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Abstract. The numerical integration of systems of differential equations that possess integrals is often 
approached by using the integrals to reduce the number of degrees of freedom or by using the 
integrals as a partial check on the resulting solution, retaining the original number of degrees of 
freedom. 

Another use of the integrals is presented here. If the integrals have not been used to reduce the 
system, the solution of a numerical integration may be constrained to remain on the integral surfaces 
by a method that applies corrections to the solution at each integration step. The corrections are 
determined by using linearized forms of the integrals in a least-squares procedure. 

The results of an application of the method to numerical integrations of a gravitational system 
of 25-bodies are given. It is shown that by using the method to satisfy exactly the integrals of energy, 
angular momentum, and center of mass, a solution is obtained that is more accurate while using 
less time of calculation than if the integrals are not satisfied exactly. The relative accuracy is ascer
tained by forward and backward integrations of both the corrected and uncorrected solutions and 
by comparison with more accurate integrations using reduced step-sizes. 

1. Introduction 

This paper presents a method to efficiently utilize the integrals in the numerical inte
gration of gravitational systems. The method yields solutions of a higher accuracy 
while using less time of calculation than conventional procedures of numerical inte
gration that do not use the integrals directly. 

A gravitational system of K-bodies that has/? integrals may be described uniquely by 
(6n—p) position and velocity variables in the phase space. The integrals, such as 
energy, angular momentum, or center of mass, may be regarded as conditions of 
constraint imposed upon the 6« variables. The p integrals constrain the variables of a 
solution to remain on the intersection of p hypersurfaces, each of (6n— 1) dimensions. 
The intersection is a hypersurface of (6« —p) dimensions. 

It is common practice to integrate numerically the full, 6«th order system of the 
equations of motion and to employ the integrals only as partial checks on the accuracy 
of the calculations. But the errors indicated by the integrals are often somewhat 
misleading. Since the satisfaction of the integrals is only necessary but not sufficient to 
guarantee accuracy of the solution, a computed solution of a gravitational system 
frequently has a larger error in the solution than in the integrals. 

Moreover, if the error introduced by not satisfying the integrals remains in tht solu
tion during a process of numerical integration, and if the system is unstable, the solu
tion with the error will diverge from a solution without the error. Since gravitational 
systems are very often unstable in the Liapunov sense, the small errors introduced by 
not satisfying the integrals will often become unbounded with time. Deeper and more 
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extensive discourses on this concept have been given by Miller (1964) and Szebehely 
(1968). 

The question is whether or not the additional time of calculation necessary to 
satisfy the integrals is worth the resulting increase in accuracy. That is, could the 
increased accuracy be obtained in less time of calculation by merely decreasing the 
truncation error of the numerical integration and not satisfying the integrals exactly? 

The answer appears to depend upon which method is used to satisfy the integrals. 
The integrals may be used to reduce the order of the system to (6n—p), but the integra
tion of the reduced system is often expensive in calculation time. The resulting equa
tions of motion of the reduced system may be much more complex than the original 
system of order 6« due, for example, to the non-linearity introduced by the integral of 
energy. Also, the equations of order (6n ~p) may have lost the symmetry of the original 
system. 

In this paper, it will be shown that the integrals may be satisfied without introducing 
additional complexity nor losing symmetry. The method introduces constraints on the 
solution of a numerical integration of the full system of order 6n. During the computa
tions, corrections are calculated and applied to the 6« variables to satisfy the integrals. 
The corrections are determined by the method of least-squares such that the sum of the 
squares of the corrections is minimized. The corrections generally are small and hence 
the integrals may be linearized, eliminating much of the complexity and reducing 
significantly the calculation time. The corrections, determined in this manner, modify 
those variables that are most in error so as to greatly increase the effectiveness of the 
method. This point will be discussed later. 

The idea of using corrections of least-squares to satisfy the integrals has a geometri
cal interpretation. During an integration, errors in the calculation may cause the solu
tion to leave the hypersurface of (6« — p) dimensions defined by the integrals. The least-
squares corrections to the 6« variables return the solution to the surface along the 
normal to the surface. By continually correcting the variables, the solution remains 
on the original integral hypersurface during the numerical integration. 

Constraining the computed solutions of gravitational systems of n-bodies to remain 
on the proper integral surfaces has been performed previously by Aarseth (1966) and 
Miller (presented elsewhere in this volume). Aarseth corrects the integrals, the posi
tions, and the velocities of the computed solution to account for the removal of es
caping bodies from the system. Miller compares a corrected solution of the system 
with a similar, but uncorrected, solution. He finds that the two solutions diverge 
from each other - indicating the instability of the gravitational system. Neither of the 
two studies proposes to satisfy the integrals in order to produce a more accurate 
and efficient integration procedure. 

In this paper, the method of satisfying the integrals will be derived and discussed, 
and its application outlined. The results of applying the method to several dynamical 
systems are presented. It is shown that solutions of gravitational systems that are 
corrected by the method are considerably more accurate and require less time of 
calculation than uncorrected solutions. 
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2. The Equations of Constraint 

The equations that constrain the solution to remain on the original integral hyper
surface are derived by the use of Lagrangian multipliers. A presentation of the method 
of Lagrangian multipliers with an excellent motivation for the present discussion is 
given by Lanczos (1949). A geometrical approach is given by Forsyth (1930). 

To find extrema of a function of two variables, f(x, y), subject to the constraining 
condition 

g (x, y) = constant, (1) 

the two equations 

df dg of dg 
— -X — = 0, — - A — = 0, (2) 
dx 8x dy dy 

are to be solved with Equation (1), to determine the quantities x, y, and X. Here, X 
is the Lagrangian multiplier. 

For a dynamical system with two degrees of freedom, let x = [x1; x2, x3, x4] be the 
state vector in the phase space, where xt and x2 are the coordinates and x3 and x4 

are the corresponding velocity components. Let 

g(x) = 0, (3) 

be an integral of the system. Equation (3) defines a hypersurface of three dimensions 
imbedded in the phase space of four dimensions. 

During a process of numerical integration of the system, a computed solution is 
obtained at time t: 

rj = ri(t) = [ri1,ri2,ri3,ri4], 

where rjl and r\2
 a r e t n e computed position components and r\3 and J/4 are the com

puted velocity components. Due to errors in the computational procedure, the integral 
may not be satisfied exactly but 

9 (>!) = £, (4) 

where e is a small quantity. The solution has left the integral surface defined by Equa
tion (3) and is on the surface defined by Equation (4). It is desired to make corrections 
Ar\ = \_Ar\x, Ar\2, Ar]3, Ar\^\ to the computed vector r\ to obtain the vector 

x = t] + Ar], 

such that 

flf(*) = 0. (5) 

The square of the magnitude of the correction vector Ar\ may be written as 

f{An)= £(Ji,()
2. (6) 

i = l 
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The corrections are uniquely chosen so that the function / of Equation (6) is mini
mized, subject to the constraint of Equation (5). The solution may be obtained by 
extending Equations (2) to four dimensions, yielding 

Arh-X
y-=0, » = 1,2,3,4. (7) 

Equations (5) and (7) may be solved for the five unknowns A, and Ar\u i = 1, 2, 3, and 4. 
Unless the integral given by Equation (5) is a simple function of the variables (for 
instance linear), the solution of the system may be complex (or perhaps not obtain
able). This is the case when the integral is the integral of energy of a gravitational 
system. The solution may be simplified by an expansion of the integral in powers of 
the corrections. The expansion becomes 

II*" g(x) = g(ti)+ ) —Atit+-. (8) 

Since the errors of the computation and hence the necessary corrections, Ar]h are 
generally small, second and higher-order terms may be neglected. 

Solving Equations (7) and (8) for the corrections Arjh with g(x)=0 and g(r])=e, 
yields 

Mi=~i — . I-= 1,2, 3, 4. (9) 

- e dd 

L \8ij) 

The correction vector Ar\ is added to the computed state vector r\ to obtain a new state 
vector x which satisfies the integral g (x)=0, with an error of order \Arj\2. Geometri
cally, minimizing Equation (6) subject to Equation (8) causes the vector Ar\ of Equation 
(9) to be normal to a three-dimensional plane which is approximately tangent to the 
surface g =0 at the point x. The equation of the plane is given by Equation (8), ne
glecting the second and higher-order terms. 

The result of Equation (9) may be generalized to a dynamical system of order 6» 
having p integrals. Denote the state vector of the system by x, where x is a column 
vector in the phase space with components Xj,j = l,2,..., 6n. Denote the configuration 
or position vector of the system by R and the velocity vector by V. The state vector x 
may be written as 

* = -3 = • d o ) 
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The equations of motion of the system are 

(11) 

where the vector F is, in general, a function of the vector x and the time and will be 
defined explicitly later. The p integrals of the system may be written as 

e;(x) = 0, 7 = 1,2, (12) 

The functions e} (x) are the components of a column vector E, so that E(x) = 0, where 
0 is a null vector. 

Equation (11) may be solved by numerical integration yielding a computed solution 
with a column state vector rj at time t. The partial derivatives of the integrals of Equa
tion (12) with respect to the components of the computed state vector r\ are the elements 
of a matrix E', having/? rows and 6K columns. That is, 

£ ' 
de2 

8li 

Sep 8e„ 

8l 6n^ 

At time t, due to errors in the computation, some or all of the p components of the 
vector E may be nonzero. That is, 

£(«) = £ # 0, 

where e is an error vector whose elements are small quantities. 
It is desired to compute a correction vector Ar\ so that the vector 

x = r\ + At], 

will satisfy the equation 

£ (x) = 0. 

The vector Ar\ is chosen so that the quantity 

AriTWAri (13) 

is minimized. Here, W is a weighting matrix and the T superscript indicates matrix 
transpose. 

As in Equation (8), each element of the vector E is expanded in powers of the vector 
Ar\. The expansion becomes 

E(x) = E(ri) + E'Ari+-
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Neglecting second and higher-order terms, with E(x)=0 and E(rj)=e, the expansion 
reduces to: 

0 = 8 + E'Arj. (14) 

Extending the solution given by Equation (7) yields 

WArj-E'Tk = 0, (15) 

where k is a column vector whose/? components are the Lagrangian multipliers. Equa
tions (14) and (15) are (6n+p) equations to be solved for (6n+p) unknowns: the com
ponents of the two vectors Ar\ and k. Solving Equation (15) for Ar\ and substituting the 
result into Equation (14) gives 

8 + E'W~1E'TX = 0. 

Solving for k and substituting the result into Equation (15), the solution for the correc
tion vector At], is 

Arj = -W~1E'T(E'W~1E'T)~1e. (16) 

The matrix (£" W~l E'T) is a p xp, symmetrix matrix. If the matrix E' has rank p, 
the matrix (£ ' W1 E'T) is positive definite and non-singular. 

For gravitational systems, the vector F of Equation (11) is given by 

F = VRV, (17) 

where VR U denotes a column vector whose 3« components are dU/dxh i = l,2,...,3n. 
The quantity xt is a component of the vector R defined earlier. The function U is the 
negative of the potential energy of the system and is defined as 

U = k2 I 
where k is the Gaussian gravitational constant, m; is the mass of the ith body and, 

/ 2 v 1/2 

\ru\ = ( 5 ^ 3 ' - p ~ X3J-P)2) • 

The energy integral of the system may be written in terms of U and the state vector x as 

i t ™i Z (x3n+3i-kf-U-C = 0, (18) 

where C is the value of the energy for a set of initial conditions. Denote the energy 
integral as ex (x) =0 ; the angular momentum integrals as ej(x) =0,j=2, 3, 4; and the 
center of mass integrals as ej(x)=0,j = 5, 6,..., 10. The functions ej(x) are the com
ponents of the column vector E, where 

E(*) = 0. 
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A numerical integration of the system of Equation (11) with F defined by Equation 
(17), yields the solution vector r\ at time t. The errors in the computation may cause 
some or all of the components of E to be nonzero: 

E(t]) = s, 

where the components of the vector £ are the errors of the corresponding integrals. 
The correction vector A r\ may be calculated by using Equation (16), so that E(t] + A rj) = 0. 
For the calculation, the quantities s, E' and W~l are needed. 

During many procedures of numerical integration, the errors of the integrals, e, are 
computed at various times as a check on the accuracy of the calculation. Since the 
correction vector At\ is calculated and applied only at various times, as will be dis
cussed later, little extra calculation is required to obtain e. Moreover, in the calcula
tion of the force vector F, the individual terms of the potential energy may be calcu
lated as an intermediate step. One may save these calculated terms and compute the 
energy with a minimum of added effort. 

The quantity E' is the partial derivative of E with respect to x and is easily computed. 
The partial derivative of et with respect to V is equal to V multiplied by a mass. The 
partial derivative of et with respect to R is simply minus the force F, pre-computed 
during the integration step. The partial derivative of ej with respect to x is linear in 
x for j =2, 3, 4, and is equal to a mass or tozerofory=5, 6, ..., 10. 

The quantity W is a diagonal weighting matrix to be included in the least-squares 
solution of Equation (16). In most variable stepsize numerical integration techniques, 
an error vector is computed at each integration step. The elements of the error vector 
correspond to an estimated truncation error in the calculation of each of the elements 
of the state vector x. The elements of the error vector might be the last differences of 
a finite difference integration method or the differences between the predictor and 
corrector of an integration step. The error vector is placed along the diagonal of the 
matrix W * in Equation (16). The weighting matrix allows the solution to correct some 
state variables proportionately more if there is a larger truncation error associated 
with the calculation of those state variables than of other variables. The concept of 
corrections that are weighted by the estimated truncation error is due to Gottlieb 
(1970). 

The matrix multiplications of Equation (16) may be grouped efficiently as follows. 
The multiplication of the quantity W~l E'T is performed and stored in E'T. The 
multiplication E' E'T is performed and the product inverted. The multiplication and 
inversion are simplified since (£" W~l E'T) is symmetric. The inverted matrix is 
pre- and postmultiplied by E'T and -e, respectively, to form Ar\, which is then added 
to the computed state vector. 

Finally, one advantageous property of the equation of corrections (Equation (16)) 
should be noted. In the numerical integration of a gravitational system, the largest 
errors in the computations often arise in the coordinates and velocities of the bodies 
that are closest to one another - the binaries. This fact may easily be seen if one looks 
at the estimated truncation error vector during a numerical integration. Hence, one 
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would like to correct the coordinates and velocities of a binary or a triple system more 
than those of the other bodies. This is precisely the result achieved by Equation (16) 
(regardless of whether or not the weighting matrix is used). To verify this point, note 
that for the integral of energy, the top row of E' or de1/8x contains the two vectors F 
and V. The largest elements of both of these vectors are those corresponding to the 
closest bodies. If one examines Equation (16), with only the energy integral present, he 
will notice that the state vectors of the bodies closest to one another are recipients of 
the largest corrections while the other bodies receive smaller corrections. A similar 
analysis for the other integrals yields the same result. In other words, the corrections 
to the state vector x are proportional to the partial derivatives of the integrals with 
respect to x. And the partials are larger the closer two bodies become. 

3. Evaluation of the Method 

The method presented here was applied to the numerical integration of several dynam
ical systems to determine its practical value. The systems considered were the harmonic 
oscillator, the gravitational system of two-bodies, and the gravitational system of 
25-bodies. 

The method was applied to the harmonic oscillator and to the system of two-
bodies by the following procedure. Two sets of solutions were obtained by 
numerical integration with various initial conditions. One set of solutions did not 
utilize the integrals while the other set introduced corrections determined by the 
method. The corrections were applied to the state vector after each integration step. 
All of the integrations were compared with the true solutions of the systems to deter
mine the relative accuracies of the uncorrected and corrected solutions. The solutions 
of the harmonic oscillator were obtained using a fourth-order Runga-Kutta integration 
routine with constant step size. Both uncorrected and corrected solutions of the har
monic oscillator used the same step-size and the same number of integration steps. 
The solutions of the system of two-bodies were obtained using a fourth-order, pred-
icator-corrector integration routine with variable step-size. Both uncorrected and 
corrected solutions of the system of two-bodies were integrated simultaneously with 
the same step-sizes and with the same number of integration steps. 

The application of the method to the harmonic oscillator in a phase space of two 
dimensions showed no noticeable differences in accuracy between the corrected and 
uncorrected solutions. The reason for this negative result will be discussed later. 

The application of the method to the system of two-bodies in a phase space of four 
dimensions over a range of initial conditions showed a large difference in accuracy 
between corrected and uncorrected solutions. The corrected solutions were about 
three orders of magnitude more accurate than the uncorrected solutions. Some results 
are given in Table I. 

In the table, two solutions are presented: one for eccentricity e = 0.1 and the other 
for e=0.6. Both solutions have semi-major axes of a=2.0 and were integrated for a 
duration of 55 orbital periods. The column denoted by \AR\ gives the magnitude of 
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TABLE I 

Two-body system 

\AR\ \AV\ 

Uncorrected 

Corrected 

2.2 x 10~2 

3.1 x 10~5 

\AR\ 

7.5 x 10-3 

9.4 x 10-6 

\AV\ 

Uncorrected 2.4 x 10"1 7.9 x 10~2 

Corrected 1.4 x 10~4 2.2 x 10~5 

the error in position and the column denoted by \A V\ gives the magnitude of the error 
in velocity. The row denoted by 'Uncorrected' gives the errors at the final time for the 
numerical integration without corrections. The row denoted by 'Corrected' gives the 
errors at the final time for the numerical integration that performs corrections after 
each integration step to satisfy the integrals of energy and of angular momentum. The 
results of solutions with other initial conditions were similar to the results shown in 
Table I. The results of the application given in Table I indicate that numerical inte
grations of the gravitational system of two-bodies that identically satisfy the integrals 
are more accurate than integrations that do not. The demonstration of the overall 
accuracy and efficiency of the method by comparison of times of calculation as well as 
accuracy is given later in the application of the method to the system of 25-bodies. 

The different results obtained for the harmonic oscillator and the system of two-
bodies offers an explanation of when and why the method appears to be of value. Two 
points were mentioned in the introduction of this paper: (1) the errors in the integrals 
are generally less than the errors in the computed solution; and (2) if a dynamical 
system is unstable, the solution with an error will diverge from a solution without the 
error. With these points, the following conclusions may be given. The errors in the 
integral of the harmonic oscillator are small compared to the error in the state vari
ables of the solution. Since the harmonic oscillator is a stable system, a solution with 
a small error will not diverge from a system without the error. This would explain the 
result indicating no difference between the corrected and the uncorrected solutions 
for the harmonic oscillator. The errors in the integrals of the system of two-bodies are 
also small relative to the state variables of the solution. But the system of two-bodies 
is unstable in the Liapunov sense and hence the system with the errors will diverge 
from the system without the errors. And, as seen in Table I, the corrected solution 
lies several orders of magnitude closer to the true solution than the uncorrected 
solution. 

The method was applied to a gravitational system of 25-bodies using the standard 
initial conditions as given by Lecar (1968). A highly-accurate, uncorrected numerical 
integration of the system was performed at the outset. The integration technique 
employed methods of regularization and was developed by Szebehely and Bettis 
(described by them elsewhere in this volume). The truncation error of the integration 

Solution 

a =2 .0 
e = 0.1 
T= 55 rev. 

Solution 

a = 2.0 
e = 0.6 
T= 55 rev. 
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was lowered to the limit of the computer capability. The system was integrated forward 
and backward in time, and the accuracy verified. This solution was taken as an accu
rate, standard solution with which other, less accurate solutions were compared. 

The numerical integration routine that was used to evaluate the correction method 
presented here is a 7th-order, Runga-Kutta-Fehlberg, variable-step method (Fehl-
berg, 1966), applied to the problem of 25-bodies. Two sets of solutions were obtained 
with the numerical integration. First the system of order 6« was integrated without 
using the integrals. Then the system of order 6n was integrated and all or various 
combinations of the ten integrals of the system were satisfied. Various truncation 
error tolerances were allowed and all integrations were extended to time equal five 
units. This time is after a very close encounter of two-bodies and just before the total 
collapse of the system. All solutions were compared with the more accurate standard 
solution described above and also were integrated in reverse, from time equal five 
units to time equal zero. The comparisons and the reversals showed similar accuracies, 
hence only comparisons of the various solutions with the standard solution are 
presented here. 

Some results of the comparisons are shown in Tables II and III. 

TABLE II 

25-Body problem - accuracy comparison 

Mean error Time of 
calculation 
(seconds) 

Uncorrected 1.6 x 10"1 178 

Corrected (1) 5.1 x 10"3 179 

Corrected (2) 1.0 xlO"3 178 

TABLE III 
25-Body problem- Time of calculation comparison 

Mean error Time of 
calculation 
(seconds) 

Uncorrected 5.0 x 10"3 228 

Corrected (1) 5.1 x lO^3 179 

Corrected (2) 5.3 x 1 0 3 166 

The first column of Tables II and III gives the various solutions that were obtained. 
The first solution, denoted as 'Uncorrected', is a numerical integration of the system of 
25-bodies without corrections to satisfy the integrals. The second solution, denoted as 
'Corrected (1)', is the integration of the system with corrections, satisfying all ten inte-
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grals: energy, angular momentum, and center of mass. The third solution, denoted as 
'Corrected (2)', is the integration with corrections, satisfying only the energy integral. 
Both solutions, Corrected (1) and Corrected (2), performed unweighted, least-squares 
corrections determined by Equation (16) given above. The second column in Tables II 
and III gives the error of each solution. The state vector of each solution at the final 
time of five units, containing 150 components of the positions and the velocities of the 
25 bodies, was compared with the final state vector of the accurate, standard solution 
described above. Denoting the 150 differences between the standard and less accurate 
solutions by sh i = 1,2,..., 150; the mean error is computed by 

/ 150 \ l / 2 

The quantity a is given in the second column of the Tables II and III, denoted by 
'Mean Error'. In addition to the calculation of the tr's, all numerical integrations were 
reversed. The errors indicated by the forward and backward integrations for all of the 
various solutions are consistent with the errors e;. Also, the dispersion of the quantities 
ef about the mean error a is similar for all solutions. Hence, only the mean error a is 
given in the tables. The third column of the tables, denoted by 'Time of Calculation', 
gives the execution time that a CDC 6600 computer required to generate each solution 
to a time equal to five units and with the accuracy given in the second column of the 
tables. 

The results shown in Tables II and III indicate that the method presented here 
yields a more efficient numerical integration process. In Table II, a greater accuracy is 
obtained with the method while using the same time of calculation. And in Table III, 
the same accuracy is obtained with the method while using less time of calculation. 

It may be seen from Tables II and III that satisfying only the energy integral 
('Corrected (2)') produces more efficient numerical integrations than the integrations 
satisfying all ten integrals ('Corrected (1)'). The reasons for this are: (1) The energy 
error was about 105 times larger than the errors in the angular momentum and center 
of mass integrals; (2) The satisfaction of all ten integrals requires the inversion of a 
10 x 10 matrix of Equation (16) as well as various matrix multiplication operations 
with 10 x 150 matrices. Whereas satisfaction of only the energy integral requires just a 
scalar division for the inversion and dot products of vectors of 150 dimensions. Hence, 
the results of Tables II and III show that, for the gravitational system and initial con
ditions of this application, and probably for many other systems and initial conditions, 
the added improvement of the corrections due to the inclusion of angular momentum 
and center of mass is small at a large computational expense. 

Several time-saving techniques have been incorporated into the correction proce
dure. The most important is to calculate corrections not at every integration step but 
only when the corrections become significant. In the application presented here, if the 
error of the integral of energy increased to a value of approximately 100 times less than 
the desired or requested truncation error, only then were corrections calculated to 
satisfy the integrals. 
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The results shown in Tables I, II, and III, were not obtained using a weighting 
matrix in the calculation for the corrections. Some numerical integrations were ob
tained using weighted, least-squares corrections, where the weights were the truncation 
error vectors described in the preceding section. No appreciable difference in accuracy 
was noticed between the solutions using weighted corrections and solutions using un
weighted corrections. This result is preliminary since too few solutions have been ob
tained using weighted, least-squares corrections to form a definite conclusion. 

The method presented here may be applied to the numerical solution of any system 
of differential equations that possesses integrals. For gravitational systems, this could 
include the equations of motion of the restricted problem of three bodies and the 
equations of motion of a particle under the attraction of a non-spherical solid body. 
The equations of motion of the system may also be formulated in a set of regularized 
variables, as long as the variables are constrained by one or more integral relations. 
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