
JFP 32, e5, 19 pages, 2022. c© The Author(s), 2022. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of
Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/S0956796822000028

F U N C T I O N A L P E A R L

Super-naturals

R A L F H I N Z E
Fachbereich Informatik, Technische Universität Kaiserslautern, Germany

(e-mail: ralf-hinze@cs.uni-kl.de)

C O L I N R U N C I M A N
Department of Computer Science, University of York, UK

(e-mail: colin.runciman@york.ac.uk)

1 Introduction

Functional programmers who enjoy working with lazy data structures sometimes wish
numeric computations were lazy too. Usually they are not. Even in a “lazy” functional
language such as Haskell, if numeric expressions are evaluated at all, they are evaluated
completely. (At least, this is true for expressions of all predefined numeric types.) Such
chunks of eagerness can play havoc with the fine-grained machinery of lazy evaluation.
In particular, eager numeric operations are unsuitable for delicate measurements of lazy
data structures. For example, an innocent-looking comparison such as length xs > 0 forces
evaluation of the entire spine of the list xs—a needless expense.

One way to address this problem is to introduce an alternative numeric type whose
values are indeed lazy data structures. Although some applications require negative or
fractional values, the principal numeric requirement in general-purpose programming
is support for the natural numbers (Runciman, 1989). Following Peano (1889), one
specific option is to declare a datatype for successor chains with zero as a terminal
value.

data Peano=O | S Peano

By default, S is non-strict: in accordance with an early mantra of laziness (Friedman &
Wise, 1976), successor does not evaluate its argument. So if length computes a successor
chain, length xs > O evaluates almost immediately, as only the outermost constructor of
length xs is needed to decide whether O > O= False or S n > O= True applies. This is
how lazy natural numbers are implemented in the numbers library for Haskell (Augustsson,
2007).

However, arithmetic succession is like a fixed small combinator—it is even called S!
Performance is limited by such a fine-grained unit of work. We want a counterpart to the

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1017/S0956796822000028
https://orcid.org/0000-0001-5678-0286
mailto:ralf-hinze@cs.uni-kl.de
https://orcid.org/0000-0002-0151-3233
mailto:colin.runciman@york.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000028&domain=pdf
https://doi.org/10.1017/S0956796822000028

2 R. Hinze and C. Runciman

Fig. 1. A diagram of the super-natural n, for which value n= 17, width n= 7, and height n= 5.
Unlike the Ferrers diagrams often used for partitions, we show the parts in representation order.

super-combinators of Hughes (1982), attuned to the coarser-grained units of work in the
computation in hand. Meet super-naturals1.

2 Super-naturals

Viewed another way, Peano is isomorphic to the type [()], and there are not many inter-
esting operations on () values. A component type already equipped with arithmetic would
offer more scope. So, generalising successor chains 1+ 1+ · · · , our lazy number struc-
tures are partitions i+ j+ · · · where the component values i, j, . . . are positive whole
numbers.

We call these structures super-naturals. They occupy a spectrum, at the extreme ends of
which are counterparts of the eager monolithic Natural2 and the lazy fine-grained Peano.
But there are many intermediate possibilities, with partitions of different sizes.

infixr 6 :+
data Super natural=O | !natural :+ Super natural

A super-natural is either zero, represented by O, or of the form p :+ ps3 where p is an
evaluated part but ps may be unevaluated. The exclamation mark is a strictness annotation,
forcing the first argument of :+ to be fully evaluated. The first, but not the second, so :+ is
a form of delayed addition. The parametric natural type can, in principle, be any numeric
type that implements mathematical naturals with operations for arithmetic and comparison.

Although the invariant that all parts of a super-natural are positive is not enforced by the
type system, the smart constructor .+ takes care to avoid zero parts. An analogous smart
product .∗ will also be useful.

infixr 6 .+
infixr 7 .∗
(.+), (.∗) :: (Num natural, Eq natural)⇒ natural→ Super natural→ Super natural
p .+ ps= if p 0 then ps else p :+ ps
p .∗ ps = if p 0 then O else if p 1 then ps else fmap (p∗) ps

The type Super is parametric, even functorial in the underlying number type, as
witnessed by fmap:

1 The name has also been used for Steinitz numbers, or for numbers of the form 104n, both otherwise
unconnected with the super-naturals described here.

2 Defined in Numeric.Natural, a basic Haskell library.
3 In Haskell, symbolic data constructors, which are infix by default, must start with a colon.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 3

fmap :: (a→ b)→ (Super a→ Super b)
fmap f O =O
fmap f (p :+ ps)= f p :+ fmap f ps

Indeed, super-naturals are like redecorated lists, in which :+ as “cons” evaluates the head
but not the tail, and O replaces “nil”. The functions whole and parts convert between the
two views.

whole :: (Num natural, Eq natural)⇒ [natural]→ Super natural
whole= foldr (.+) O

parts :: Super natural→ [natural]
parts O = []
parts (p :+ ps)= p : parts ps

The value function reduces a super-natural to its natural value. The width and height func-
tions locate it in the representational spectrum. The dimensional terminology reflects a
diagrammatic view of super-naturals: see Figure 1 for an example.

value, width, height :: (Num natural, Ord natural)⇒ Super natural→ natural

value O = 0
value (p :+ ps)= p+ value ps

width O = 0
width (:+ ps) = 1+width ps

height O = 0
height (p :+ ps)=max p (height ps)

If width n � 1 then n is in its most compact form, and height n= n. If width n= value n
then n is like a Peano chain, and height n � 1.

3 Basic arithmetic

Let us first establish a few guiding principles we choose to adopt in our development of
arithmetic and comparative operators for super-naturals.

As wide super-naturals may be derived from lazy data structures, operations on them
should also be lazy, avoiding needless evaluation. However, we want to avoid the exces-
sive widths of results that would arise if we merely replicated the unary chains of Peano
arithmetic. Instead, we seek opportunities to express the arithmetic operations on super-
naturals in terms of the corresponding natural operations applied to their parts. Striking
a balance between the requirement for laziness, and the requirement to supply results of
moderate width, we aim for arithmetic operations with results no wider than their widest
argument. In particular, arithmetic on compact super-naturals (of width 0 or 1) should give
compact results.

As we aspire to laziness, given arguments in constructed form (O or p :+ ps), we aim to
produce a result in constructed form quickly. More specifically, we aim wherever possible
to define super-natural operators with a bounded-demand property: only when the kth part
of a result is demanded need any kth part of an argument be evaluated.

Another desirable characteristic of super-natural arithmetic is that operations satisfy
the usual algebraic equivalences in a strong sense. Not only are the natural values of

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

4 R. Hinze and C. Runciman

equated expressions the same (as they must be for correctness) but when evaluated
they also have identical representations as super-naturals. Such strong equivalences give
assurance to programmers choosing the most convenient arrangement of a compound arith-
metic expression: they need not be unduly concerned about the pragmatic effect of their
choice.

Addition. For the Peano representation, addition is concatenation of S-chains. For
super-naturals, merely concatenating lazy partitions would miss an opportunity. We add
super-naturals by zipping them together, combining their corresponding parts under natural
addition, applying the middle-two interchange law (i+m)+ (j+ n)= (i+ j)+ (m+ n).4

O + qs = qs
ps +O = ps
(p :+ ps)+ (q :+ qs)= (p+ q) :+ (ps+ qs)

Viewing super-naturals as elements of a positional base 1 number system, our super-natural
addition amounts to the standard school algorithm for adding multidigit numbers, but with
two simplifications. (1) As the base is 1, positions do not matter, so there is no need
to align digits. (2) There is no need for “carried” values as the digits can be arbitrarily
large.

Instead of addition leading to wider and wider partitions, we have
width (m+ n)=max (width m) (width n). We also have height (m+ n) � height m+
height n—not an equality as the highest parts of m and n may be in different positions.

This super-natural + is strongly commutative and associative. Because of the zip-like
recursion pattern, addition also has the bounded-demand property.

Natural subtraction. It is tempting to extend the zippy approach to natural subtraction,
sometimes called monus and written ·−. Tempting, but wrong as the counterpart of the
middle-two interchange law (i+m) ·− (j+ n)= (i ·− j)+ (m ·− n) simply does not hold,
e.g. (2+ 3) ·− (4+ 1)= 0 2= (2 ·− 4)+ (3 ·− 1). Often, properties linking addition and
subtraction are conditional as subtraction is not a full inverse of addition. Specifically,
(a ·− b)+ b= a only holds if a � b. However, there are two useful value-preserving
transformations on super-naturals.

�p1 :+ (p2 :+ ps)�= �(p1 + p2) :+ ps� (join)

�p :+ ps�= �k :+ (p− k) :+ ps� if 0 < k < p (split)

The Oxford brackets �–� are the semantic counterpart of value, mapping a super-natural to
its denotation, an integer value—not a natural number, for reasons to become clear later.

By recursive splitting, we can reduce natural subtraction of super-naturals to natural
subtraction of their constituent parts.5

4 We overload the symbol ‘+’, using it to denote both addition of super-naturals and addition of their natural
parts. In Haskell, predefined type classes specify the expected signatures of numeric operators. To introduce a
new type of number, further overloading these signatures, one declares class instances defining the operators
for this type without any further signature declarations. See the Appendix for details of the class instances for
super-naturals.

5 We are also overloading the symbol ‘ ·−’, introducing a suitable type class called Monus, see Appendix.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 5

O ·− qs =O
ps ·−O = ps
(p :+ ps) ·− (q :+ qs)= case compare p q of

LT → ps ·− ((q ·− p) :+ qs)
EQ→ ps ·− qs
GT→ ((p ·− q) :+ ps) ·− qs

Despite the possible splitting of arguments in recursive calls, the result of a super-
natural subtraction has dimensions bounded by those of the first argument: width (m ·− n) �
width m and height (m ·− n) � height m.

However, natural subtraction is necessarily more eager than addition. It must fully eval-
uate at least one argument before it can determine even the outermost construction of a
result.

Of course subtraction is neither commutative nor associative. However, “subtractions
commute” as we have the strong equivalence (k ·−m) ·− n= (k ·− n) ·−m. These subtraction
chains are also strongly equivalent to k ·− (m+ n).

Multiplication. Turning to super-natural multiplication, we need to distribute one sum
over the other as illustrated in the following diagram.

(1 :+ 3 :+ 2 :+O) ∗ (1 :+ 2 :+ 5 :+ 1 :+O)

1

3

2

1 2 5 1

One option is to enumerate the rectangles of the matrix in one way or another:

ps ∗ qs=whole [p ∗ q | p← parts ps, q← parts qs]
ps ∗ qs=whole [p ∗ q | q← parts qs, p← parts ps]

Here, width (m ∗ n)=width m ∗width n. Such expansion is needlessly extravagant, miss-
ing opportunities for combination of natural values. To decrease the width of the resulting
product, we could sum rows or columns of the matrix.

ps ∗ qs=whole (map sum [[p ∗ q | q← parts qs] | p← parts ps])
ps ∗ qs=whole (map sum [[p ∗ q | p← parts ps] | q← parts qs])

Expansion is avoided, as width (m ∗ n)=width m or =width n. But now either (m∗) or
(∗n) is hyper-strict—assuming natural ∗ is bi-strict, so natural sum is hyper-strict. To avoid
the bias toward an argument we could sum the diagonals instead (a suitable definition of
diagonals is left as an exercise for the reader).

ps ∗ qs=whole (map sum (diagonals [[p ∗ q | q← parts qs] | p← parts ps]))

Expansion is moderate as for non-O arguments: width (m ∗ n)=width m+width n− 1.
However, even this expansion is questionable, and diagonalisation is quite costly.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

6 R. Hinze and C. Runciman

All of these approaches are unsatisfactory in one way or another. Our preferred method
of super-natural multiplication exploits the distribution of multiplication over addition in
its simplest form: (i+m) ∗ (j+ n)= i ∗ j+m ∗ j+ i ∗ n+m ∗ n.

O ∗ qs =O
ps ∗O =O
(p :+ ps) ∗ (q :+ qs)= (p ∗ q) .+ ((q .∗ ps)+ (p .∗ qs)+ (ps ∗ qs))

Observe that three variants of multiplication are used: ∗ is overloaded to denote both
multiplication of naturals and of super-naturals, .∗ multiplies a super-natural by a
natural.

Now width (m ∗ n) � max (width m) (width n), a property acquired by the use of super-
natural addition. As there is no multiplicative increase in width, there must be one in height.
Indeed, the tightest bound on height in terms of argument dimensions is

height (m ∗ n) � 2 ∗min (width m) (width n) ∗ height m ∗ height n.

The following example is instructive. The height bound is 2 ∗min 6 6 ∗ 1 ∗ 1= 12.

�whole [1, 1, 1, 1, 1, 1]
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+O
�it ∗ it
1 :+ 3 :+ 5 :+ 7 :+ 9 :+ 11 :+O

Do you recall the visual proof that the first n odd numbers sum to n squared? Well,
this is exactly what is going on here. Super-natural multiplication sums up the L-shaped
areas.

Multiplication defined in this way is strongly associative and commutative, and it is
strongly distributive over addition. Multiplication also has the bounded-demand property.

Natural division. We defer a discussion of natural division and modulus/remainder as it
will be useful to talk about comparison first.

4 Ordering

Evaluation of arithmetic expressions is typically triggered by comparisons6, and the rep-
resentation of super-naturals enables us to make these comparisons lazy. In particular, to
decide whether a super-natural is zero, we only need to know the outermost constructor:
any super-natural of the form p :+ ps must be greater than zero, as all parts of a super-
natural are positive. If we had negative parts, then comparison would be hyper-strict in
both arguments, defeating the whole point of the exercise.

6 The numeric interfaces in Haskell feature a multitude of constructors and modifiers, but only a few observers,
the methods of the classes Eq and Ord.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 7

Comparison. The function compare employs the same recursion scheme as natural sub-
traction, using both comparison and subtraction over the underlying natural components.

compare O O = EQ
compare O (:+) = LT
compare (:+) O =GT
compare (p :+ ps) (q :+ qs)= case compare p q of

LT → compare ps ((q ·− p) :+ qs)
EQ→ compare ps qs
GT→ compare ((p ·− q) :+ ps) qs

Comparison fully evaluates the spine of one of its arguments, but rarely of both. So it
exhibits similar strictness behaviour to natural subtraction, which is hardly surprising since
a � b if and only if a ·− b= 0.

Minimum and maximum. With compare defined, Haskell defaults to generic definitions
of all the boolean-valued comparison operators. These simply inspect compare results in
the obvious way. There are also generic defaults for min and max

min m n = if m � n then m else n
max m n= if m � n then m else n

but we must not settle for these defaults. For the super-naturals they are excessively strict,
giving no result until both m and n are evaluated to the extent required for compare to give
its atomic result. Instead, we can give max and min their own explicit lazier definitions,
re-using the recursion scheme of compare.

min O qs =O
min ps O =O
min (p :+ ps) (q :+ qs)= case compare p q of

LT → p :+min ps ((q ·− p) :+ qs)
EQ→ p :+min ps qs
GT→ q :+min ((p ·− q) :+ ps) qs

max O qs = qs
max ps O = ps
max (p :+ ps) (q :+ qs)= case compare p q of

LT → p :+max ps ((q ·− p) :+ qs)
EQ→ p :+max ps qs
GT→ q :+max ((p ·− q) :+ ps) qs

These definitions can be seen as productive variants of comparison. Their correctness
hinges on the fact that addition distributes over both minimum ↓ and maximum ↑, e.g.:

(i+m) ↓ (j+ n)

= { assume i < j and property of monus }
(i+m) ↓ (i+ (j ·− i)+ n)

= { addition distributes over minimum: x+ (y ↓ z)= (x+ y) ↓ (x+ z) }
i+ (m ↓ ((j ·− i)+ n)),

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

8 R. Hinze and C. Runciman

We saw that addition reduces the width of both arguments in lockstep — a zip-like
pattern. By contrast, most recursive calls in the compare family of functions only reduce
the width of one argument—a merge-like pattern. We see the impact in the worst-case
widths of results, which for max are the sums of argument widths, and for min just one
less:

�max (1 :+ 2 :+ 2 :+ 2 :+ 2 :+O) (2 :+ 2 :+ 2 :+ 2 :+ 2 :+O)
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+O
�min (1 :+ 2 :+ 2 :+ 2 :+ 2 :+O) (2 :+ 2 :+ 2 :+ 2 :+ 2 :+O)
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+O

The first of these examples also illustrates a curious and disappointing feature of max: it
factors out the minimum of the first parts in each step, not the maximum as one might
reasonably expect.

Minimum revisited. Can we rework the definition of min so that it uses a zip-like recur-
sion pattern? Yes, we can! Consider the first recursive call in the definition of min. Instead
of combining q ·− p and ps to form the super-natural (q ·− p) :+ ps we simply keep the sum-
mands apart. To this end, alongside each of the original min arguments we introduce an
auxiliary “accumulator” argument.

�min-acc m ps n qs�= (m+ �ps�) ↓ (n+ �qs�),

Correctness relies on an applicative invariant that at least one accumulator is zero. Initially,
both are zero.7

newmin :: (Monus natural)⇒ Super natural→ Super natural→ Super natural
newmin ps qs=min-acc 0 ps 0 qs

min-acc :: (Monus natural)⇒
natural→ Super natural→ natural→ Super natural→ Super natural

min-acc m O n O =O
min-acc m O n (q :+ qs)= dotMin m ((n+ q) :+ qs)
min-acc m (p :+ ps) n O = dotMin n ((m+ p) :+ ps)
min-acc m (p :+ ps) n (q :+ qs)=min p′ q′ :+min-acc (p′ ·− q′) ps (q′ ·− p′) qs

where p′ = p+m
q′ = q+ n

Just as we defined .+ and .∗ earlier, to combine natural and super-natural arguments, here
we need an asymmetric version of minimum, called dotMin.

dotMin :: (Monus natural)⇒ natural→ Super natural→ Super natural
dotMin 0 qs =O
dotMin m O =O
dotMin m (q :+ qs)= if m � q then m :+O else q :+ dotMin (m ·− q) qs

Maximum revisited. Theoretically, maximum is dual to minimum. However, when we
define them over super-naturals, there are fundamental obstacles in the way of a symmetric

7 As a reminder, the type class Monus introduces natural subtraction ·−.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 9

formulation. There is no convenient greatest element dual to the least element O8. For a
non-zero super-natural, the first part gives a lower bound for the entire value, but there is
no dual representation of an upper bound9.

So implementation of max differs in some interesting ways from min. Recall that
min factors out the smaller of the first parts, e.g. reducing min (9 :+m) (2 :+ n) to
2 :+min ((9 ·− 2) :+m) n. This suggests that max should factor out the larger part, e.g.
reducing the call max (9 :+m) (2 :+ n) to 9 :+max m ((2− 9) :+ n). But now the alarm bells
are ringing, as 2− 9 is negative, beyond the realm of natural numbers!

One way out of this difficulty is to interpret the accumulators used for max “negatively”.
Whereas for min-acc the argument-and-accumulator pairs represented natural sums, now,
for max-acc, let these pairs represent integer differences:

�max-acc ps m qs n�= (�ps�−m) ↑ (�qs�− n).

Viewing super-naturals as base 1 numerals, in max-acc the m and n arguments are
borrowed values, whereas in min-acc they are carried values.

Turning these ideas into equational definitions:

newmax :: (Monus natural)⇒ Super natural→ Super natural→ Super natural
newmax ps qs=max-acc ps 0 qs 0

max-acc :: (Monus natural)⇒
Super natural→ natural→ Super natural→ natural→ Super natural

max-acc O m qs n= qs . ·− n
max-acc ps m O n= ps . ·−m
max-acc (p :+ ps) m (q :+ qs) n=max (p ·−m) (q ·− n) :+max-acc ps (b ·− a) qs (a ·− b)

where a= p+ n
b= q+m

Again, correctness relies on the invariant that m= 0 or n= 0. This invariant implies
max (0−m) (i− n)=max 0 (i− n) justifying the first base case, where max-acc spe-
cialises to monus! Once more we need an operator, this time . ·−, to combine natural and
super-natural values:

(. ·−) :: (Monus natural)⇒ Super natural→ natural→ Super natural
ps . ·− 0 = ps
O . ·−m=O
(p :+ ps) . ·−m= if p > m then (p ·−m) :+ ps else ps . ·− (m ·− p)

Look again at the last equation of max-acc. As its argument–accumulator pairs represent
integer differences, we factor out the maximum of p−m and q− n to form the first part.
However, this maximum difference is sure to be positive—recall the applicative invari-
ant for max-acc, and the data invariant that super-natural parts are positive. So replacing
any negative difference by zero does not alter max’s choice: it returns the other (positive)
difference. Writing max (p ·−m) (q ·− n) for (p−m) ↑ (q− n) is not only valid, it avoids
undefined results when standard subtraction is partially defined for natural.

8 Though there are many infinite super-naturals, there is no argument pattern by which they can be recognised.
9 We thank an anonymous reviewer for this observation about bounds.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

10 R. Hinze and C. Runciman

As the definition of max-acc is probably the most complicated in the paper, we provide
a derivation in Appendix 2.

Properties revisited. So have we curtailed the sum-of-widths behaviour of max and
min? Yes, as desired, we now have width (newmax m n) � max (width m) (width n)
and width (newmin m n) � max (width m) (width n). With min on the left, one
might expect min on the right, but that inequality does not hold: e.g.
newmin (1 :+ 1 :+O) (2 :+O)= 1 :+ 1 :+O. We also have corresponding bounds on
height as height (newmax m n) � max (height m) (height n) and height (newmin m n) �
max (height m) (height n). Here again, for newmin a minimum depth variant is plausible
but wrong: e.g. newmin (1 :+ 3 :+O) (2 :+ 2 :+O)= 1 :+ 3 :+O.

As for equivalences, newmin is strongly commutative, associative and idempotent.
However, newmax only scores two out of three, as it is not strongly associative. Here
is a counter-example:

� newmax (newmax (2 :+O) (1 :+ 1 :+ 1 :+O)) (1 :+ 1 :+ 2 :+O)
2 :+ 1 :+ 1 :+O
� newmax (2 :+O) (newmax (1 :+ 1 :+ 1 :+O) (1 :+ 1 :+ 2 :+O))
2 :+ 2 :+O

As for laziness, newmin has the bounded-demand property, but newmax does not share
this property. Here is a counter-example:

� newmax (3 :+O) (1 :+ 1 :+⊥)
3 :+⊥

To determine the second part (if any) of the result, newmax needs to evaluate beyond the
second part of the second argument. Does the first part of the result already hold the entire
maximum value, or will the second argument eventually exceed it?

We deliberately made the first part of a non-zero newmax result the natural maximum
of the first parts of its arguments. This choice is consistent with laziness: it derives as
much information as possible from immediately available argument parts, reducing the
likelihood that any further result part (and therefore further argument parts) will be needed.
Putting the previous example in a larger context:

� newmax (3 :+O) (1 :+ 1 :+⊥) > (2 :+O)
True

The result would have been ⊥ using our original super-natural max. However, in other
contexts, where more parts of a newmax result are needed and an initially maximal argu-
ment is exhausted, the other argument may have to be evaluated beyond the limits for a
bounded-demand operation. We cannot have our cake and eat it!

5 Super-natural division

Super-natural division with remainder is a more tricky problem. Resorting to repeated
subtraction would be no more attractive than mere repeated addition was for multiplication.
Instead we seek a way to apply natural division to component parts.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 11

As a warm-up, let us first complete our family of point-wise operations: dotDiv
is a special case of natural division where the divisor is a natural, rather than a
super-natural.

dotDiv :: (Integral natural)⇒ Super natural→ natural→ Super natural
dotDiv O d =O
dotDiv (p :+O) d = (p div d) .+O
dotDiv (p1 :+ p2 :+ ps) d = q .+ dotDiv ((r+ p2) :+ ps) d

where (q, r)= divMod p1 d

The recursive case is derived by join and split transformations: the super-natural divi-
dend p1 :+ p2 :+ ps, which equals ((p1 div d) ∗ d + p1 mod d) :+ p2 :+ ps, is rewritten to the
super-natural (p1 div d) ∗ d :+ (p1 mod d + p2) :+ ps.

Concerning division of super-naturals, a div b cannot be lazier than a < b because
we can implement < in terms of div: a < b if and only if a div b= 0. To compute
a mod b, complete evaluation of a is required; indeed, there is no sensible, lazy dotMod
operation.

divMod O= error "division by zero"
divMod a b = case compare a b of

LT → (0, a′ .+O)
EQ→ (1, 0)
GT→ (dotDiv a b′, (a′mod b′) .+O)
where a′ = value a

b′ = value b

This definition squeezes out the last bit of laziness: if a < b then a mod b= a; we can
return a in compact form as it is fully evaluated by the comparison, but b need not be fully
evaluated. However, if a > b then a mod b is inevitably eager.

Like subtraction, division gives results with dimensions bounded by those of the first
argument, despite possible additions to its parts in recursive calls. That is, assuming
non-O n, we have both width (m div n) � width m and height (m div n) � height m. All
remainders are compact: width (m mod n) � 1 and height (m mod n) < value n.

Also like subtraction, division is neither commutative nor associative, yet “divisions
commute” as the strong equivalence (k div m) div n= (k div n) div m holds. These division
chains are also strongly equivalent to k div (m ∗ n). Any equivalence between mod results
is guaranteed to be a strong equivalence, as all such results are compact.

6 Application: measures

Returning to our introductory motivation, in this section we explore the use of super-
natural arithmetic to measure lazy data structures.

Measuring binary search trees. There are at least three different measures of a binary
search tree: the number of keys stored in it (size), the length of the shortest path from the
root to a leaf (min-height), and the length of the longest one (max-height).

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

12 R. Hinze and C. Runciman

data Tree elem= Leaf |Node (Tree elem) elem (Tree elem)

size, min-height, max-height :: (Monus natural)⇒ Tree elem→ Super natural

size Leaf = 0
size (Node l x r)= 1 :+ (size l+ size r)

min-height Leaf = 0
min-height (Node l x r) = 1 :+min (min-height l) (min-height r)

max-height Leaf = 0
max-height (Node l x r)= 1 :+max (max-height l) (max-height r)

These definitions may look quite standard, but there is an important twist: in some places
they use delayed addition :+ rather than overloaded addition +. Why? Because if these
functions used only the methods of the predefined numeric classes, they would exhibit the
very strict behaviour we deprecated in our introduction.

The size function uses both delayed and overloaded addition, which has an interesting
effect. To showcase its behaviour, we first define an insert function as a way to grow trees.

insert :: (Ord a)⇒ a→ Tree a→ Tree a
insert x Leaf =Node Leaf x Leaf
insert x (Node l y r)= if x � y then Node (insert x l) y r

else Node l y (insert x r)

Now we generate a list of a million random elements, fold this list by insertion into a large
search tree, and measure it.

� let rs= take 1000000 (randomRs (0, 999999) (mkStdGen 19650702))
� let t= foldr insert Leaf rs
� size t
1 :+ 2 :+ 4 :+ 8 :+ 16 :+ 32 :+ 64 :+ 125 :+ 247 :+ 480 :+ 910 :+ 1662 :+ 2924 :+ 5007 :+
8120 :+ 12603 :+ 18514 :+ 26210 :+ 35123 :+ 44581 :+ 54252 :+ 63068 :+ 70193 :+
74763 :+ 76634 :+ 75907 :+ 72847 :+ 67298 :+ 60435 :+ 52327 :+ 44229 :+ 36074 :+
28318 :+ 21560 :+ 15683 :+ 10892 :+ 7388 :+ 4774 :+ 2957 :+ 1769 :+ 982 :+ 499 :+
258 :+ 144 :+ 72 :+ 31 :+ 11 :+ 2 :+O

By the combined application of :+ and+, size processes the tree breadth-first, and the k-th
part of its result is the number of elements on level k! The first 7 parts are exact powers
of two, which tells us that the first 7 levels of the tree are full. But then the leaves start,
so the tree’s minimal height is 7. Finally, the width of this super-natural size gives us the
maximal height of the tree—it is 48.

The two functions measuring path lengths behave quite differently. Thanks to lazy
evaluation, min-height is a lot faster than max-height—around 3× faster, for this example.

�min-height t
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+O
�max-height t
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ · · ·
�width it
48

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 13

These measure functions also work smoothly with infinite trees. To illustrate,
grow-except grows an infinite tree with only a single leaf at some given position.

grow-except :: (Num elem, Eq elem)⇒ elem→ Tree elem
grow-except n= grow 0

where grow k = if k n then Leaf
else Node (grow ((2 ∗ k)+ 1)) k (grow (2 ∗ (k + 1)))

Any result of grow-except has infinite size and infinite maximal height, but because of the
leaf it has finite minimal height.

�min-height (grow-except 4711)
1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+ 1 :+O
�max-height (grow-except 4711) > it
True
� size (grow-except 10000000) > 3
True

As expected, computations requiring only a finite prefix of infinite max-height or size
results do not diverge. The last call, for example, returns almost instantly.

However, these example evaluations also demonstrate that the height functions return
only successor chains. Such chains may be tolerable for height measures of “bushy” struc-
tures such as trees. But what about structures with a unit branching factor, such as the
ubiquitous list?

Measuring lists. For lists, the three measure functions size, min-height and max-height
coincide: all are equivalent to length. So first, let us similarly define a variant of Haskell’s
length function that gives a super-natural result, just replacing the single + in the usual
definition by :+.

length :: (Monus natural)⇒ [elem]→ Super natural
length [] = 0
length (x : xs)= 1 :+ length xs

The length of a list is now given by an equally long successor chain. Even though super-
natural arithmetic is quite well-behaved—we have been careful to ensure that the results
of arithmetic operations are no wider than their widest argument—by pursuing the goal of
laziness, we seem to have boxed ourselves into a corner with Peano!

How can we compute narrower and higher super-natural lengths, without abandon-
ing laziness and reverting to compact atomic values? Recall our width-limiting approach
to arithmetic. Given two super-naturals to be added, for example, we zipped them
together, typically obtaining a higher result. Though we only have a single super-natural
length, we can zip it with itself by lazily splitting its parts into two super-natural
“halves” and adding them together. Instead of fiddling with the length definition, we pre-
fer a modular approach. We introduce a general-purpose combinator for super-natural
compression.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

14 R. Hinze and C. Runciman

compress :: (Monus natural)⇒ Super natural→ Super natural
compress ps= odds ps+ evens ps

odds, evens :: Super natural→ Super natural
odds O =O
odds (p :+ ps) = p :+ evens ps
evens O =O
evens (:+ ps)= odds ps

Now there is a simple and modular way to obtain more compact super-natural lengths:
apply compress · length. If even compressed super-natural lengths are still too wide, here
is one of many ways to achieve greater compaction: the progressively tighter squeeze
function halves width again for each successive part.

squeeze :: (Monus natural)⇒ Super natural→ Super natural
squeeze O =O
squeeze (p :+ ps)= p :+ squeeze (compress ps)

For example, squeezing an infinite successor chain yields the powers of two.

� squeeze (whole [1 . .])
1 :+ 2 :+ 4 :+ 8 :+ 16 :+ 32 :+ 64 :+ 128 :+ 256 :+ 512 :+ 1024 :+ . . .

� squeeze (whole [1 . .]) > 1000000
True

There is not much difference in running time between squeeze (whole [1 . .]) > 1000000
and whole [1 . .] > 1000000. But the squeezed version consumes less memory.

7 Summary and concluding remarks

There is quite a gulf between atomic numeric values and Peano chains. We set out to span
this gulf by developing numeric operations for a flexible intermediate representation—
the super-natural number. Allowing many alternative representations for the same value
gives programmers flexibility. They can choose, in any specific application, what degree of
strictness or laziness they prefer. In practice, their overall choice is most simply expressed
as a particular combination of individual choices between delayed and zipped super-natural
addition. Even the two extreme options of atomic values (always zip, stay compact) and
Peano chains (always delay, stay unary) are still available.

Non-zero super-naturals are simply partitions, freely ordered in any convenient
sequence, and typically evaluated in that order. We never seriously considered any stronger
data invariant. We did briefly consider a weaker one, allowing zero parts, but rejected it as
it seemed to cause more problems than it solved.

In our development of the other numeric operations, we aimed to be even handed. They
had to be lazy, but not so lazy as to expand super-natural widths beyond those of the widest
operands. We tried hard to define operations to satisfy all the equivalences a programmer
might reasonably expect. We checked all the properties we claim by testing the first million
cases, and some by constructing a general proof. Addition, multiplication and minimum
are particularly well-behaved; subtraction, division and remainder are of necessity stricter

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 15

and asymmetric, yet still satisfy some pleasing laws; maximum is the worst-behaved—if
any reader thinks they know how to reform it, please tell us!

Thinking of the relationship between numbers and lazy data structures, various data
structures have been modelled after number systems. We have already observed in more
than one context that the structure of lists matches the Peano number type. The textbook
by Okasaki (1998) contains a wealth of further examples. In due time, perhaps someone
will devise a general-purpose data structure modelled after super-naturals.

Meanwhile, super-naturals themselves are already data structures. They are containers
of part values of their parametric natural type. They even meet their own requirements for
such parts. Super-super-naturals anyone?

Acknowledgements

We thank Jeremy Gibbons, John Hughes and three anonymous reviewers for their helpful
comments on a previous version of this article.

Conflicts of interest

None.

References

Augustsson, L. (2007) Numbers: various number types. Accessed April 28, 2021. Available at:
http://www.haskell.org/package/numbers

Friedman, D. P. & Wise, D. S. (1976) CONS should not evaluate its arguments. In Proceedings of
3rd International Colloqium on Automata Languages and Programming, pp. 257–284.

Hughes, R. J. M. (1982) Super-combinators: A new implementation method for applicative
languages. In Proceedings of ACM Symposium on Lisp and Functional Programming, pp. 1–10.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.
Peano, G. (1889) The principles of arithmetic, presented by a new method. In A Source Book in

Mathematical Logic, 1879–1931, van Keijenoort, J. (ed). Harvard University Press, pp. 83–97.
Runciman, C. (1989) What about the natural numbers? Comput. Lang. 14(3), 181–191.

1 Appendix: Class instances

Haskell predefines an elaborate hierarchy of numeric type classes: Num, Real, Integral,
Fractional, Floating, RealFrac, and RealFloat. Unfortunately, even the base class Num
includes negation, absolute value, and sign. So natural number types do not enjoy
natural instance definitions. For example, the predefined type of natural numbers (in
Numeric.Natural) has a partial subtraction operation: applications such as 11− 47 raise
an arithmetic underflow exception.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

http://www.haskell.org/package/numbers
https://doi.org/10.1017/S0956796822000028

16 R. Hinze and C. Runciman

Fig. 2. Super-naturals: non-numeric instances.

To avoid assumptions about subtraction in the underlying natural arithmetic, for the
super-naturals, we introduce a custom type class for natural subtraction.

infixl 6 ·−
class (Num natural, Ord natural)⇒Monus natural where

(·−) :: natural→ natural→ natural

a ·− b= if a � b then 0 else a− b

The default definition of monus uses explicit case distinction, rather than max 0 (a− b), as
max is typically bi-strict.

instance Monus Int
instance Monus Integer
instance Monus Natural
instance (Monus natural)⇒Monus (Super natural) where

O ·− qs =O
ps ·−O = ps
(p :+ ps) ·− (q :+ qs)= case compare p q of

LT → ps ·− ((q ·− p) :+ qs)
EQ→ ps ·− qs
GT→ ((p ·− q) :+ ps) ·− qs

Figures 2, 3, 4, and 5 give the instance declarations for non-numeric type classes (Functor
and Show), basic arithmetic (Num), equality and comparison (Eq and Ord), and enumera-
tion and integral operations (Enum, Real, and Integral). Each numeric type-class instance
requires that the underlying natural parts type is an instance of Monus.

2 Appendix: Derivation of max-acc

The Oxford brackets map a partition to its denotation, an integer value.

�O�= 0 (2.1a)

�p :+ ps�= p+ �ps� (2.1b)

Recall that the argument-and-accumulator pairs of max-acc represent integer differences:

�max-acc ps m qs n�= (�ps�−m) ↑ (�qs�− n). (2.2)

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 17

Fig. 3. Super-naturals: basic arithmetic.

Fig. 4. Super-naturals: equality and comparison.

Fig. 5. Super-naturals: enumeration and integral operations.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

18 R. Hinze and C. Runciman

The derivation of max-acc relies furthermore on the applicative invariant that at least one
accumulator is zero: m= 0 or n= 0.

Base case: we reason

�max-acc O m qs n�

= { specification of max-acc (2.2) }
(�O�−m) ↑ (�qs�− n)

= { definition of �–� (2.1a) }
(0−m) ↑ (�qs�− n)

= { applicative invariant: m= 0 or n= 0, and data invariant: m � 0 and �qs�� 0 }
0 ↑ (�qs�− n)

= { definition of monus: x ·− y= 0 ↑ (x− y) }
�qs� ·− n.

The proof for the other base case is similar.
Inductive case: we factor out the larger of the differences, (p−m) ↑ (q− n), to form

the first part, and then work towards a situation where we can apply the specification (2.2)
from right to left. We reason

�max-acc (p :+ ps) m (q :+ qs) n�

= { specification of max-acc (2.2) }
(�p :+ ps�−m) ↑ (�q :+ qs�− n)

= { definition of �–� (2.1b) }
(p+ �ps�−m) ↑ (q+ �qs�− n)

= { define p′ := p−m and q′ := q− n }
(p′ + �ps�) ↑ (q′ + �qs�)

= { addition distributes over maximum: x+ (y ↑ z)= (x+ y) ↑ (x+ z) }
(p′ ↑ q′)+ ((p′ − (p′ ↑ q′)+ �ps�) ↑ (q′ − (p′ ↑ q′)+ �qs�))

= { arithmetic: x− y+ z= z− (y− x) }
(p′ ↑ q′)+ ((�ps�− ((p′ ↑ q′)− p′)) ↑ (�qs�− ((p′ ↑ q′)− q′)))

= { subtraction distributes over maximum: (x ↑ y)− z= (x− z) ↑ (y− z) }
(p′ ↑ q′)+ ((�ps�− (0 ↑ (q′ − p′))) ↑ (�qs�− ((p′ − q′) ↑ 0)))

= { define a := p+ n and b := q+m and note that p′ − q′ = a− b }
(p′ ↑ q′)+ ((�ps�− (0 ↑ (b− a))) ↑ (�qs�− ((a− b) ↑ 0)))

= { definition of monus: x ·− y= 0 ↑ (x− y) }
(p′ ↑ q′)+ ((�ps�− (b ·− a)) ↑ (�qs�− (a ·− b)))

= { specification of max-acc (2.2) }
(p′ ↑ q′)+ �max-acc ps (b ·− a) qs (a ·− b)�

= { applicative invariant: m= 0 or n= 0, and data invariant: p > 0 and q > 0 }
((p ·−m) ↑ (q ·− n))+ �max-acc ps (b ·− a) qs (a ·− b)�

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

Super-naturals 19

= { definition of �–� (2.1b) and x ↑ y=max x y for non-negative operands }
�max (p ·−m) (q ·− n) :+max-acc ps (b ·− a) qs (a ·− b)�.

The final rewrites aim to avoid the use of integer subtraction in the body of max-acc.
Finally, observe that the applicative invariant is maintained in the recursive call, as at least
one of a ·− b and b ·− a is zero.

https://doi.org/10.1017/S0956796822000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000028

	Functional Pearl
	Introduction
	Super-naturals
	Basic arithmetic
	Ordering
	Super-natural division
	Application: measures
	Summary and concluding remarks
	Appendix: Class instances
	Appendix: Derivation of max-acc

