for smaller shape parameters a.
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Fig. 1. Simulated densities of Hill estimators under Paretian data with k = 20, a - 4, a = 2 (dotted), a = 1

(solid) and a = 0.5 (dashed).

If a= 1, then the distribution of the Hill estimator is nicely centered
around the true shape parameter a = 4. Otherwise, there is a stronger
deviation from this parameter. There exist numerous research papers about
the Hill estimator presumably because of the simple analytical structure of
this estimator. Yet, one should carefully control the statistical modeling
when this estimator is applied to real problems.

In the following case study, we also estimate the net premium

Xau
a- 1 (9)

for the excesses over the priority u for the next period. For that purpose, we
plug in the empirical estimator - also being the MLE - for the density A, and
the Bayesian estimators for a and a. Other important functional parameters
of this kind would be, e.g., the J"-year initial reserve (as introduced in Reiss
and Thomas (1997), Section 9.4) for a reserve (risk) process.

Case Study 1 (Continued). Corresponding to the choice of hyperparameters
in Schnieper (1993), we firstly take s = 30 and c = 16. Then, the Bayesian
estimator for a in the restricted model (1) has the value a = 1.99. Yet as
mentioned before, the collective distribution of claim degrees, as given in
Schnieper (1993), indicates shape parameters centered around 4, if the
evaluation is done in the full Paretian model (4). Therefore, we choose a
gamma prior for a with parameters s = 4 and d = 1. Thus, the prior has the
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mean 4. We remark that the median of this prior distribution is about 3.7.
The variance and coefficient of variation of magnitudes 4 and 1/2 reflect the
greater uncertainty in the choice of the prior for a.

There is a greater deviation between the mean, median and mode of the
chosen priors for a and, therefore, we provide all three values in the
following two tables. The medians are numerically evaluated. The estimated
intensity is A = 1.7 which is the average number of excesses in each year.

In the first table, the hyperparameters a and b of the reciprocal gamma
prior for a are chosen such that the mean is equal to 2 which is close to the
value 2.13 of the MLE of a.

TABLE 3

PARAMETERS a, b, MEAN, MEDIAN AND VARIANCE OF RECIPROCAL GAMMA PRIOR; BAYESIAN ESTIMATES
ft* AND <T*, ESTIMATED NET PREMIUM (IN MILLIONS) BASED ON a * AND (T*.

a-= 2,

a = 3,

a = 4,

b

b

b

= 2

= 4

= 6

Mean

2
2

2

Median

1.2

1.5

1.6

Mode

2/3

1

6/5

Variance

00

4
2

a*

3.47

3.59

3.65

a*

1.84

1.92

1.96

Net

premium

27.8

27.7

27.6

In the second table, the centering of the prior for a is done by means of the
median. We take hyperparameters a and b so that the median of the prior is
equal to 2.

TABLE 4

PARAMETERS a, b, MEAN, MEDIAN AND VARIANCE OP RECIPROCAL GAMMA PRIOR; BAYESIAN ESTIMATES a*
A N D I T * , ESTIMATED N E T P R E M I U M (IN MILLIONS) BASED ON a* A N D IT*.

a = 2, b

a = 3, h

a = 4, ft

= 3

= 5

= 7

.35

.34

.32

Mean

3.4

2.7

2.4

Median

2

2

2

Mode

1.1

1.3

1.5

Variance

oo

7.2

3.0

a*

3.93

3.94

3.93

a*

2.22

2.21

2.20

Net

premium

28.4

28.1

27.9

There seems to be a greater stability in the estimated values if the centering
of the prior is done by the median. Particularly, the values a* in Table 4
correspond to those of the MLE in the generalized Pareto model.

The estimated net premiums correspond to the estimated net premium
27.23 based on the MLE in the generalized Pareto model. If one takes the
Hill estimate a = 2.219 and a — 1, the estimated net premium is 30.7. Thus,
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one gets a reasonable estimate of the net premium although the estimated
parameters are inaccurate (the smaller estimate of a is compensated to some
extent by the smaller value a = 1).

Our Bayesian analysis confirms that of Hesselager (1993) to some extent.
This is related to the fact that, as indicated before, the Hill estimator
becomes more accurate for smaller actual shape parameters.

Case Study 2 (Continued). Hesselager (1993) takes a gamma prior for the
shape parameter a with parameters s = 11.1 and d = 5.6. Thus, the gamma
distribution is centered around 2. The Bayes estimate in (3) is a — 2.24. The
values obtained from the Bayes estimators in (7) are a* = 1.73 and a* = 0.53
if the same prior is taken for a, and the reciprocal gamma prior with
parameters a = 3 and b = 1 is taken for the scale parameter a.

We conclude this paper with simulations of distributions of Bayesian
estimators a and a* under Paretian data of size k = 20 for a shape
parameter a = 4 and scale parameters a — 1, 2. The hyperparameters of the
gamma and reciprocal gamma priors for a and a are s = 4, d = 1, a = 3

0.4--

0
2 4 6

Fig. 2. Simulated densities of Bayesian estimator a for Paretian data under a = 1 (solid), a = 2 (dashed), and
of Bayesian estimator a* under CT = 1 (dashed-dotted), <r = 2 (dotted).

and b = 4. The distributions are represented by means of kernel densities
based on 4000 simulated estimates.

The performance of the Bayesian estimator a in the restricted model
resembles that of the Hill estimator (cf. Fig. 1). The Bayesian estimators a*
in the full model reveals a greater invariance under the variation of a.

The Bayesian estimates in (7) are computed numerically. We use an
adaptive Gaussian integration as described in Klugman (1992). All the
computations are carried out with the help of the statistical software
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package Xtremes. The performance of the Bayesian estimators can be
extensively simulated with the help of the program bayessim.sp stored in
http://www.xtremes.math.uni-siegen.de/spprograms.htm.
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