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Abstract

Typically, weed density is used to predict weed-induced yield loss, as it is easy and quick to
quantify, even though it does not account for weed size and time of emergence relative to the
crop. Weed—crop leaf area relations, while more difficult to measure, inherently account for
differences in plant size, representing weed-crop interference more accurately than weed
density alone. Unmanned aerial systems (UASs) may allow for efficient quantification of weed
and crop leaf cover over a large scale. It was hypothesized that UAS imagery could be used to
predict maize (Zea mays L.) yield loss based on weed-crop leaf cover ratios. A yield loss model
for maize was evaluated for accuracy using 15- and 30-m-altitude aerial red—green-blue and
four-band multispectral imagery collected at four North Carolina locations. The model
consistently over- and underpredicted yield loss when observed yield loss was less than and
greater than 3,000 kg ha™!, respectively. Altitude and sensor type did not influence the accuracy
of the prediction. A correction for the differences between predicted and observed yield loss was
incorporated into the linear model to improve overall precision. The correction resulted in r>
increasing from 0.17 to 0.97 and a reduction in root mean-square error from 705 kg ha™! to
219 kg ha™!. The results indicated that UAS images can be used to develop predictive models for
weed-induced yield loss before canopy closure, making it possible for growers to plan
production and financial decisions before the end of the growing season.

Introduction

Weed-induced vyield loss predictions have been attempted using a variety of different
approaches. In density-based models, weed density and yield loss follow a hyperbolic
relationship, meaning that as weed density increases, it will have a reduced impact on yield loss
as this parameter approaches a threshold (Cousens 1985; Spitters et al. 1989). As density alone
does not inherently provide information about relative weed size or time of emergence
compared with the crop, its predictive power for yield loss may be low and variable (Ali et al.
2013; Kropff 1988). This problem is more evident when late-emerging cohorts of weeds are
present, because the model intrinsically assumes that they have a competitive potential similar to
early-emerging weeds (Ali et al. 2013; Jeschke et al. 2011).

In contrast, the relative weed leaf area compared with the crop (L,,) is a parameter that
implicitly considers differences in plant size. The L, is defined as:

LAIL,
Ly=cF—F (1]
LAI + LAI,

where LAI, is the leaf area index (LAI) of the weeds and LAI is the LAI of the crop for a given
ground area and time. Through combining the leaf area of the weeds and crop per ground area
basis, L, can provide a better representation of weed interference, especially due to shading
(Kropff 1988; Spitters and Aerts 1983). A single, large early-emerging weed may have the same
leaf area as several smaller late-emerging weeds, which allows their competitive ability to be
weighted proportionally (Spitters and Aerts 1983). As LAI, will likely include weeds from
different cohorts, L, accounts for the relative time of emergence of weeds based on the additive
contribution of individuals to the total LAI (Kropff 1988; Spitters and Aerts 1983). Thus, early-
and late-emerging weeds result in large and small plants at the critical time of weed control,
respectively.

Kropff and Spitters (1991) proposed using L,, to predict yield loss, because it directly
influences growth rate through shading mechanisms. Thus, if LAI, represents a small
proportion of the total canopy, the resulting weed growth rates will be lower and the ones of the
crop higher. Conversely, as LA, increases, the crop growth rate will be slowed by weed shading,

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.187, on 20 Jul 2025 at 19:16:42, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/wsc.2025.3

L)

Check for
updates


https://www.cambridge.org/wsc
https://doi.org/10.1017/wsc.2025.3
mailto:rleon@ncsu.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1924-3331
https://crossmark.crossref.org/dialog?doi=10.1017/wsc.2025.3&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/wsc.2025.3
https://www.cambridge.org/core

causing greater yield losses. These weed-crop interactions are
affected by the competitive ability of the weed population against
the crop. Therefore, the competitive ability of the weeds must be
weighed proportionally to its contribution to the L. To do this,
Kropff and Spitters (1991) proposed to incorporate L., and a weed
competition coefficient (q) into the model to predict weed-induced

yield loss:

gLy

YL=— A
T 1+ (@-1)L,

(2]

where YL is yield loss relative to the yield under weed-free
conditions (Y.) (Kropff and Spitters 1991). The g value represents
the intensity of competitive interactions between the weed
community and the crop. A g <1 indicates that the crop is more
competitive than the weed community, and g > 1 indicates the
weed is more competitive than the crop (Kropff and Spitters 1991).

While L, is more biologically relevant for yield loss prediction
compared with density, historically, it has not been used in
research or production, as leaf area could not be quickly measured.
Recently, advances in digital image analysis opened the possibility
of quantifying weed and crop leaf cover efficiently during the
growing season (Campillo et al. 2008; Lee and Lee 2011). Thus,
Equation 1 can be modified for the relative weed leaf cover (LC,,)
by replacing LAI with the leaf cover index (LCI) (total leaf cover
per ground area basis) of the crop (LCI.) and weeds (LCL,). LC,,
has been shown to be analogous to L,, in the early growing season
before canopy closure, as little leaf overlap occurs (Lotz et al. 1994;
Ngouajio et al. 1999; Nielsen et al. 2012). Equation 2 is then
modified for leaf cover by replacing L,, with LC,,.

To further improve simplicity and efficiency of LC,, data
collection, remote sensing tools such as unmanned aerial systems
(UASs) can be used to measure LCI,, and LCI. (Duan et al. 2017;
Rasmussen et al. 2013). UASs are highly flexible tools, as they can
quickly capture imagery at the field scale when flying at high
altitudes and capture high-resolution images at the plant scale at
lower altitudes (i.e., <1 cm pixel ™' ground sample distance [GSD]).
Determination of optimal flight and equipment parameters is
critical to accurately distinguish crops and weeds. Some of those
parameters include, but are not limited to, sensor type, sensor pixel
density, atmospheric/weather conditions, and the crops in
question (Mesas-Carrascosa et al. 2015). It is therefore necessary
to compare LC,, measured at multiple flight altitudes and with
different sensor types to balance data-collection efficiency with
image resolution.

UASs can be equipped with several sensor types, including red-
green-blue (RGB) cameras, which capture light in the visual range
of the electromagnetic spectrum (380 to 700 nm), and multi-
spectral (MS) cameras, which sense light within and beyond the
visual range in narrow discrete ranges of wavelengths (bands)
(NASA 2010). Through image analysis, crops can be distinguished
from weeds based on differences in spectral reflectance using
machine learning algorithms (Venkataraju et al. 2023). MS
imagery has been shown to improve plant species differentiation
compared with RGB imagery, especially in the near-infrared light
range (700 to 1,100 nm) (Mohidem et al. 2021). Additionally, MS
imagery can provide more stable canopy cover estimation over
time compared with RGB, as it is less sensitive to changes in
environmental conditions such as cloud cover and sunlight angle.
In other words, MS imagery generates less spectral noise
(Ashapure et al. 2019; Zhou et al. 2020).While potentially more
precise for vegetation differentiation and canopy cover estimation,
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MS imagery might be inaccessible to some due to greater sensor
prices compared with RGB imagery (Ashapure et al. 2019).

With UASs, the feasibility of implementing the Kropff-Spitters
model in real time during the growing season before canopy
closure might be possible. We considered that this possibility was
worth exploring to provide more information to growers about
crop performance in relation to the efficacy of their weed
management programs. It was hypothesized that weed-induced
yield loss can be predicted with the Kropff-Spitters model adjusted
for leaf cover (Equation 2) where maize (Zea mays L.) and weed
leaf cover is measured with high-resolution UAS imagery.
Additionally, it was hypothesized that prediction accuracy is
higher with 15-m MS imagery, as it will have a finer GSD and be
less sensitive to spectral noise compared with RGB or 30-m MS
imagery. Therefore, the goals of this study were (1) to evaluate the
accuracy of the Kropft-Spitters model to predict maize yield loss
based on UAS measured leaf cover and (2) to assess model
performance at different UAS flight altitudes and with different
sensor types.

Materials and Methods
Experimental Sites

Images were collected from four existing maize experiments during
the summer 2023 growing season in Goldsboro, Clayton, and
Lewiston, North Carolina, at the Cherry, Central Crops,
and Peanut Belt Research Stations respectively. In Goldsboro
(35.3942°N, 78.04709°W), the soil is a Pantego-loam (fine-loamy,
siliceous, semiactive, thermic Umbric Paleaquult) with 1.9%
organic matter. In Clayton (35.6760°N, 78.5141°W), the soil is a
Dothan loamy-sand (fine-loamy, kaolinitic, thermic Plinthic
Kandiudult) with 1.25% organic matter. The soil of location 1 in
Lewiston (Lewiston 1) (36.1332°N, 77.1772°W) is a mosaic of
Goldsboro sandy loam (fine-loamy, siliceous, subactive, thermic
Aquic Paleudult) and Norfolk sandy loam (fine-loamy, kaolinitic,
thermic Typic Kandiudult). The soil of location 2 in Lewiston
(Lewiston 2) (36.1343°N,77.1772°W) is a Norfolk sandy loam
(fine-loamy, kaolinitic, thermic Typic Kandiudult). Both Lewiston
locations had 1.5% organic matter. The most common weed
species were sicklepod [Senna obtusifolia (L.) H.S. Irwin and
Barneby] and fall panicum (Panicum dichotomiflorum Michx.), in
Goldsboro; Palmer amaranth (Amaranthus palmeri S. Watson),
Texas millet [Urochloa texana (Buckley) R. Webster], and ivyleaf
morningglory (Ipomoea hederacea Jacq.) in Clayton; and common
ragweed (Ambrosia artemisiifolia L.), common lambsquarters
(Chenopodium album L.), and U. texana in Lewiston. In
Goldsboro, the experiment was planted with maize variety
‘DKC63-57(VT2P)” in 18 plots measuring 12 by 30 m with
76-cm row spacing, while Clayton and Lewiston were planted in 54
and 72 plots measuring 3.66 by 9.14 m with ‘DeKalb 62-08” and
‘Pioneer 1870 variety maize, respectively (Table 1). Experiments
were arranged as a randomized complete block design with three
replications in Goldsboro and four in Clayton and Lewiston, with
standard fertilization according to North Carolina State University
Extension recommendations (Crozier 2019). Clayton and
Lewiston were prepared with conventional tillage according to
North Carolina State University Extension recommendations
(Crozier 2019), while Goldsboro was managed under no-till
practices. Maize yield was determined by harvesting the inner 12
rows in Goldsboro and all 4 rows per plot in Lewiston 2 using a
6-row commercial harvester and the inner 2 rows in Clayton and
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Table 1. Maize planting and management programs for four locations in North Carolina.

Postemergence
Field Maize variety Planting date  Planting density?  Row spacing ~ Preemergence application  application Harvest
seeds ha=! cm
Goldsboro Dekalb C63-57  April 25 D1=10,319 76 April 25 May 24 and June 1°  September 11
D2 =20,639
Clayton Dekalb 62-08 April 18 9,510 91 April 18 May 31 September 25
Lewiston 1 Pioneer 1870 April 12 12,343 91 None May 1 September 24
Lewiston 2 Pioneer 1870 April 12 12,343 91 April 12 None September 11

2D1 and D2 represent the two maize planting densities in Goldsboro, which were included to produce additional variation in weed/maize leaf cover ratios.
Two postemergence herbicide applications were included in Goldsboro to keep control plots weed-free.

Table 2. DJI Mavic 3M RGB and MS sensor and RTK specifications?.

Mavic 3M technical

specifications RGB MS
Band range Visible light: Green: 560 + 16 nm
380-700 nm
Red: 650 + 16 nm
Red-edge: 730 + 16 nm
NIR: 860 + 26 nm
Image sensor 4/3 CMOS 1/2.8-in. CMOS
Effective pixels: 20 MP  Effective pixels: 5 MP
Lens FOV: 84° FOV: 73.91°
Equivalent focal Equivalent focal
length: 24 mm length: 25 mm

Aperture: f/2.8 to f/11  Aperture: f/2.0

2Abbreviations: MS, multispectral; RGB, red-green-blue; RTK, real-time kinematic; CMOS,
complementary metal-oxide-semiconductor.

Lewiston 1 with a small-plot harvester. Yields at all locations were
adjusted to 15.5% moisture content.

Aerial Image Collection

At Goldsboro, aerial images were collected when maize was at the
V3 and V5 stages (Ritchie et al. 1986). In Clayton, images were
collected when maize was at V5 and V7, and at both Lewiston
locations, images were collected at V8, just before canopy closure.
Variation in sampling time was due to the need to circumvent the
local weed control actions and properly quantify LC,, before weed
removal. At all locations, RGB and four-band MS (red, green, red-
edge, and near-infrared) images were collected at flight altitudes of
15 and 30 m using a DJI Mavic 3M (DJI Shenzhen, China)
(Table 2). GSD was 0.47 cm pixel™! with RGB-15-m imagery,
0.87 cm pixel™! with RGB-30-m imagery, 0.66 cm pixel~! with MS-
15-m imagery, and 1.45 cm pixel™! with MS-30-m imagery. Image
collection was done around solar noon (1200 to 1400 hours). For
each location and date, images of each spectral and altitude
treatment were individually stitched into maps (i.e., orthomosaic)
using Agisoft Metashape v. 2.0.1 (St Petersburg, Russia), producing
a total of 32 unique orthomosaics. Each MS orthomosaic was a
composite of all four bands collected at that image collection.

Ground Sampling/Processing

To validate the substitution of L or LC,, (Equations 1 and 2),
LAI. and LCI, were compared for each aerial image collection.
LAI, was collected twice per plot in Goldsboro and randomly in a
third of the plots in Clayton and Lewiston with an LAI 2200C plant
canopy analyzer (LI-COR, Lincoln, NE, USA) immediately
following aerial image collection. In Goldsboro, LAI. was collected

within 0.4-m? quadrats where weeds were removed. In Clayton and
Lewiston, LAI, was collected below the maize canopy but above the
weeds (50 cm) between the two middle rows of the plot. In all
locations a 90° view cap was used to block the user from LAI
readings. LCI. was measured on a per plot basis for each
orthomosaic following aerial data processing.

Aerial Data Processing

To distinguish between maize and weeds in the aerial imagery, an
individual supervised object-based classification algorithm via a
support vector machine (SVM) (Cortes and Vapnik 1995) was
trained for each orthomosaic using ArcGIS Pro v. 3.1.1 (Redlands,
CA, USA) (Figure 1). Training data for each SVM were developed
by manually classifying the area within eight random 4-m?
quadrats as soil, maize, or weeds on the corresponding
orthomosaic. Additional training samples were generated if
irregular atmospheric conditions (e.g., intermittent cloud cover)
caused classification errors. The area per plot classified as maize
and weeds was defined as its LCI. and LCI,,, which was used to
calculate a per plot LC,, (Equation 1) for each orthomosaic. To
determine the accuracy of LC,, estimation based on the SVM,
confusion matrices were developed by manually labeling 500
random points for each RGB-15-m classified map as maize, weeds,
or soil via the accuracy assessment tool in ArcGIS Pro v. 3.1.1.

Yield Loss Prediction

To predict yield loss, Y,,s was defined as the highest-yielding plot
per block within each location where there was minimal to
nondetectable weed cover. Observed yield loss (YL,y,) was defined
as the difference between Y,s and Y., within each block.
The predicted yield loss (YL,) relative to Y., was then calculated
(in kg ha™!) with the formula:

) wa

YLP:(

To determine g for each location and stage, YL, was calculated
iteratively with g values ranging from 0.1 to 1.5 with RGB-15-m-
derived LC,,. RGB-15-m training data were used rather than MS or
30-m as they presents the widest range and balance of spectral
signals and optical resolution (pixels cm™"). The q that produced the
smallest absolute difference between YL, and YL, was determined
as the optimum ¢ for each, which will be referred to as g,

9LCy

1+ (q—1)LC, 3]

Model Correction

A correction factor (c) was generated to compensate for changes
in model performance due to bias when substituting L., for LC,,
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Figure 1. Example of output of maize and weed classification from red-green-blue (RGB)-15-m imagery using a supervised object-based classification algorithm via a support

vector machine.

(Equation 2). Because g and LC,, values for each image collection
account for variation among locations and phenological stages
(Kropff and Spitters 1991; Ngouajio et al. 1999), a single ¢ was
developed with RGB-15-m training data from the location with the
greatest standard error in LC,, and validated with the rest of the
locations. This was done to account for variation in crop-weed
ratios without overfitting the model to all collected data. Where
AYL is the difference between YL, and YL, ¢ was calculated
based on the slope, when different than zero, of the model that best
described the relationship between AYL and YL, For each plot,
the corrected yield loss prediction (YL.,,) was calculated as:

YLeor = (AYL x ¢) + YL, (4]

To assess the necessity of running the model with an individual
q. for each image collection, an additional analysis was done with the
average q value over all locations and crop phenological stages (gz). If
g provided similar accuracy as g, for each location, then the former
was considered robust and was chosen for the following analyses.

Statistical Analysis

Linear regression analyses were done with JMP Pro 17 (Cary,
NC, USA) to compare model performance across locations,

phenological stages, UAS imagery types, and weed competition
measurements. Linear regressions were additionally run to validate
the use of LCI in place of LAL Root mean-square error (RMSE), r?,
and P-value were used to characterize model regression fitness and
accuracy.

Results and Discussion
UAS-derived Leaf Estimated Cover Accuracy

LAI. was positively related with LCI. measurements across all
locations and phenological stages with RGB-15m imagery (r* = 0.72;
Figure 2). Overall classification accuracy of the SVM was 83%, 76%,
and 96% for maize, weeds, and soil, respectively, and the kappa
coefficient, which takes into account both the generator and user’s
accuracy when training the classifier, was 0.78 (Cohen 1960). Given
the high accuracy for the three classes and the strong linear
relationship with LAI,, LCI was used as a surrogate for LAL

Determining q, and qx for the Kropff-Spitters Model

Weed competition was described with a range of g, values across
locations and phenological stages, which ranged from 0.2 at V5 in
Clayton to 0.8 at V8 in Lewiston 2 (Table 3). The g5 across all 268 plots
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Figure 2. Relation between unmanned aerial system (UAS) red-green-blue (RGB)-15-m-derived maize leaf cover index (LCI) and ground-measured maize leaf area index (LAl) in

four locations in North Carolina.

Table 3. Red-green-blue (RGB)-15-m-derived Kropff and Spitters model
attributes and observed yield measurements for all locations and stages in
North Carolina.

Phenological
Location stage Plots qo° LC,?
Clayton V5 54 0.2 0.59 (0.02)
V7 54 0.6 0.25 (0.02)
Goldsboro V3 17 0.3 0.11 (0.01)
V5 17 0.3 0.15 (0.02)
Lewiston 1 V8 52 0.8 0.32 (0.01)
Lewiston 2 V8 72 0.7 0.30 (0.01)

20Optimized competition coefficient.
bRelative weed leaf cover (Equation 2). Values in parentheses represent the standard error of
the mean.

was 0.54, indicating that, on average, maize was more competitive than
weeds regardless of early-season phenological stage, as gx < 1 (Kropff
and Spitters 1991). Compared with Goldsboro, the competition
coefficients at Clatyon V7 and Lewiston were 2.3 and 2.7 times greater,
respectively (Kropff and Spitters 1991; Table 3). The stability of g, in
Goldsboro at different maize growth stages suggests that the weed
community’s competitive ability grew proportionally to that of maize,
while in Clayton, the weed community progressively increased its
competitive ability over maize. It is expected that as the growing season
progresses and the weeds in each community get larger, their
competitive abilities will increase, as observed in Clayton. Additionally,
Goldsboro had considerably less weed pressure and species diversity
than other locations, likely resulting in its lower g, (Table 3).

Yield Loss Prediction and Correction

There were no major differences between the g, and gz models,
with both having ¢ = —0.69. Additionally, the slopes of the g, and
qx corrected models were 0.78 £ 0.01 and 0.75 + 0.01, respectively,
with intercepts being 214 + 13 and 227 + 13. Therefore, g5 was
chosen for further analyses to use a single value that applied to all
locations and sampling times.

Running the model without correcting deviation from YL,
resulted in low accuracy for YL, (Figure 3A). This was more
evident when YL, was greater than and less than 3,000 kg ha™!,
where YL, was over- and underpredicted, respectively (Figure 4).
This trend may be due to the use of LCI in place of LAI, as leaf cover
is not able to capture the full magnitude of competition when leaf
overlap occurs and at early stages when there is no overlap at all. To
account for differences between the two, ¢ was developed using
RGB-15-m training data from Clayton (Figure 4). Clayton was
selected because it had the highest overall variability in LC,, out of
the four locations (Table 3). If the model accurately measured YL,
we would expect the slope in Figure 4 to be zero, indicating no
difference between YL, and YL, However, the slope for the
model (i.e., ¢) was —0.69 (Figure 4). Because the model was highly
linear, incorporating c (Equation 4) dramatically reduced the error
of the model and corrected yield loss predictions (YL,,) from
YL,ps in comparison to YL, (Figure 3A and 3B). When corrected
for LCI (Equation 4), model performance increased in the
validation data set (Goldsboro and Lewiston locations) with r?
increasing from 0.17 to 0.97 and RMSE decreasing from 705 kg
ha™! to 219 kg ha™! (Figure 3).
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Figure 3. Relationship between predicted (g and observed yield loss at validation locations (Lewiston 1 and 2 and Goldsboro) in North Carolina with all red-green-blue (RGB)
and multispectral (MS) imagery taken at 15 m and 30 m pooled together. (A) Relationship between predicted and observed yield loss before incorporation of the correction
factor c; (B) relationship after incorporation of c.
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Figure 4. Relationship between A yield loss (difference between predicted and observed yield loss) and observed yield loss at Clayton V5 and V7 (red-green-blue [RGB]-15-m) in

North Carolina using the gx analysis. The red dashed line represents A yield loss =0.

Table 4. Best-fit linear model parameters for the relation between YLqps and YL,
for different sensor-altitude combinations based on the g; analysis for data
collected in Goldsboro and Lewiston 1 and 2 in North Carolina?

Data

processing Treatment  Intercept Slope 2 RMSE®

Precorrection RGB-15-m 912 (48) 0.29 (0.02)  0.53 417
RGB-30-m 683 (81)  0.19 (0.04) 013 695
MS-15-m 858 (95)  0.19 (0.04) 0.12 820
MS-30-m 479 (78) 0.18 (0.03) 0.14 670

Postcorrection RGB-15-m 283 (15) 0.78 (0.01)  0.99 129
RGB-30-m 212 (25) 0.75(0.01) 097 216
MS-15-m 266 (29) 075 (0.01) 095 254

(24)

MS-30-m 0.75 (0.01)  0.97 208

2Values in parentheses represent the standard error of the mean.
bFor all models, P < 0.0001.
‘RMSE, root mean-square error.

Flight altitude and image sensor had minimal effect on the
accuracy of the prediction (Table 4). Before correction, the
relation between YL, and YL, was low for all sensor-altitude
combinations (r?<0.14) except for RGB-15-m (r?=0.53).
However, when YL, was estimated, all sensors and altitudes
performed equally well with r? > 0.96. When comparing pre- and
postcorrection, the correction also allowed the overall RMSE to be
reduced 3-fold, from 650 kg ha™! to 202 kg ha™! (Table 4).

Caveats

Considerations for q Estimation

Weed communities will vary in their competitive ability relative
to the crop due to environmental conditions, weed species
composition, and crop species and planting density. Therefore,
while a single value of g, like gz used in our study, would be ideal, it

is unlikely the value presented could accurately predict yield loss
across all environmental conditions, management strategies, and
growth stages. Instead, through iterative testing and validation,
general values of g can be determined for weed communities with a
few predominant species and at specific growth stages. This type of
general descriptor is not unusual in agriculture. For example,
individual evapotranspiration coefficients have been developed for
multiple crops and are used across large areas and in different
environments and soil types (Hargreaves and Samani 1985;
Hatfield and Dold 2018).

Substitution of LAl for LCI

The estimation of total leaf area and LAI from aerial imagery is a
difficult process. The equipment currently available for this
purpose, such as light detection and ranging (LIDAR) or
multisensor cameras, is expensive and technically complex,
making it difficult to use for agricultural production at present
(Liu et al. 2021). For this reason, we explored substituting total leaf
area with leaf cover. The latter can be accurately estimated with
UAS using on low-cost sensors. It must be acknowledged that
when using leaf cover in place of total leaf area, competition for
light within the canopy and its impact on yield loss might not be
fully captured due to occlusion among weeds and the crop. Leaf
area is associated with physiological processes that can determine
how competitive a plant will be within a stressful environment
where resources such as water and nutrients are limited (Kropff
1988). For all row crops, a critical period of weed control (CPWC)
exists early in the season before crop canopy closure when any
weeds present have the greatest impact on yield (Gantoli et al. 2013;
Hall et al. 1992). After the CPWC, the crop typically has grown
enough to shade smaller late-emerging weeds, reducing their
competitive ability (Gantoli et al. 2013; Hall et al. 1992).
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Furthermore, during CPWC is when growers can implement
effective postemergence control (e.g., cultivation, herbicides) while
minimizing crop injury. Thus, image collection is ideal during
CPWC for the Kropff and Spitters model. Previous studies have
shown that while some occlusion may still occur among leaves
(Figure 1), leaf cover and leaf area are similar early in the season
(Nielsen et al. 2012; Ramirez-Garcia et al. 2012). We contend that
our results illustrate that UAS-derived leaf cover, collected at the
right time, can capture enough detail in LC,, in comparison to
LAI, to make valid yield loss predictions, especially with the
incorporation of a correction factor. This is further validated,
because the correction factor developed with imagery from
Clayton (Figure 4) successfully improved model performance in
Lewiston and Goldsboro (Figure 3).

Machine learning and artificial intelligence approaches are
starting to contribute to more accurate LAI estimations from aerial
imagery, which might improve the robustness of models and
algorithms predicting yield loss. For example, using data from
multiple sensors (RGB, multiple MS sensors), Liu et al. (2021)
predicted LAI using aerial images and shallow and deep machine
learning in experimental maize plots. The accuracy of their
predictions was estimated at r>=0.70 to 0.89 and relative
RMSE = 13%. In our case, we were able to relate LCI from aerial
images to ground-truth LAI at r>=0.70 and relative RMSE = 7%
(Figure 2). Therefore, our simpler algorithm was representing LAI
in a manner similar to more complex approaches based on
machine learning. Interestingly, Liu et al. (2021) also observed
over- and underpredictions at low and high LAI, respectively. This
was similar to our yield predictions as a function of leaf area
(Figure 4). Therefore, even with more detailed image processing
systems, it seems that leaf occlusion is an intrinsic limitation of
UAS image collection after CPWC (i.e., canopy closure).

Correcting for Differences in Predicted versus Observed Yield
Loss

Through substitution of LAI for LCI a bias was introduced in the
Kropff-Spitters model (Equation 2), creating the need for a
correction factor. When YLy, was <3,000 kg ha™!, the uncorrected
model overpredicted the impact of weeds on the crop. Very low
maize yield indicates the presence of suboptimal growing
conditions (e.g., soil type, moisture, pest damage). Therefore, it
is possible that adding weed interference to a situation where other
more important limiting factors were present caused YL,
overestimation. Conversely, when maize growth and yield
potential are high, fast canopy closure can result in high levels
of occlusion among weed leaves with crop leaves, because UAS
imagery cannot penetrate the canopy. In this case, the estimation of
LC,, is reduced, because weeds might shade maize within the
canopy out of view of UAS imagery. Also, the relation between leaf
cover and underground or noncompetitive interactions involved in
yield loss is minimized, as this model cannot quantify those at low
LC,, levels (McKenzie-Gopsill et al. 2019; Stone et al. 1998).

The present study confirmed that leaf area-based prediction
models, such as the one proposed by Kropff and Spitters (1991), can
make use of UAS imagery as a viable and practical tool for estimating
leaf cover. While LC,, initially resulted in poor model performance,
predictions were greatly improved through incorporation of a
correction factor. Furthermore, combined with UAS imagery, the
predictive model can be used in a practical and efficient manner at
large spatial scales within commercial growing operations. Through
automation of image analysis and optimization of the model,
growers could generate yield loss predictions in short time frames

Goldsmith et al.: UAS-predicted maize yield loss

after UAS image collection. This would allow growers to make
management and financial decisions—using additional postemer-
gence herbicide or fertilizer applications before label cutoff times at
canopy closure—as early as possible. Regarding model efficiency,
because accuracy was similar between RGB and MS sensors
regardless of the altitude in the range evaluated, future optimization
of the system could focus on RGB imagery and higher altitudes (>30
m). This would allow UAS pilots to collect imagery of larger fields in
less time and allow for an increase in computational efficiency.
Ultimately, the end goal of systems like the one studied here is to give
growers the power to make financial and management decisions as
early as possible and gain time to anticipate ways to ensure the
sustainability of their operations.
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