ON ALGEBRAS OF DOMINANT DIMENSION ONE
BRUNO J. MUELLER

Summary. QF-3 algebras R are classified according to their second
commutator algebras R’ with respect to the minimal faithful module, which
satisfy dom.dim. R’ =2. The class C(S) of all QF-3 algebras whose second
commutator is S, contains besides S only algebras R with dom.dim. R =1.
C(S) contains a unique (up to isomorphism) minimal algebra which can be
represented as a subalgebra S, of S describable in terms of the structure of
S, and C(S) consists just of the algebras S;c Rc S (up to isomorphism). A
criterion for S, # S and various examples are given. Finally it is shown that
the injective hull of S (as left-, right- or bimodule) is at the same time the
injective hull for every R € C(S). This result sheds some light on the fact
that dom.dim. S =2 while dom.dim.R=1 for all R« C(S), R+S: We
prove that no composition-factor of the R-module R’/ R is isomorphic to an
ideal.

The classes C(R). We consider finite-dimensional algebras R with unit
over a field K and unitary finitely generated R-modules. QF-3 algebras are
characterized by the existence of a minimal faithful right-module X which
is (unique up to isomorphism and) a direct summand in every faithful
module. X is projective-injective and the sum of the isomorphism-types of
dominant? right-ideals, hence itself a right-ideal generated by an idempotent:
Xg=eR;. The K-dual X* of X is the minimal faithful left-module:
rX*¥=pRf. With every QF-3 algebra R one associates the second com-
mutator R’ of the minimal faithful (right-)module X, which is again a
QF-3 algebra and contains R as a subalgebra, with the same unit, in a
natural way: 1€ Rc R’. The second commutator of the minimal faithful
left-module ,X* is isomorphic to R, over R. Minimal faithful R’-modules
are R'f=Rf, eR' =¢R. (cf. Thrall [6], Morita [3], Tachikawa [5])

The following dominant dimension is introduced for every algebra R:

Received February 21, 1967.
1) A dominant right-ideal is an ideal e;R generated by a primitive idempotent e;, which
is injective.
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dom.dim. R = » if there exists an exact sequence 0 >R —>X,—- =X, of
projective-injective modules X;. It was shown in [4] that the three such
dimensions obtained by using left-modules, right-modules or bimodules coin-
cide. QF-3 algebras are characterized by dom.dim. R=1. The following
are equivalent for any QF-3 algebra R: R= R’; dom.dim. R=2; R is the
endomorphism-ring of a finitely generated fully faithful module?. Hence the
inclusion R ¢ R’ embedds every QF-3 algebra R into an algebra R’ with
dom.dim. R’ = 2, and the embedding is proper if and only if dom.dim. R =1.
This observation suggests the following classification:

DEeFINITION.  For any algebra R with dom.dim. R=2, let C(R) denote the
class of all QF-3 algebras S such that S’ =R.

TuEOREM 1.  An algebra R belongs to C(R) if and only if it is isomorphic
to a subalgebra R, of R that contains the unit 1 and suitable minimal faithful ideals
eR, Rf of R.

Proof. Morita ([3], Theorem 17.3) has shown that any R, satisfying
those conditions is Q F-3 and that eR = eR,, Rf = R,f are its minimal faithful
modules. Hence

Endo (eR;z,) = eR,e = eRe = Endo (eRz)

and

R = R’ = Endo (ereeR) = Endo (erieeR,) = R, proving R, € C(R). (We remark
for later application (proof of theorem 8) that this identification of R and
R’ is compatible with the embeddings of R, into R and R;. For R, c R; =
Endo (erieeR;) by R, 2 7, - (2 — 27;) € Endo (erceR,) and R = Endo (creeR) by
R>7-(x—>xr) € Endo (ereeR), thus R, © R = Endo (ereeR) again by R, o 7,
— (2 — z7,) € Endo (ereeR).) Conversely, another result by Morita (Theorem
17.5) says that any QF-3 algebra S, as subalgebra of $’, contains suitable
minimal faithful ideals eS’, S’f of S

DeriNtTION.  For any algebra R with dom.dim. R=2, let C\(R) denote the
set of all subalgebras R, of R containing the unit 1 and suitable minimal faithful
ideals eR, Rf of R.

2> A module X is fully faithful if it contains every indecomposable injective or projective
module as a direct summand (X is a generator-cogenerator).
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COROLLARY 2. C(R) and Cy(R) contain the same isomorphism-types of algebras.
R, € C(R), R, C R, C R implies R, € Cy(R).

Because of these facts it is of particular interest to characterize the minimal
algebras in Cy(R).

DEFINITION.  For any QF-3 algebra R, a pair of idempotents e, f will be
called properly chosen if

(1) eR, Rf are mimimal faithful modules,

(2) ef = fe (this implies that ef is again an idempotent),

(8) the number k in a decomposition ef = e, + - - - + e, into indecomposable ortho-

gonal idempotents e; is minimal (compared to all other pairs e, f' satisfying (1) and

(2). For fixed ef, k is obviously the same for each such decomposition).
The set of primitive idempotents of any algebra R falls into finitely

many isomorphism-classes E,, . .., E, where two primitive idempotents e;,

e; are called isomorphic if they generate isomorphic right- (equivalent left-)

ideals. Every decomposition of the unit 1 into primitive orthogonal idempo-

tents can be written as 1 = Z‘ S‘_, i where ¢;;, € E; and the numbers #n;
i=1j,=

are the same for any such decomposmon. leen two decompositions

there exists an inner automorphism of R, generated by an invertible element
x € R,that maps e;;, onto e, : we;x™' = el .

LemmA 3. A pair of idempotents e, f is pro[)erly chosen if and only if 1t is
of the form e= -Zze“ , f =.7‘_,] Cin,, Where 1= Z‘ E i is a decomposition
1€ 1€

i=1ji=
into primitive orthogonal idempotents and the sets I, ] < {1, . . . ,n} characterize those

classes E; that generate dominant right-, left-ideals.

Proof. Suppose that e, f are properly chosen. ef = fe implies that
e—ef, f—ef, ef, 1—e— f+ef constitute a decomposition of 1 into
orthogonal idempotents which can be refined to a decomposition into primi-

tive orthogonal idempotents 1 = Z 5_} i A suitable adjustment of the
i=1j;=

second index j, gives e= X} e; and f = ) ey, hence ef = > e; . The
i€ iy ieThr

k=1
minimality-requirement (3) implies k; + 1 whenever possible, that is for »; >1.
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Therefore the minimal % in (3) is the number of elements i € I< J with
n; =1, and a further adjustment of the second index leads to f = _Z‘,]ei,,i.
te

Conversely any pair ¢, f of this type satisfies (1) and (2): ef =, e;]n ]e,-l = fe,

n; =1

and this decomposition has the minimal number of summands, so (3) holds
and e, f are properly chosen.

THEOREM 4. Any fwo minimal subalgebras in CR) are isomorphic under an
inner automorphism of R. A subalgebra R, of R is minimal in C\(R) if and only
if it is of the form Ry= K-+ eR+ Rf + RfeR where e, f are properly chosen
idempotents of R.

Proof. Let R, be a minimal algebra in C(R). By definition of Cy(R)
there exist minimal faithful ideals eR, Rf of R, contained in R,; further
the unit 1 of R lies in R,. Hence R, D2 K+ eR+ Rf + RfeR, and as this
is an algebra in Cy(R) too, Ry= K+ eR+ Rf + RfeR because of the mini-
mality of R,.

We shall show that e, f can be replaced by a properly chosen pair.
Refine 1=¢+(1—e¢) and 1= f+ (1 — f) to decompositions into primitive
orthogonal idempotents 1=¢,+:+-+e,=fi+++ -+ fn of R,. We get
an inner automorphism of R,: zfz'=¢;; ,2' € R,. Set f' =zxfax-' € R,,
then ef’=f’¢. Observe that

Rforforfat=ra'f' € Rf

is a R-isomorphism, thus Rf’ is a minimal faithful module for R. Further
R ORf =Rufe =R fol=Rfx'=Rf";hence K+ ¢eR+ Rf' + Rf'eRC R,
and consequently K+ eR+ Rf'+ Rf'eR = R,.

e, f/ may still not satisfy (3). But as before, the orthogonal idempotents
e—ef’, fl—ef, ef', 1—e— f' —ef’ can be refined in R to 1 = _21 jf”‘
i=1j,=

with e= D e, f/ = Z}]e,-k.. The second index can be adjusted such that
iel ie ¢

k;=1o0r =n;, and k;#n; for i €eIc J at most. There exists an inner
automorphism of R interchanging e; and e, for ielIc ], k#n; and

leaving all other ¢;; fixed: e¢;, = ze;2z7'. Replacing f' by f’= 'Elei"" =
T e

2f'z7t we get rRf"” = xRf’ and f’e = ef so that e, f'/ are properly chosen.

Finally Re;, = Rze; 2™ = Re;;z™' € Rf’eR for k; + n;; hence K+ eR+ Rf" +
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Rf"”¢R C R, and therefore K + ¢R + Rf"" + Rf""¢eR = R,, proving that every
minimal algebra in Cy(R) is of the form stated in the theorem.

From Lemma 3 it is obvious that whenever e, f and e* f* are two
properly chosen pairs of idempotents of R, then there exists an inner auto-
morphism of R mapping e onto e* and f onto f*  That completes the
proof of the theorem.

DEeriNiTION.  For any QF-3 algebra R with dom.dim. R = 2 and any particular
mimimal subalgebra R, in Co(R), let C(R; R,) denote the set of all algebras R, with
R,C R, CR.

CoROLLARY 5. C(R; R,) and C(R) contain the same isomorphism-types of
algebras.

Proof. Any S e C(R) is isomorphic to some R, € C(R) which contains
aTminimal subalgebra R,,. R, is isomorphic to R, by an inner auto-
morphism of R which carries R, into an algebra R, in C(R; R,).

Remarks. We collect a few additional (obvious) facts about C(R).

(i) The (up to isomorphism unique) minimal algebra R, in C(R) is
characterized by the fact that its vector-space-dimension over K is minimal
among the algebras in C(R).

(ii) R is characterized in C(R) by having maximal K-dimension.

(i11)  While dom.dim. R =2, we have dom.dim.S =1 for all S & C(R)
that are not isomorphic to R.

(iv) If a QF-3 algebra is a ring-direct sum R = R, D R,, then so is
R =R, ®R,. On the other hand if " =S5,®S,, then R need not de-
compose accordingly.

(v) For any QF-3 algebra R a minimal algebra R, in C(R’) can be
constructed directly as Ry = K + ¢R + Rf + RfeR where ¢, f is any properly
chosen pair of idempotents in R.

This may not be quite obvious: Since there exists a minimal subalgebra
Ry=K+ e¢R + R f+ R feR' ¢ R with suitable properly chosen idempotents
e, f of R\, we get Ry=K-+¢e¢R+ Rf+ RfeR and ¢, f€R. R f=Rf,
eR' = ¢R are minimal faithful ideals for R as well as for ®". A decompo-
sition ef = e, + - - + + ¢, into primitive orthogonal idempotents in R’ always

lies in R, hence constitutes such a decomposition with respect to R; and
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vice versa. Suppose k£ be not minimal for R; then the isomorphism-type of
at least one e;, say e, appears more than once in a decomposition of 1 in
R, and we have ¢,Rp=¢ R, ¢,¢; =0. We get an inner automorphism of
R that interchanges ¢, and ¢ and leads to a R’-isomorphism e, R’ =¢\R’,
contrary to the assumption that e, f be properly chosen in R’. Thus e, f
automatically are properly chosen with respect to R. — Any other properly
chosen pair e* f*in R can be mapped onto ¢, f by an inner automorphism
of R and leads to an algebra K + ¢*R + Rf* + Rf*e*R isomorphic to R,.

We want to derive a criterion for R = R,. For properly chosen idem-
potents e, f in R we set ef =d, e—ef=¢, f—ef=f", l—e—f+ef=c.
Then evaluation of (d+e¢ + f +e)R{d+e + f'+e)=R=Ry,=K-+¢eR+
Rf" + RdR vyields the necessary and sufficient condition f'Re’ + f'Re + c¢Re’
+ ¢Re = f'RdRe’ + f'RdRe + ¢eRdRe’ + ¢RdRe + Ke, which may be split into
the four conditions f’Re’ = f"RdRe’, f'Re = f'RdRs, c¢Re’ = eRdRe', ¢Re =
eRdR: + Ke. By construction of d =ef, the isomorphism-types of the
idempotents in d are different from those in ¢/, f/ and ¢; hence there doesn’t
exist any epimorphism of dR; onto a direct summand of ¢R, f'R or ¢R;
consequently the image of every homomorphism of 4R into these modules
lies in ¢’N, f'N, eN (N being the radical of R) and we get ¢'Rd = ¢'Nd,
f'Rd = f'Nd, e¢Rd=¢Nd. Correspondingly dRe’ = dNe', dRf’ =dNf’,
dRe = dNe hold; and the above four conditions imply f’Re’ = f’NdNe' =
Sf'N?¢’, f'Re = f'NdNe = f'N*%, eRe’ = eNdNe' = eN%¢’, ¢Re=eNdNe + Ke =
eN?c + Ke. Then ¢R, f'R cannot contain isomorphic direct summands
since that would lead to a map ¢R— f’R the image of which wouldn’t
even be contained in f/N, hence to an element in f’Re’, not in f'Ne'.
Similarly eR, f'R and ¢’R, ¢R cannot have isomorphic direct summands.
Finally ¢R cannot decompose directly, since e = ¢, + ¢, (orthogonal idempo-
tents) and eRe = eN2%e + Ke yields ¢, =« + ke, =z < N?; hence either k=0,
6 E€N? e,=00r k+0, 0=12e,+ke,, e, € N?, 6,=0.

Summarizing: We have shown that R = R, implies that R is selfbasic
and that ¢ is either primitive or zero. Therefore ¢Re is local and has
radical eNe; and the condition eRe = eNdNe + Ke gives eNdNe = eNe and
eRe[eNe=K if ¢#0.

Thus we have proved one direction of the following

THEOREM 6. A QF-3 algebra R is mimimal in C(R') if and only if
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(1) R is selfbasic,

(2) there exists at most one type of idempotents e such that Re, eR both are
not dominant,

(3) f'Re’ = f'NdNe'; f'Re= f'/NdNe, e¢Re¢' = ¢e¢NdNe', eNe= eNdNe,
eRe | eNe=K (if ¢ exists); where d (¢, ') is the sum of those idempotents e; of a
decomposition info primitive orthogonal idempotents 1 = e, + - - - + e, for which Re;,
e;R are both dominant (e;R but not Re, is dominant; Re; but not ¢;R is dominant).

Conversely these conditions (1) to (3) immediately lead back to the for-
mer conditions for R = R,. This completes the proof.

REeEMARKs. (i) We are particularly interested in the case dom.dim. R=2.
Here the conditions of the theorem characterize those R for which C(R) is
trivial (to say it contains the isomorphism-type of R only).

(i) Applied to R, itself the theorem describes properties of the minimal
algebras in the classes C(R).

(ili) The conditions can be simplified in certain cases, e.g.: If NdN=0
(in particular if d =0, which for dom.dim. =2, hence R = Endo (,X)
means that A doesn’t have any dominant ideals; or if N? = 0) they reduce
to f/Re’ = f/Re =ecRe’ =0, eRe=Ke. If ¢ =f' =0 (for dom.dim. R=2
this means that A is Frobenius) they reduce to eNe = eN(l — ¢)Ne,
eRe|eNe=K.

ExampLes. The following remarks are obtained by specializing results
of Harada [1] for semi-primary rings to our case of algebras; but easy direct
proofs could be given as well. R denotes a QF-3 algebra, A its endomorphism-
ring and R’ its second commutator, both with respect to the minimal faith-
ful module.

(i) These three statements are equivalent: R’ is semi-simple; A is semi-
simple; the socle of R is projective. Then, if ¢R, ..., ¢.R represent the
different types of dominant ideals, the D@ = ¢;Re; are division-rings and we
have A =i(-f91 D&, R :iél D;? (ring-direct sum of n; X n;~matrix-rings over
the D®) where n; = D@-dim e, R.

(ii) Equivalent: R’ is simple; A =D is a division-ring; there exists
only one dominant type eR and the unique minimal subideal of e¢R is pro-
jective. Then D= eRe and R’ =D, where n = D-dimeR. The minimal
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subalgebra R, in C(D,) is Ro=é}1Dc,k+;§‘,2D ci,,+K(té};c,-,-); observe
Ry+ D, for n>1.

(iii) R’ is simple for every indecomposable hereditary QF-3 algebra R
(Mochizuki [2]). Actually R e C(D,) is hereditary if and only if (up to
isomorphism) T, € R € D, where T, denotes the algebra of (upper) triangular
matrices. Any such R is of the form

R={( Dn, D +++ Duyne
0  Duw -+ Dupn

0 0 ++ + Dy,

Injective hulls. Lemma 7. Let S be a QF-3 algebra, M' a S'-(left-)
module hence a S-module, and M a S-submodule of M’ such that S'M= M .
Suppose that all simple S’-submodules of M' are isomorphic to ideals.  Then the
S'~injective hull H' of M' (considered as S-module) is the S-injective hull of M.

Proof. Consider any simple S’-submodule I’ of M’. I’ being isomorphic
to a S’-ideal and S’ being QF-3, we get a S’-monomorphism of I’ into a
minimal faithful ideal S'f=Sf which yields an epimorphism eS = eS’
=S f*—>I'* Hence I'e+0 and el’ 0. But eM = ¢S’M = eSM c M, con-
sequently 0#=el’c I’ N M and I’ N M+ 0. Furthermore the S’-injective hull
H/(I') of I’ is isomorphic to some S'f,=Sf,, f=fi+-++-; hence H(I)
has a unique minimal submodule / when considered as S-module. We get
IcrnMcM and S'IT=1I since S'I is a S’-submodule of the simple $’-
module /7. The S-injective hull of 7, being isomorphic to Sf;, is isomorphic
to H'(I'’) as S-module.

Let kG:BI I, be the S’-socle of M’. As we have seen, each I, contains
a unique simple S-submodule 7, and the S’-injective hull H’ of M, being
the direct sum of the S’-injective hulls H'(I;) of the I;, is isomorphic to
the S-injective hull of ® I, as S-module. Since @ I, is semi-simple and is
contained in M, it is in the socle of M: socle(M)=®1,®J. Thus the
S-injective hull of M is isomorphic to the direct sum of H’ and the S-injective
hull H(J) of J, as S-module. On the other hand M c M’ ¢ B’ and the fact
that H’ is S-injective imply that the S-injective hull of M is contained in
H'; hence a K-vector-space-dimension argument yields H(J) =0 and the
assertion of the lemma.
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TueOREM 8. Let R be a QF-3 algebra. Then the R'-injective hull H' of
R’ is the R~injective hull of R when considered as R-module, where all modules are
either left-, right- or bimodules.

Proof. Applying Lemma 7 to S=R, M= R, M = R’ we get the result
for left-modules. A similar argument holds for right-modules.

Considering bimodules, to say modules over the enveloping algebra
R°= RQ xR", we show that (R°Y can be identified with (R’)* by an iso-
morphism which carries R° as (natural) subalgebra of (R°) into R° as sub-
algebra of (R’)* determined by R as (natural) subalgebra of . Observe
dom.dim. (R")¢ = dom.dim. R’ =2 (Mueller [4], Lemma 6). We have
1®1'e R°c (R)"; and the (R/)*left- resp. right-modules R/ f® (eR’)",
eR’ ® (R'f) where R'f = Rf, eR’ = eR are minimal faithful R’- and R-ideals,
are projective-injective-faithful. We have R f®(eR)=RfX® (eR),
eR' ® (R f) =eRQ (Rf) < R°; hence Theorem 1 yields R® = C((R')*), to say
(R’ =(R°Y, and this isomorphism carries R° as subalgebra of (R’)° into R*
as subalgebra of (R°Y, as indicated above (cf. the proof of Theorem 1).
Now choose S=R*, & =(RY =(R); M=R, M =R . We get SM=
(R'YR=RRR'=R =M and a simple (R")’-submodule of R’ — a simple two-
sided R’-ideal —is isomorphic to a (R’)*-ideal since the QF-3 algebra R’
can be embedded as (R')*-module into a projective module. Thus Lemma 7
yields the desired result in this case too.

Mochizuki [2] observed that for hereditary QF-3 algebras R (where R’
is semi-simple), R’ itself is the injective hull of zR and Rp;. We see that
this phenomenon is rather exceptional:

COROLLARY 9. R’ is the injective hull of R as left- and | or right-R-module
if and only if R’ is quasi-Frobenius. R’ is the injective hull of R as R-R-bimodule
if and only of R’ is separable.

Theorem 8 allows the construction of the following diagram of left-, right-
or bimodules:

0 0

i i

0—> R — H

+ }
0—> R —> H —> Xf) —> -+ - —> X,

¥

0
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where all rows and columns are exact, the bottom row contains R’-
homomorphisms while all other maps are R-homomorphisms; where H', X},

., X, are R’-injective-projective and therefore also R-injective-projective;
where 2<# = dom.dim. R < c0; and where the top row cannot be extended
further by R-injective-projective modules if R+ R’. Hence the socle of the
R-module H' [ R must contain a simple module non-isomorphic to an ideal
while the socle of H' | R’ as R’- or R-module contains only simple modules
isomorphic to ideals (cf. [4], proof of Lemma 7). Consequently since H'|R’
=H|R / R’|R as R-modules, socle (R’/R) has to contain a simple R-module

non-isomorphic to an ideal. We show the following stronger fact:

THEOREM 10. Let R be a QF-3 algebra. Then all composition-factors of
R’ | R as R-left-, right- or bimodule, are not isomorphic to ideals.

Proof. We apply Lemma 7 choosing S either = R or = R° (then identify-
ing S’ = (R°Y with (R’)* as before) and M = R/, Rc Mc R’ any S-submodule
of R’. Then the S'-injective hull A’ of R’ is the S-injective hull of M when

considered as S-module, and we get the exact sequence of S-modules

0 —> M —> H'. Suppose it can be extended to 0 —> M —=> H’ 2 x

where X is S-injective-projective. Then we get a diagram

0 —— M — 5 LN X
l 1r®a 1 @B

SR@sM — S Qs H — S X®s X

¢ 1
%/ _L$/®SH/ Mglégs)(

where ¥ is the epimorphism s’ ®m-—+s'm and ¢ is the homomorphism
R —>H—>S®sH . Themaps H -5 ® sH' , X~ 5 ® X are S-isomorphisms
since sH’, ¢X are injective-projective. All squares are commutative — the one
in the lower left corner because of s"QQ W =1 R € S’ ® H (use the
isomorphism between S’ ® sH’ and H’). The bottom row is a complex (= 0)
since the middle row obviously is and ¢ is epimorphic. Finally ¢ is S'-
monomorphic, for a simple S’-submodule I” of Ker ¢ gives I’ 1 M+ 0 and
I'n Mc Kera since M-S ® sM— R’ turns out to be the injection M — R’;
but a is monomorphic. Now diagram-chasing shows that M— R’ is epi-
morphic which is a contradiction whenever M+ R’; hence in this case an
extension 0—>M—~>H —X cannot exist, meaning that socle(sH /M) will
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contain a simple module / non-isomorphic to an ideal. Since J cannot lie
in H' | R’, it has to be contained in the socle of R’/ M.
Now suppose R ¢ M < R’ and that all factors of M/ R are non-isomorphic

to ideals. Then there exists M c M, ¢ R’ such that J= M,/ M and all factors
of M,/R are non-isomorphic to ideals. Thus the theorem is proved by
induction,
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