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Abstract Let Ω ⊂ R
N be a bounded domain such that 0 ∈ Ω, N � 3, 2∗(s) = 2(N − s)/(N − 2),

0 � s < 2, 0 � µ < µ̄ = 1
4 (N − 2)2. We obtain the existence of infinitely many solutions for the singular

critical problem −∆u − µ(u/|x|2) = (|u|2∗(s)−2/|x|s)u + λf(x, u) with Dirichlet boundary condition for
suitable positive number λ.
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1. Introduction and main result

Let Ω ⊂ R
N be a bounded domain such that 0 ∈ Ω, N � 3, 2∗(s) = 2(N − s)/(N − 2),

0 � s < 2, 0 � µ < µ̄ = 1
4 (N − 2)2. For λ ∈ R consider the elliptic problem

−∆u − µ
u

|x|2 =
|u|2∗(s)−2

|x|s u + λf(x, u) in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

where f(x, 0) ≡ 0 and f(x, u) is a lower-order perturbation of u2∗(s)−1, in the sense
that f(x, u)/|u|2∗(s)−2u → 0 as |u| → +∞, s ∈ [0, 2). A typical case of problem (1.1),
f(x, u) = u, i.e. the problem

−∆u − µ
u

|x|2 =
|u|2∗(s)−2

|x|s u + λu in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.2)

has recently been studied by Kang and Peng [19,20]. In [20], they studied the existence
of positive solutions of (1.2) by a mountain-pass argument [27], and in [19] they obtained
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a sign-changing solution by minimax methods. Problem (1.2) with s = 0 has been studied
by many authors in recent years (see, for example, [2,6,9,12–15,17,24,28,32]). Early
results for (1.2) with µ = 0 and s = 0 can be found, for instance, in [5,7,11,21,26,29].

When µ = 0 and s = 0, problem (1.1) reduces to

−∆u = |u|2∗−2u + λf(x, u) in Ω,

u = 0 on ∂Ω,

}
(1.3)

where 2∗ = 2∗(0) = 2N/(N − 2). In [29], Sang obtained finitely many solutions for (1.3)
by using Bartolo et al .’s critical-point theorem if f(x, u) is odd in u. Li and Zou [21]
again studied problem (1.3) and obtained infinitely many solutions in the case when
f(x, u) satisfies the following conditions:

(i) f(x, u) ∈ C(Ω × R, R), f(x,−u) = −f(x, u) for all u ∈ R;

(ii) lim|u|→∞ f(x, u)/|u|2∗−2u = 0 uniformly for x ∈ Ω;

(iii) limu→0+ f(x, u)/u = ∞ uniformly for x ∈ Ω;

(iv) 1
2f(x, u)u − F (x, u) � a − b|u|2∗

for almost every x ∈ Ω and u ∈ R, where

F (x, u) =
∫ u

0
f(x, t) dt, b � 0, a � 0.

In [25], Pádua et al . investigated (1.3) and proved the existence of two positive solutions
with a sublinear term at the origin. For the case of a p-Laplacian involving critical Sobolev
exponents, we refer the reader to [1,8,16,30] and the references therein. Recently, via
linking arguments, Zou [33] has proved the existence of infinitely many sign-changing
solutions for a class of perturbed Schrödinger equations with critical Sobolev growth
in R

N (the parameter λ appears in the critical exponent term).
In this paper we are interested in searching for infinitely many solutions of prob-

lem (1.1); we show that there exists a sequence of infinitely many arbitrarily small solu-
tions converging to zero by using a new version of the symmetric mountain-pass lemma
due to Kajikiya [18]. To the best of our knowledge, there is no such result on singular
elliptic problems with critical Sobolev exponents and Hardy terms.

The main result of this paper is as follows.

Theorem 1.1. Suppose that f(x, u) satisfies (i) and (iii) above, and

(ii′) lim|u|→∞ f(x, u)/(|u|2∗(s)−2u) = 0 uniformly for x ∈ Ω and 0 � s < 2.

There then exists λ∗ > 0, such that, for any λ ∈ (0, λ∗), problem (1.1) has a sequence of
non-trivial solutions {un} tending to zero as n → ∞.

Remark 1.2. In [21], the authors proved the existence of infinitely many solutions
for (1.2), but did not give any further information on the sequence of solutions. In this
paper we shall prove that this sequence of solutions may converge to 0.
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Remark 1.3. In our result, the nonlinearity f(x, u) need not satisfy condition (iv) as
in [21]. Hence, we relax the restrictions imposed on the nonlinearity f(x, u). Moreover,
we consider more general nonlinearity than is considered in [19,20]. Hence, we make a
remarkable improvement of the main results of [19–21].

2. Preliminary results

We start this section by recalling the variational framework for problem (1.1). Considering
the Sobolev space H1

0 (Ω) endowed with the equivalent norm for 0 � µ < µ̄, we have

‖u‖ �
( ∫

Ω

|∇u|2 − µ
u2

|x|2

)1/2

∀u ∈ H1
0 (Ω). (2.1)

By Hardy’s inequality, this norm is equivalent to the usual norm in H1
0 (Ω). Define the

best Sobolev–Hardy constant by

As(Ω) � inf
u∈H1

0 (Ω)\{0}

‖u‖2

(
∫

Ω
|u|2∗(s)/|x|s)2/2∗(s) .

Then As(Ω) is independent of Ω [20]. The linear elliptic operator L � −∆ − µ(1/|x|2)
is positive and has discrete spectrum σµ in H1

0 (Ω) if 0 � µ < µ̄. The first eigenvalue of
the operator L in H1

0 (Ω) is given by

λ1(µ) � inf
u∈H1

0 (Ω)\{0}

‖u‖2∫
Ω

|u|2 .

We denote the norm of an Lp(Ω) space as |u|p and various positive constants as c. The
functional associated with (1.1) is given by

Φ(u) = 1
2

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− 1

2∗(s)

∫
Ω

|u|2∗(s)

|x|s − λ

∫
Ω

F (x, u) ∀u ∈ H1
0 (Ω).

Standard arguments [27] show that, under assumption (ii′), Φ belongs to C1(H1
0 (Ω), R).

Furthermore, the (weak) solutions of (1.1) are precisely the critical points of this func-
tional. The following result is proved in [20].

Proposition 2.1 (Kang and Peng [20]). Suppose that 0 � s < 2, 2 � q � 2∗(s)
and 0 � µ < µ̄. Then

(i)
∫

Ω

(u2/|x|2) � (1/µ̄)
∫

Ω

|∇u|2 ∀u ∈ H1
0 (Ω),

(ii) there exists a constant C > 0 such that

( ∫
Ω

|u|q/|x|s
)1/q

� C‖u‖ ∀u ∈ H1
0 (Ω),

(iii) the map u → u/|x|s/q from H1
0 (Ω) into Lq(Ω) is compact for q < 2∗(s).
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We recall that, given E a real Banach space and I ∈ C1(E, R), we say that I satisfies
the Palais–Smale condition on the level c ∈ R, denoted by (PS)c, if every sequence
{un} ⊂ E such that I(un) → c and I ′(un) → 0 as n → ∞ possesses a convergent
subsequence.

Since the norm defined in (2.1) is equivalent to the usual norm by the Hardy inequality
(Proposition 2.1 (i)), we now enumerate the concentration–compactness principle due to
Lions [22,23], which is similar to that of [8,28,30,31].

Lemma 2.2. Let {un} ⊂ H1
0 (Ω) be a bounded sequence. There then exist two non-

negative and bounded measures on Ω̄, γ, ν, and there exists a subsequence of {un}, still
denoted by {un}, such that

|∇un|2 − µ
u2

n

|x|2 ⇀ γ,
|un|2∗(s)

|x|s ⇀ ν

weakly in the sense of measures.

Lemma 2.3. Let {un} ⊂ H1
0 (Ω) be such that un ⇀ u weakly in H1

0 (Ω) and

|∇un|2 − µ
u2

n

|x|2 ⇀ γ,
|un|2∗(s)

|x|s ⇀ ν

weakly in the sense of measures, where γ and ν are non-negative and bounded measures
on Ω̄. There then exist some at most countable index set J and a family {xj : j ∈ J} of
points in Ω̄ such

(a) ν = |u|2∗(s)/|x|s +
∑

j∈J νjδxj that, where {νj : j ∈ J} is a family of positive num-
bers,

(b) γ � |∇u|2 − µ(u2/|x|2) +
∑

j∈J γjδxj
, where {γj : j ∈ J} is a family of positive

numbers satisfying As(νj)2/2∗(s) � γj for all j ∈ J . In particular,
∑

j∈J(νj)2/2∗(s) <

∞, s ∈ [0, 2).

Under condition (ii′), we have

f(x, u)u = o

(
|u|2∗(s)

|x|s

)
, F (x, u) = o

(
|u|2∗(s)

|x|s

)
,

which means that, for all ε > 0, there exist a(ε) and b(ε) > 0 such that

|f(x, u)u| � a(ε) + ε
|u|2∗(s)

|x|s , (2.2)

|F (x, u)| � b(ε) + ε
|u|2∗(s)

|x|s . (2.3)

Hence,

F (x, u) − 1
2f(x, u)u � c(ε) + ε

|u|2∗(s)

|x|s (2.4)

for some c(ε) > 0.
Now we have the following lemma about the local (PS) condition.
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Lemma 2.4. Assume condition (ii′) holds. Then, for any λ > 0, the functional Φ

satisfies the local (PS) condition in(
− ∞,

2 − s

2(N − s)
A(N−s)/(2−s)

s − λh

)

in the following sense: if

Φ(un) → c <
2 − s

N − s
A(N−s)/(2−s)

s − λh

and Φ′(un) → 0 for some sequence in H1
0 (Ω), then {un} contains a subsequence converg-

ing strongly in H1
0 (Ω), where h = c((2 − s)/4(N − s)λ)|Ω|.

Proof. Let {un} be a sequence in H1
0 (Ω) such that

Φ(un) → c <
2 − s

2(N − s)
A(N−s)/(2−s)

s − λh, (2.5)

Φ′(un) → 0. (2.6)

By (2.5) and (2.6), we have

Φ(un) − 1
2 〈Φ′(un), un〉 =

(
1
2

− 1
2∗(s)

) ∫
Ω

|un|2∗(s)

|x|s − λ

∫
Ω

[F (x, u) − 1
2f(x, un)un]

= c + o(1)‖un‖,

i.e.
2 − s

2(N − s)

∫
Ω

|un|2∗(s)

|x|s = λ

∫
Ω

[F (x, un) − 1
2f(x, un)un] + c + o(1)‖un‖.

Then by (2.4) and Hölder inequality, we get
(

2 − s

2(N − s)
− λε

) ∫
Ω

|un|2∗(s)

|x|s � λc(ε)|Ω| + c + o(1)‖un‖.

Setting ε = (2 − s)/4(N − s)λ, we have

∫
Ω

|un|2∗(s)

|x|s � M + o(1)‖un‖, (2.7)

where o(1) → 0 and M = M(N, λ, |Ω|) is some positive number. On the other hand,

Φ(un) = 1
2

∫
Ω

(
|∇un|2 − µ

u2
n

|x|2

)
− 1

2∗(s)

∫
Ω

|un|2∗(s)

|x|s − λ

∫
Ω

F (x, un)

= c + o(1).

Combining (2.3) and (2.7), we deduce that {un} is bounded in H1
0 (Ω). Therefore, we

can assume that un → u weakly in H1
0 (Ω). By Lemma 2.2, there exist measures γ and ν
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such that the conclusions of Lemma 2.3 hold. We claim that νj = 0 for all j ∈ J . Indeed,
following the same idea of [21], let xj be singular point of measures γ and ν, we define a
cut-off function φ ∈ C1

0 (RN ) such that φ(x) ≡ 1 on B(xj , ε), φ(x) = 0 on R
N \ B(xj , 2ε)

and |∇φ(x)| � 2/ε on R
N . Obviously, 〈Φ′(un), unφ〉 → 0, i.e.

∫
Ω

(
∇un∇(unφ) − µ

u2
nφ

|x|2

)
−

∫
Ω

|un|2∗(s)φ

|x|s − λ

∫
Ω

f(x, un)unφ → 0 as n → ∞.

Therefore, by Lemma 2.2 and the Hölder inequality, we obtain

− lim
n→∞

∫
Ω

un∇un∇φ =
∫

Ω

φ dγ −
∫

Ω

φ dν − λ

∫
Ω

f(x, u)uφ,

lim
n→∞

∣∣∣∣
∫

Ω

un∇un∇φ

∣∣∣∣ � lim
n→∞

sup
∫

Ω

|un| |∇un| |∇φ|

� lim
n→∞

sup
( ∫

Ω

|∇un|2
)1/2( ∫

Ω

|un|2|∇φ|2
)1/2

� c′ lim
n→∞

( ∫
Ω

|un|2|∇φ|2
)1/2

= c′
( ∫

Ω

|u|2|∇φ|2
)1/2

� c′
( ∫

Ω

|u|2×(2∗(s)/2)
)1/2∗(s)

×
( ∫

Ω

|∇φ|2(2∗(s))/(2∗(s)−2)
)((2∗(s)−2)/2∗(s))/2

� c′
( ∫

B(xj ,2ε)
|u|2∗(s)

)1/2∗(s)

→ 0 as ε → 0,

where the c′ denotes various generic positive constants.
Combining this with Lemma 2.3, we obtain νj = γj(xj) � γj � Asν

2/2∗(s)
j . This result

implies that νj = 0 or νj � A
(N−s)/(2−s)
s . If the second case, νj � A

(N−s)/(2−s)
s , holds for

some j ∈ J , then, by using Lemma 2.3 and the Hölder inequality, we have that

c = lim
n→∞

(Φ(un) − 1
2 〈Φ′(un), un〉)

= lim
n→∞

{(
1
2

− 1
2∗(s)

) ∫
Ω

|un|2∗(s)

|x|s − λ

∫
Ω

[F (x, un) − 1
2f(x, un)un]

}

=
2 − s

2(N − s)

∫
Ω

dν − λ

∫
Ω

[F (x, u) − 1
2f(x, u)u]

� 2 − s

2(N − s)

∫
Ω

|u|2∗(s)

|x|s +
2 − s

2(N − s)
A(N−s)/(2−s)

s − λc(ε)|Ω| − λε

∫
Ω

|u|2∗(s)

|x|s

=
(

2 − s

2(N − s)
− λε

) ∫
Ω

|u|2∗(s)

|x|s +
2 − s

2(N − s)
A(N−s)/(2−s)

s − λc(ε)|Ω|
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� 2 − s

2(N − s)
A(N−s)/(2−s)

s − λc

(
2 − s

4(N − s)λ

)
|Ω|

=
2 − s

2(N − s)
A(N−s)/(2−s)

s − λh,

where ε = (2 − s)/(4(N − s)λ). This is impossible. Consequently, νj = 0 for all j ∈ J

and hence ∫
Ω

|un|2∗(s)

|x|s →
∫

Ω

|u|2∗(s)

|x|s .

Now un ⇀ u in H1
0 (Ω) and the Brezis–Lieb Lemma [4] implies that

lim
n→∞

∫
Ω

|x|−s|un − u|2∗(s) = 0.

Finally, we show that un → u in H1
0 (Ω), since

‖un − u‖2 = 〈Φ′(un) − Φ′(u), un − u〉 +
∫

Ω

|x|−s(|un|2∗(s)−2un − |u|2∗(s)−2u)(un − u)

+ λ

∫
Ω

(f(x, un) − f(x, u))(un − u).

Therefore,

A :=
∣∣∣∣
∫

Ω

|x|−s(|un|2∗(s)−2un − |u|2∗(s)−2u)(un − u)
∣∣∣∣

�
∫

Ω

|x|−s|un|2∗(s)−1|un − u| +
∫

Ω

|x|−s|u|2∗(s)−1|un − u|

:= A1 + A2,

A1 �
( ∫

Ω

|x|−s|un − u|2∗(s)
)1/2∗(s)( ∫

Ω

|x|−s|un|2∗(s)
)(2∗(s)−1)/2∗(s)

.

It follows from the Sobolev–Hardy inequality, the boundedness of {un} in H1
0 (Ω) and

the above arguments that A1 → 0 as n → ∞. Similarly, A2 → 0 as n → ∞. In view of
the Strauss Lemma [3] and un ⇀ u in H1

0 (Ω), we deduce that ‖un − u‖ → 0 as n → ∞.
The proof is complete. �

3. A sequence of arbitrarily small solutions

In this section we prove the existence of infinitely many solutions of (1.1) which tend to
zero. Let E be a Banach space and let

Γ = {A ⊂ E : A is closed in E symmetric with respect to the origin}.

For A ∈ Γ , define γ(A) = inf{m ∈ N : ∃ϕ ∈ C(A, Rm) \ {0}, ϕ(x) = −ϕ(−x)}; if there
is no mapping ϕ as above for any m ∈ N, then γ(A) = +∞. Let Γk denote the family of
closed symmetric subsets A of E such that 0 �∈ A and γ(A) � k. We list the following
main properties of genus (see [18, Lemma 2.6] or [10]).

https://doi.org/10.1017/S0013091506001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001568


104 X. He and W. Zou

Proposition 3.1. Let A and B be closed symmetric subsets of E which do not contain
the origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ(A) � γ(B).

(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B).

(3) If γ(B) < ∞, then γ(A \ B) � γ(A) − γ(B).

(4) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk–Ulam Theorem.

(5) If A is compact, then γ(A) < +∞ and there exists δ > 0, such that Nδ(A) ∈ Γ

and γ(Nδ(A)) = γ(A), where Nδ(A) = {x ∈ E : ‖x − A‖ � δ}.

The following version of the symmetric mountain-pass lemma is due to Kajikiya [18].

Lemma 3.2. Let E be an infinite-dimensional Banach space and I ∈ C1(E, R) and
suppose the following conditions hold.

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the local Palais–Smale
condition, i.e. for some c∗ > 0, in the case when every sequence {uk} in E satisfying
limk→∞ I(uk) = c < c∗ and limk→∞ ‖I ′(uk)‖E∗ = 0 has a convergent subsequence.

(A2) For each k ∈ N , there exists an Ak ∈ Γk such that supu∈Ak
I(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {uk} such that I ′(uk) = 0, I ′(uk) < 0 and {uk} converges
to zero.

(ii) There exist two sequences {uk} and {vk} such that I ′(uk) = 0, I(uk) = 0, uk �= 0,
limk→∞ uk = 0; I ′(vk) = 0, I(vk) < 0, limk→∞ I(vk) = 0 and {vk} converges to a
non-zero limit.

Remark 3.3. In [18], the functional I(u) is required to satisfy the Palais–Smale
condition in global. However, by a careful examination of the proof of the main results
of [18], we find it is sufficient that the functional I(u) satisfies the local Palais–Smale
condition with the critical value levels c below zero. So, Kajikiya’s conclusion, i.e. [18,
Theorem 1], remains true for Lemma 3.2 in this paper.

Remark 3.4. From Lemma 3.2 we have a sequence {uk} of critical points such that
I(uk) � 0, uk �= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions we need some lemmas. Under the assumptions
of Theorem 1.1, we take ε = 1/λ1(µ) in (2.3) (where λ1(µ) is the first eigenvalue of the
−∆ − µ(1/|x|2) with zero Dirichlet boundary data defined in § 2), then by the definition
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of As and Proposition 2.1, for λ ∈ (0, λ1(µ)) we have

Φ(u) � 1
2

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− 1 + λε2∗(s)

2∗(s)

∫
Ω

|u|2∗(s)

|x|s − λb(ε)|Ω|

� 1
2

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− 1 + 2∗(s)

2∗(s)

( ∫
Ω

(
|∇u|2 − µ

u2

|x|2

))2∗(s)/2

A−2∗(s)/2
s

− λb

(
1

λ1(µ)

)
|Ω|

= A

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− B

( ∫
Ω

|∇u|2 − µ
u2

|x|2

)2∗(s)/2

− λC,

where

A = 1
2 , B =

1 + 2∗(s)
2∗(s)

A−2∗(s)/2
s , C = b

(
1

λ1(µ)

)
|Ω|,

and A, B, C are positive constants independent of λ.
Let g(t) = At2 − Bt2

∗(s) − λC. Then

Φ(u) � g(‖u‖).

Furthermore, there exists

λ∗
1 = min

{
λ1(µ),

A(2 − s)
C(N − s)

(
2A

2∗(s)B

)2/(2∗(s)−2)}
> 0

such that, for λ ∈ (0, λ∗
1), g(t) attains its positive maximum, that is, there exists

R1 =
(

2A

2∗(s)B

)1/2∗(s)

such that e1 = g(R1) = maxt�0 g(t) > 0. Hence, for e0 ∈ (0, e1), we can find R0 < R1

such that g(R0) = e0. If we define

τ(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for 0 � t � R0,

At2 − λC − e1

Bt2∗(s) for t � R1,

C∞, τ(t) ∈ [0, 1] for R0 � t � R1.

Then it is easy to see that τ(t) ∈ [0, 1] for all t � 0 and τ(t) is C∞. Let ϕ(u) = τ(‖u‖)
and consider the truncated functional

J(u) = 1
2

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− ϕ(u)

2∗(s)

∫
Ω

|u|2∗(s)

|x|s − λϕ(u)
∫

Ω

F (x, u).

Then

J(u) � A

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− Bϕ(u)

( ∫
Ω

(
|∇u|2 − µ

u2

|x|2

))2∗(s)/2

− λC

� ḡ(‖u‖),
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where ḡ(t) = At2 − Bτ(t)t2
∗(s) − λC, and

ḡ(t) =

{
g(t), t � R0,

e1, t � R1.

From the above arguments, J has the following properties.

Lemma 3.5.

(1) J ∈ C1(H1
0 (Ω), R) and J is even and bounded from below.

(2) If J(u) < e0, then ḡ(‖u‖) < e0; consequently, ‖u‖ < R0 and Φ(u) = J(u).

(3) There exists λ∗ such that, for λ ∈ (0, λ∗), J satisfies a local (PS) condition for

c < e0 ∈
(

0, min
{

e1,
2 − s

2(N − s)
A(N−s)/(2−s)

s − λh

})
.

Proof. Conditions (1) and (2) are evident. For (3), let us choose

λ∗ ∈
(

0, min
{

2 − s

2h(N − s)
A(N−s)/(2−s)

s , λ∗
1

})
.

Condition (3) of the lemma holds in view of Lemma 2.4 and the construction of J . �

Lemma 3.6. Assume that (iii) holds. Then, for any k ∈ N, there exist δ = δ(k) > 0
such that γ({u ∈ H1

0 (Ω) : J(u) � δ(k)} \ {0}) � k.

Proof. Firstly, by (iii), for any fixed u ∈ H1
0 (Ω), u �= 0, we have

F (x, ρu) � M(ρ)(ρu)2 with M(ρ) → ∞ as ρ → 0.

Secondly, given any k ∈ N, let Ek be a k-dimensional subspace of H1
0 (Ω). There then

exist constant αk such that
‖u‖ � αk|u|2 ∀u ∈ Ek.

Therefore, for any u ∈ Ek with ‖u‖ = 1 and ρ small enough, we have

J(ρu) � ρ2

2

∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
− ρ2∗(s)

2∗(s)

∫
Ω

|u|2∗(s)

|x|s − λM(ρ)ρ2
∫

Ω

|u|2

�
(

1
2

− λM(ρ)
α2

k

)
ρ2

� −δ(k) < 0,

that is, {u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈ H1
0 (Ω) : J(u) � −δ(k)} \ {0}. This completes the

proof. �
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Remark 3.7. In Lemma 3.6 we showed that A = {u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈
H1

0 (Ω) : J(u) � −δ(k)} \ {0}. Therefore, γ({u ∈ H1
0 (Ω) : J(u) � −δ(k)} \ {0}) �

γ({u ∈ Ek : ‖u‖ = ρ}) = γ(A). Since A = {u ∈ Ek : ‖u‖ = ρ} is a sphere with radius
ρ in Ek, a k-dimensional subspace of E, so γ(A) = k by Proposition 3.1 (4). As for an
odd application ϕ : A → Rk \ {0}, we may consider the odd mapping ϕ : x → ϕ(x) =
(x1, x2, . . . , xk) ∈ Rk \ {0}, where x = x1e1 + x2 + · · ·+ xkek ∈ A, xi ∈ R, i = 1, 2, . . . , k,
and e1, e2, . . . , ek is a basis of Ek. This is a well known fact. For more properties about
the genus, we refer the reader to [27].

Now we are in the position to prove Theorem 1.1 by Lemma 3.2.

Proof of Theorem 1.1. Recall that Γk = {A ∈ H1
0 (Ω) \ {0} : A is closed and A =

−A, γ(A) � k} and define
ck = inf

A∈Γk

sup
u∈A

J(u).

By Lemmas 3.5 (1) and 3.6, we know that −∞ < ck < 0. Therefore, assumptions (A1)
and (A2) of Lemma 3.2 are satisfied. This means that J has a sequence of solutions {un}
converging to zero. Hence, Theorem 1.1 follows by Lemma 3.5 (2).

Note that, when µ = 0 and s = 0, our result is similar to that of [21] without the
restriction (iv). When 0 < s < 2, 0 < µ � µ̄, our result is new. �
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