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Laue et al have described basic algorithms for computing in a finite soluble group G given
by an AG-presentation, among them a general algorithm for the computation of the orbits
of such a group acting on some set O. Among other applications, this algorithm yields
straightforwardly a method for the compulation of the conjugacy classes of elements in
such a group, which has been implemented in 1986 in FORTRAN within SOGOS by the
first author and in 1987 in C within CAYLEY. However, for this particular problem one
can do better, as discussed in this note.

1. ORBITS OF SOLUBLE GROUPS

We recall briefly the set-up from [12], to which we refer for details. Let G — Go >
. . . > Gn — (1) be a composition series of G with factors Gi-i/Gi = (giGi) of order
some prime pi, then {gi,•• • ,gn)

 ls a generating sequence, called a PAG sequence, with
a defining set of relations

0f = w«(gi+i, • • • , ffn) for 1 < i ^ n,

[ffi.Sj] = Wij{gj+i , • • • ,9n) for 1 < j < i ^ n.

Each element can be expressed uniquely in the form

9 = 9? • •• 9nn w i th 0 ̂  i/,- < pi.

If Vi = 0 for i = 1 , . . . ,k — 1 and I/J. ^ 0, we call vy. = X(g) the leading exponent

and k = w(g) the weight of g. With respect to (gi,... ,gn) each nontrivial subgroup
U < G has a unique "canonical generating sequence" ( i t i , . . . , u r ) , abbreviated CGS,
with the following properties.

(1) ( u i , . . . , u r ) is a PAG-sequence for U,

(2) w(ui) > W(UJ) for i > j ,

(3) X(ui) = l fort = l , . . . , r ,

(4) "„(«<)(«,-) = 0 tot i^j.
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282 M. Mecky and J. Neubiiser [2]

From any given generating set of a subgroup U ^ G, its CGS can be determined by a
"non-commutative Gaufi algorithm".

In [12] two "homomorphism principles" are recommended for the computation of

orbits:

1. Reduction of orbit size using homomorphisms of G-sets ([12, 3.3, p.111-112]).

In the context of the computation of conjugacy classes this can be done in the following

form.

Let N <G and assume by induction that we know

(i) a set of representatives {hiN,... ,/i/tTV} of the conjugacy classes of G/N,
(ii) for each class representative hiN € G/N a CGS of its centraliser Ci :=

CG/N{hiN).

Let Ci be the complete preimage of d in G. Then d acts by conjugation on the
set hiN of elements of G, and we obtain a full set of class representatives of G, with
their ceutralisers in G, by computing for each i representatives {/ij,i,... , ^i,^} of the
orbits under this action and their stabilisers in C,- (see [12, Section 6, p.124]).

This idea can be used recursively with any chain of normal subgroups in any group.
Since in a straightforward approach one wants to gel as small orbits as possible at each
step, use of a chief series is then optimal. For soluble groups it is easy to determine
a normal series with elementary abelian factors, and this is often good enough (see
below).

2. Computation of orbits of a group G acting on a set fi using the fact that orbits
of a normal subgroup N < G are blocks for G. This leads to the "orbit algorithm for
soluble groups" ([12, Sections 3.1, 3.2, p.lll]).

In the implementations of an algorithm for the computation of classes of soluble
groups mentioned above, the problem is thus reduced to a frequent application of 2.
in the situation described in 1.; that is, the orbits of d on hiN and stabilisers of
representatives have to be determined. For this the orbit algorithm for soluble groups
requires roughly \hiN\ = \N\ conjugations of elements, and since a conjugation is
performed by collecting the word g~*hg, this is the time-critical part of the method.

2. THE USE OF AFFINE OPERATIONS

By induction, N can be assumed to be an elementary abelian p-group, and in this

note we want to exploit this fact further.

So let N be an elementary abelian normal subgroup of G, let hN be a coset and

C be the preimage of C := CG/N(hN). Let hn £ hN, and c 6 C, then (hn)c =

henc = h[h, c]nc with \h,c] <E N and hence {hn)c = hnc[h,c].

Via the one-one mapping hn •—* n of hN —> N we see that the action of C on the
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[3] Computation of conjugacy classes 283

set hN by conjugation is equivalent to the action of C on TV described by

ac

Since n H-> nc is linear and [h, c] is an element of TV depending only on c (and h),

the mapping ac is an affine transformation of the CF(p)-vector space TV onto itself.

These affine transformations can be computed quickly for the elements of a CGS of
C, which is all that is needed of C in an orbit algorithm for soluble groups, and then
the time-expensive conjugation of elements of hN can be replaced by the much faster
application of such affine mappings to the elements of TV. Let us call an implementation
using only tills replacement of actions the "first version".

However, the "affine action on TV" yields more. Since N < C, the orbits of TV
acting on TV via a are blocks for the action of C. Now for m 6 TV we have

that is, TV acts on TV via a as a group of "translations" by the elements of the subgroup
[/i,TV]. The orbits of this action are the cosets of [h,N] in TV. Hence we can find the
orbits of C acting on TV by first forming N/[h,TV], which is very cheap, and then
applying the orbit algorithm only to the action <J of C on this often much smaller set.
As

a c : n[/i,TV]H->nc[/i,cP,TV],

a is affine again and has TV in its kernel; hence it induces an affine action of C — C/N

on TV/[/i,TV].

We make use of this remark in the implementation, but even more in the counting

of classes described in Section 5.

Assume we have thus found representatives tii,... , n , of the affine action a of
C on TV, and that, from the use of the orbit algorithm for the induced action c* on
TV/[/i, TV], we have, for each n j , a CGS of the stabiliser Sj of n;[/i, TV]. In terms of the
action of C on TV , this group 5,-, of course, is the block stabiliser of the block nj[/i,TV]
with representative rii. Let c € Si, then there exists m € TV with

(*) ac(rii) = n;[/i,c] = ni[h,m], hence [h,m] — [n,-, c][/i,c].

As all commutators are in TV, we get from this

\ni,cm-1][h, cm~y) = 1, that is, acm-i(ni) = n,-.

So in each coset cTV € Si/N there exist representatives which lie in the stabiliser of n<
in C, and these can be found by solving the system of linear equations determined by
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(*) for the unknown m's with given h, n-j, and c. Actually, if mj and m^ both solve

(*), then mim^1 € Cfi(h). So, if Cw(h) is determined once for dealing with the coset

hN, it suffices to find just one solution of (*) for each given n; and c, which, by the

way, only influence the "right hand side" of the inhomogeneous equations (*).

In the acknowledgement we refer to the implementation of this idea as the "second

version".

3. SOME DETAILS OF IMPLEMENTATION AND MODIFICATIONS OF THE METHOD

3.1 The first description in [8] of a construction of the classes of a group G from
those of a factor group G/N dealt with the simplest case, namely N being central of
order p; as shown by applications, its implementation yielded a remarkably efficient pro-
gram for p-groups. C. Leedham-Green proposed the use of the following generalisation
of the (very trivial) central lemma of [8]:

Let G be a soluble group, N an elementary abelian, central subgroup of G, h £ G

and C the preiinage of CG/N(JIN). A system R of representatives of the C-classes in
hN and the centraliser Cc{h) are obtained as follows:

If [h, C] = (1), then R = hN and CG{h) = (C, N).

If [li,C] ^ (1) let K be a complement of [h,C] in N, then R = hK. Let
(ciN,... ,cmN) be a CGS of C(j/;v(/iiV); running through c m , . . . ,ci in that order,
choose a basis B = {6i = [h, c , , ] , . . . ,br — [h,Cir]} of [h, C] < N. For [h,ak] g B let

Then Ca{h) = {cih(4l)...c£)>) ,N\k =r+ 1 , . . . , m ) .

The implementation of this proposal for p-groups in CAYLEY has indeed led, where
applicable, to a further gain in efficiency. There is, of course, no reason to restrict its
use to p-groups, so the present SOGOS implementation can test whether an elementary
abelian factor is central, and if so, use Leedham-Green's lemma, which may be viewed
as solving equation ( *) of Section 2 in the special case that N is central.

3.2 Another simplification is possible if N is cyclic (non central) of some order p,
since then the "affine" operation reduces to calculation in Z/pZ.

3.3 As was pointed out in Section 1, each subgroup of a group given by a PAG
sequence can uniquely be described by a. CGS, which is most helpful if subgroups have
to be compared. However, at intermediate steps of the algorithm, a description of
the centraJisers by a generating sequence satisfying only conditions (1) and (2) of the
definition of a CGS suffices, a simplification that again contributes significantly to
efficiency.
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[5] Computation of conjugacy classes 285

3.4 A soluble group may have different normal series with elementary abelian
factors; experiments have shown that computing times for the classes strongly depend
on the choice of the series, in particular on the sizes of their elementary abelian factors.
No very definite statement has emerged, but as a rule of thumb, the use of "linear
algebra" is preferable, that is, a big elementary abelian subgroup N is "good" for the
calculation of the representatives in hN, if the index N: [h, N] is small. Moreover, the
small cost of the test of centrality of N as described in 3.1. is worth the gain obtained
when the answer is positive. Central factors should, if possible, be moved to the end
of the series, since the increase of the number of classes from them becomes costly in
subsequent steps.

3.5 As in the p-group case described in [8], the algorithm allows variations:

(a) Since quite generally \CC/NV1^)\ ^ | C G ( ' 0 I > the computation can be
restricted to classes whose elements have centralisers of order below a
given ripper bound by controlling the growth of centraliser orders at each
inductive step.

(b) For a given element h € G, the centraliser of h and a "canonical" (of
course only with respect to the given normal series and depending on the
algorithm) representative h* of the class of h can be found, as well as an
element transforming h into h*.

(c) Since h* depends only on the class hG (besides the normal series and the
algorithm) but not on the particular element h £ hG, it can serve in a
variation in wliich conjugacy of two given elements h and h' is tested and
a transforming element is determined if they are conjugate. This variation
is needed, for example, in the computation of power maps for character
tables as well as of the class-multiplication coefficients needed for their
determination by the Dixon-Schneider method [16].

3.6 Using a CGS of a subgroup U < G, and a series of normal subgroups of G with
elementary abelian factors passing through M <G, the classes of M under conjugation
by U can be found analogously.

For details on these points, as well as for implementations in SOGOS, see [13].

3.7 As a final variation of the general method we mention the possibility of com-
puting the fusion of the classes of a subgroup H into the classes of G, stepping down
from the fusion of the classes of HN/N into the classes of G/N. This method has
been implemented by Thiemann [18] within SOGOS for use with an implementation of
an algorithm [4] for the computation of characters of p-groups as induced characters,
a version of which was communicated to us by C. Leedham-Green and A. Mann. In
SOGOS a set of one-dimensional characters of subgroups is determined, from which
all irreducible characters can be obtained by induction, and the fusion map for these
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subgroups and the power map for the whole group is computed. These data are then
handed over to the CAS system, where the induced characters are computed using the
facilities of CAS [14] for handling cyclotomic integers.

4. PERFORMANCE

We compare implementations for the following test groups:

Gi is a group constructed by Glasby [3] by iterated split extension:

xi (E33 >d (<?8 xi 5s))),

where En is an extraspecial group of order n, QB is the quaternion group and 53
the symmetric group of degree 3. The following chief series (top down) was used:
2 ,3 ) 2

2 , 2 ,3 2 , 3 ,2 8 , 2 ,3 8 , 3 .

54 wr6 Ai is the wreath product of the symmetric group 54 with the alternating
group J44 , represented as permutation group of degree 6. Series used: 3, 2,24, 23,36,21 2 .

39XJ(757X! 9), 310Xi(61 x 10), and 59xi(19 xi 9) are split extensions of elementary
abelian groups of order 39 , 31 0 , and 59, respectively, with parts of the normalisers of
their respective Singer cycles. Series used: 3,3,757,39; 5,2,61,31 0 , and 3,3,19,59,
respectively.

{S^wr Sz)wr S3 is the iterated wreath product of 54 by 53 in its natural permu-
tation representation. Series used: 2 3 ,3 ,2 4 ,3 3 ,2 8 ,3 9 ,2 1 8 .

group

Gi

54 tor6 v44

3 9 XJ (757 X) 9)

3 1 0 xi (61 xi 10)

5 9 xi (19 xi 9)

(54 wr S3)wr S3

order

2 n .313

220 • 37

31 1 -757

2 - 5 - 3 1 0 -61

3 2 • 5 9 • 19

2 3 1 , 3 1 3

max.factor

38 = 0561

212 = 4096

39 = 19683

310 = 59049

59 = 1953125

218 = 262144

#

classes

181

1900

135

219

11575

52195

CAYLEY

1987

2496 '"

4438 ' "

5379*"

SOGOS

1988

1 0 1 ' "

474««

6 2 ' "

1 1 6 ' "

3715 ' "

23856'"

Computing times are given in seconds for comparable implementations, all using
J. Cannon's STACKHANDLER and the 1982 version of V. Felsch's preprocessor gen-
erated "frorn-the-right" collector [5] on the same machine, a MASSCOMP 5500 PEP.
As they have been measured in multiuser mode, they should be considered accurate
only within a margin of some %. For reasons of space, computation of the classes of
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[7] Computation of conjugacy classes 287

(S^wr S3)wr S3 could only be finished by removing each centraliser during the last
step, once the corresponding class had been found.

We close this section with a rather technical remark.

In the last three cases the 1987 CAYLEY-implementation ran out of storage space
in our environment. At least in the case of 31 0 x (61 x 10), however, the 1986 SOGOS
implementation did not, but finished, although only after 3200 seconds. As stated in the
introduction, the two implementations use the same mathematical set-up, the different
performance is due to a small, but crucial difference in the implementations of the orbit
algorithm for soluble groups: while in the 1986 SOGOS implementation each orbit
under the action of the whole group is constructed separately (as described in [12]),
the 1987 CAYLEY implementation first finds all orbits of the first generator, then links
them under the action of the second generator, and so on. While both methods have
roughly the same time-complexity, the second can be critically more wasteful of space.

5. COUNTING CLASSES

By the method of Section 2, for each class a representative and its centraliser are
explicitly constructed. Of course the amount of output produced this way already limits
the application, as for example demonstrated by a group G2 that S. Glasby sent us in
September 1988 as a challenge for our method. The factor group of G2 by its centre
of order 13 is the group G3 = N x (E73 xi Gi6) where N is an elementary abelian
minimal normal subgroup of order 1314 of G3 , E-js is extraspecial of order 73 , and
G48 is a group of order 48, which can be described as a non-split extension of the
quaternion group of order 8 by 53 or as the non-split double cover of 54. A quick
estimate shows that TV alone contains more than 1011 classes. So at best one can ask
to count them. On the other hand, classes outside TV can be expected to be fairly big,
hence there ought to be many fewer of them. In fact in a run that took about 16 hours,
our implementation explicitly constructed all classes outside TV*. There are 373738 of
them.

As we shall see, it is then only a. hand computation to find from the data obtained
in this computation with the help of the Cauchy-B'robenius-Burnside (CFB) Lemma
that there are 239150784421 classes inside TV, so that G3 has altogether 239151158159
classes. Rather than going into detail with this example, we describe how in general the
number of all classes of a soluble group G can be obtained fairly easily from explicit
knowledge of the classes of G/N, where TV is an elementary abelian normal subgroup.

As in Section 1, let TV be an elementary abelian normal subgroup of G , and assume
that we know

(i) aset of representatives {/11TV,... ,/ijtTV} of the conjugacy classes of G/N,

(ii) for each class representative /i<TV a CGS of its centraliser d = Cc/N(hiN).
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As explained in Section 2, in order to find the total number of classes of G, we have
to find for each h^N, i = 1 , . . . , k, the number of orbits of Ci on N/\hi, N). However
by the CFB Lemma, the number bi of these orbits is

where / (c ) is the number of fixed points of c in its affine action on N/[h{,N].

Clearly conjugate elements in Ci have the same number of fixed points and so

1 v/(c).fo| /(c)
1 fai hk\°M)\ 4w*>i

where .R is a system of representatives of the conjugacy classes of Ci.

Now let c G R, that is, c is a coset of N, and c E.~c- Then the fixed points n[/i,-, iV]
of c on N/\hi,N] are the solutions of

(**) n[hi,N]=nc[hi,c][hi,N]

which for given hiN and c is an inhomogeneous system of linear equations. Let

ni[hi,N] and n2[hi,N] be two solutions of (**), then

that is, the set of solutions of (**) is either empty or a coset of CJV/(/IJ,N](C) • However
Cjv/[fc;,;v](c) is easily found as the eigeiispace with eigenvalue 1 of the linear operation
of c on N/[huN].

The case of the classes in N in Glasby's group G3 which was left out at the
beginning of this section becomes particularly easy. With hi = 1, we have [/i!,^V] = 1,
hence Ci = G/N, and R is the system of representatives of the conjugacy classes
of G/N. For each c 6 R we have to find |C|v(c)| for some c G c. Since CN(C) =

ker (1 - c) and [c,N] = im (1 - c ) , we have |7V| = \CN{c)\ • \[c,N]\, but the groups
[c, N] had already been computed in the course of finding the classes outside N, so
that indeed the total number of classes in Glasby's group is now easily found. However,
with an implementation of the complete counting method, this number can be found
much faster, namely in 16 minutes.

The CFB Lemma yields only the total number of classes, but since in cases like
Glasby's group, only groups Ci are involved in the actual counting, which are compar-
atively few (57) and small (|Cj| < 73 • 48), two different methods can be employed to
count the classes by their lengths.
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[9] Computation of conjugacy classes 289

One is the use of the generalised CFB Lemma that is described by Klass [11]. It
gives the number of orbits of a C, of given length / in terms of the Mobius function on
the subgroup lattice of d and of the numbers of (common) fixed points of subgroups
of Ci of index ^ /.

The second is the use of the Burnside matrix of C<. We recall briefly the relevant
facts. Let t / i , . . . ,Un be a set of representatives of the conjugacy classes of subgroups
of a finite group H, and let A///t/; be the permutation representation of H on the
coset space H/Ui. Then Afi/yl,... ,An/Un is a set of representatives of the equiv-
alence classes of transitive permutation representations of H. For any permutation
representation An of H on a set fi we therefore have

where rrii is the number of orbits of H on fi, which afford a (transitive) permutation
representation of H that is equivalent to &H/Ui. Obviously the number of orbits of a
given length / is then obtained as the sum of those rrij for which the index H : Ui is
equal to I.

Now if we restrict the representations An and &H/Ui t ° a subgroup Uj and denote
by fn{Uj) a nd fir/Ui(Uj), respectively, the number of points that Uj leaves fixed in
its action on fi and H/Ui then the decomposition of An given above yields

t=i

Since this holds for j = 1, . . . , n, this is an inhomogeneous system of n linear equations

for the n unknown values m;, once fn{Uj) and the fH/u{(Uj) are known.

Now fn/Ui{Uj) is the number of cosets Uig of Ui such that

(Vfc € Uj)(Uigh = Ui9) «• (Vfc e

Therefore ftj = fH/Ui(Uj) = ny • (NH(Ui) : Ui),

where ny is the number of conjugates of Ui containing Uj.

If we order the representatives U\, • • • , Un of the classes of subgroups of H such
that \Ui\ < \Uj\ for i < j , the fij form a triangular matrix (fa — 0 for i < j), which
is known as Burnside's table of marks [1].

In our application, this Burnside matrix can be calculated for each of the (com-
paratively few and small) groups d witli the help of Felsch's subgroup lattice program
[6], which has been incorporated into the SOGOS system. Since the affine operation
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of ft on Jl = N/{hi, N] is known, together with the subgroup lattice of Ci the num-
ber fn(Uj) can easily be determined for a representative of each class of conjugate
subgroups of Ci, so that the m; can be determined from the system (• * *) of linear
equations, which is even already in triangular form.

In the case of Glasby's group we obtain the following results.
We describe a class by a pair of numbers, for example (21,42), of which the first

is the order of an element in the class, the second the order of its centraliser, and we
indicate by 6x (21,42) that there are 6 such classes.

There are 48 classes in G3/N for which the full preimage is a class in G3 (and the
order of the elements is the same in G3/N and in G3 ). We list these together

6 x (7,16464), 6 x (14,336), 6 x (21,42), 6 x (28,28),

6 x (28,56), 6 x (42,42), 12 x (56,56).

There are 9 classes in G3/N for which the full preimages split into several classes
in G3 . We list these ordered by the classes in G3/N:

classes in

G3/N

(1, 16464)

(2, 336)

(3, 42)

(4, 56)

(4, 28)

(6, 42)

(7, 49)

(8, 56)

(8, 56)

classes in G3

1 x (1, 16464*

12 x (13, 6*13

28718 x (13, 2

1 x (2, 336 * 13

12 x (2 * 13, 4 <

1

1

1

1

1

1

1

x (3, 42 • 13"

x (4, 56 * 132

x (4, 28 * 132

x (6, 42 * 132

x (7, 49 * 132

x (8, 56 * 132

x (8, 56 * 132

1314),
1 4 ) , 12

, 1 3 " ) ,

8 ) , 12

>136),

), 24 x

), 24 x

), 24 x

), 24 x

), 24 x

), 24 x

), 24 x

12 x (13, 21*1314), 12 x (13, 8*

x (13, 4* 1314), 172368 x (13, 3

239150583286 x (13, 1314)

x (2*13, 8

28718 x (2

(3 * 13, 6 =

(4 * 13, 8 >

(4 * 13, 4 *

(6*13, 6*

(7 * 13, 7 i

(8* 13, 8=1

(8*13, 8*

*136), 12 x (2*13, 6

*13, 2*136)

K136), 344760 x (3*13

H32)

*132)

>132)

>132)

>132)

-132)

1314),

*1314),

*136),

, 3*13")

Note that the counting with the help of the Burnside matrix yields the number of
classes of given length, but in general not at the same time a separation by the pairs
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[11] Computation of conjugacy classes 291

(order, class length). In our case this has easily been inferred using the fact that |7V|

and the index G3 : N are coprime.

The determination of tliis table took less than 30 minutes in the same computing

environment as described in Section 4.

6. A REMARK ON COLLECTORS

Very recently, Soicher has shown by counting elementary operations, that a "from-
the-left" collector should be much faster on hard collections than a "from-the-right" col-
lector, and Vaughan-Lee has reported that replacement of the Havas-Nicholson "from-
the-right" collector [10] by a "frorn-the-left" collector written by him in the Canberra
Nilpotent Quotient program leads to a speed-up by a factor ranging up to 14 in certain
examples.

Felsch has written a Fortran version of Soicher's collector and has compared its
performance with that of his preprocessor generated "from-the-right" collector. The
results are rather puzzling: The square of the "maximal element" in Glasby's group G\
(that is, the element with maximal exponents in its representation as a normal word
in the PAG generating sequence) was formed about 800 times (!) faster by Soicher's
collector; squaring 10 "randomly chosen" elements from Glasby's group worked between
10 and 100 times faster. However, the determination of the classes of Glasby's group
took about 1.6 times as long (!!) with Soicher's collector. With other groups as well as
with other algorithms from SOGOS similar observations were made [7]. The reasons for
these surprising facts are not completely clear. Observations in these experiments seem
to indicate that algorithms like the one for the determination of the classes, working
down some series of factors closely linked to the PAG generating sequence of the soluble
group, work most of the time with short and sparse words, thus not giving these new
collectors a fair chance to show their power on long and dense words. So while with the
present range of applicability perhaps not too spectacular a gain can be expected from
the introduction of the new collectors into algorithms of the kind described here, this
topic needs further investigation, in which also preprocessor generated "from-the-left"
collectors will have to be considered, as well as the balance of the cost of repeated
preprocessing against the gain brought by a code tailored for a particular group.
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of intersections of subgroups of soluble groups in CAYLEY [9]. We thank the authors
for sending us a preprint. Further applications, in particular to the calculation of
normalisers of subgroups and to complements and supplements of normal subgroups,
are possible. We hope to be able to come back to these topics later on.
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