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ON TRANSLATION PLANES WITH AFFINE 
CENTRAL COLLINEATIONS, II 

NORMAN L. JOHNSON AND MICHAEL J. KALLAHER 

1. Introduction. This article, as the name implies, is a continuation of [9]. 
In that article the second author investigates finite translation planes con
taining both affine dations and affine homologies. (See the beginning of 
Section 2 for definitions.) Such translation planes are called Ei7-planes. In [9] 
the author restricted himself to translation planes of characteristic p ^ 5. 
The main reasons for this were that Ostrom's and Hering's theorem [13; 4] 
on affine dations excluded the case p = 3 and the conclusions were easier to 
interpret geometrically when p ^ 5 (as opposed to the case p = 2). Since 
then Ostrom [17] has settled the case p = 3. 

In this article we extend the results of [9] to translation planes of character
istic p = 2 and p = 3. The classification for EH-p\anes of characteristic p ^ 5 
is extended from 3 to 7 possible types. (See the paragraph following Lemma 1 
and the beginnings of Sections 4 and 5 for definitions.) There are many examples 
for each of types 1, 2a, 3a, 3d but none are known for the other three types. 
However, O. Prohoska and M. Walker have discovered a plane of order 81 
which seems to be of type 2b. In addition we show that an EH-plane of non-
square order is of type 1, 2a or 3d. 

We also investigate the action on lœ of the collineation group generated by 
the affine central collineations (Theorems 4, 5 and 7). Finally, in Section 6 we 
combine our results with a theorem of Ostrom's to obtain information about 
translation planes of non-square order with affine homologies of prime order 
u > 5. 

As this article was being prepared, the authors received a preprint of an 
article [5] written by Hering. In [5] Hering investigates collineation groups 
generated by affine dations in arbitrary finite affine planes (not necessarily 
translation planes). He obtains results (geometrical and group-theoretic) 
essentially the same as those obtained for translation planes in [4; 13; 16]. 

Since many of our results are refinements of results in [9], wre will often 
appeal to [9] for portions of, or even entire, proofs. Thus we expect the reader 
to be familiar with [9]. Also we expect the reader is familiar with the general 
theory of projective and affine planes as given in Dembowski [3] and Hughes 
and Piper [7]. Finally, knowledge of Ostrom's theory of Desarguesian nets as 
given in [13; 15] is assumed. 
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TRANSLATION PLANES 117 

2. E-f f -p lanes . We shall think of an affine plane sometimes as a projective 
plane in which a special line, called the line a t infinity and denoted by /œ, is 
distinguished. The affine points are the points not on this line and the affine 
lines are the lines distinct from lœ. The points in lœ will be called points a t 
infinity. As in [9] the collineations we shall consider are defined as follows: 

Definition. Let ir be a translation plane of order pr, p a prime. An affine 
central collineation of ir is a central collineation a of TT whose axis is an affine 
line; a is an affine elation if it is an elation; a is an affine homology if it is a 
homology. 

Given a translation plane ir we can coordinatize it with a quasi-field. Let 0 be 
the origin; i.e., the point with coordinates (0, 0) . The lines through 0 are 
called the components of w (André [1]). Note tha t every affine line of T is the 
t ranslate of a component. If T is the group of translations of ir and G the full 
collineation group of ir, then G — T C(TT), where C(ir) = G0, since T is transi
tive on the affine points of T. C(ir) is called the translation complement of ir 
(Ostrom [16]). T o determine the nature of G it is sufficient to determine the 
subgroup C(ir). In this article, generally, all collineations not translations will 
thus be elements of C(7r). 

Definition. Let ir be a translation plane of order pT with affine da t ions . The 
elation net of -K is the net, denoted by N, whose points are the points of T and 
whose lines are the components, and their translates, of ir which are axes of 
affine da t ions . The degree of the elation net is the number of components of x 
in the elation net. N C\ lœ will denote the points a t infinity of the components 
oîN. 

Since in a translation plane a line is the axis of an affine elation if and only 
if it is the t ranslate of a component which is the axis of an affine elation, the 
lines of an elation net are precisely the axes of affine da t ions . By Ostrom [13; 
17] and Hering [4; 5] we have 

T H E O R E M 1. Let ir be a translation plane of order pT with an elation net N of 
degree m and let E{ir) be the collineation group of w generated by the affine dations 
of T in C(T). One of the following holds: 

(i) m = 1 and E(ir) is an elementary abelian p-group consisting of affine 
dations. 

(ii) m = ps + 1 for some integer s\r, N is an invariant Desarguesian net and 
each component of N is the axis of ps affine dations. N contains a Desarguesian 
subplane it of order ps upon which E(w) acts faithfully and Ë, the group induced 
on it by E(w) is SL(2, ps); thus E(T) ~ SX(2, ps) and E(T) is doubly transitive 
on the components of N. 

(iii) p = 3, m = 10, 2jr, N is an invariant Desarguesian net, and each com
ponent of N is the axis of 3 affine dations. N contains a Desarguesian subplane it 
of order 9 upon which E{TT) acts faithfully and Ë, the group induced on f by E(w), 
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is SL(2, 5 ) ; thus E(w) = SL(2, 5) and E(w) is transitive, but not doubly transi
tive, on the components of N. 

(iv) p = 2, m = 22s + 1, s odd, s ^ 3, 2s\r, and each component of N is the 
axis of 2s affine dations. N contains a Lilneburg-Tits plane f of order 22s upon 
which E(ir) acts faithfully and Ë, the group induced on it by E(ir), is Sz(2s); 
thus E(TT) ^SZ(2S). 

(v) p = 2, m is odd, and each component of N is the axis of 2 affine dations. 
E(T) = SM, \S\ = 2 and \M\ = m is odd, and E(ir) induces faithfully a 
Frobenius group on N C\ lœ with Frobenius kernel M and Frobenius complement 
S. 

Proof. Hering [4] shows t h a t if p ^ 3 one of the following occurs: (1) m = 1 
and E(T) is an elementary abelian p-group consisting of affine da t ions , (2) m = 
ps + 1 and £(TT) ~ SL{2, ps) with all ^-elements affine elations of TT, (3) p = 2 
and E(T) ^SZ(2S), S odd and 5 ^ 3, or (4) p = 2 and E(w) = SM with 

| 5 | = 2 and \M\ = m, m odd. If p = 3 in addi t ion to (1) or (2) Ostrom [17] 
shows tha t one more possibility exists: (5) m = 10 and E(j) ~SL(2, 5) . 

Assume (2) occurs; since SL(2, ps) is generated by a pair of dist inct Sylow 
^-groups, we can apply Theorem 4 of Ostrom [13] and obtain (ii). (In [13] 
Ostrom uses the hypothesis p > 3 in Theorem 4 only to show t h a t he has 
SL(2, ps) with all its #>-elements affine elations. This we have and his proof 
with tha t modification applies.) If (5) occurs, then (iii) of the theorem holds 
(Ostrom [17, Corollary 3.8]). 

Assume (3) occurs. In Sz{2s) all involutions are conjugate, the order of a 
Sylow 2-subgroup 5 is 22 s and Z(S) consists of the involutions in S (Lûneburg 
[12]). This implies tha t in E(w) all involutions are affine elations since one is 
and t ha t there is a (1 — 1) correspondence between the components of N and 
the Sylow 2-subgroups of Sz(22s). Since Sz(2s) has 22s + 1 Sylow 2-subgroups 
(Lûneburg [12]) N has degree 22 s + 1. (Also see Hering [5, Theorem 3.9]). 
By Hering [5, first paragraph of Section 4] 22r = \T\, T the group of transla
tions of 7T, is divisible by 22s. By Theorem 5 of [5] N contains a Luneburg-Ti ts 
plane f of order 22s upon which E(w) acts faithfully. This gives (iv). 

Assume (4) occurs. Then the number of Sylow 2-subgroups of E(ir) is m and, 
since these are disjoint, there is a (1 — 1) correspondence between the Sylow 
2-subgroups of E(ir) and the components of N. The s ta tement abou t the action 
of £ (TT) on N rMœ follows. 

Remark. T h e above five possibilities are essentially disjoint ones. Only (ii) 
and (v) can occur a t the same t ime; namely, when E(ir) ~SL(2, 2) and 
m = 3. 

In this article we shall investigate the following type of translat ion plane: 

Definition. An EH-plane is a translat ion plane ir of finite order pr, possessing 
both affine elations and affine homologies. If N is the elation net of w of degree 
m then the dimension of w over N, denoted by dirn^-n-, is 0 if (i) of Theorem 1 

https://doi.org/10.4153/CJM-1976-014-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-014-8


TRANSLATION PLANES 119 

holds, r/s if (ii) or (iii) of Theorem l holds, r/2s if (iv) of Theorem 1 holds, 
r if (v) of Theorem 1 holds. 

The following theorem shows there are essentially three types of £ i f -p lanes . 
For an affine homology the co-center is the intersection of its axis with the line 
a t infinity. Note tha t the center of an affine homology is always a point on the 
line a t infinity. 

T H E O R E M 2. Let w be an EH-plane of order pT, let P be the center and Q the 
co-center of an affine homology a of ir, and let R be the center of an affine elation. 
Exactly one of the following must occur: 

(1) R is unique and either R = P or R = Q. 
(2) R is not unique and both P and Q are centers of affine dations. 
(S) R is not unique and neither P nor Q are centers of affine dations. 

Proof. Assume first tha t R is unique, cr fixes only the points P and Q on lœ 

and moves the other points. But a also fixes R since R is the only center of 
affine elations. Hence either R = P or R = Q. 

Assume now tha t R is not unique. Assume also tha t the number of affine 
elation centers on lœ is pl + 1 for some integer t\r. If P is the center of an 
affine elation and Q is not, then a fixes P and permutes the other p1 affine 
elation centers among themselves in nontrivial orbits. Thus |c||£*. But also 
\v\\pr — 1. Th i s implies \a\ = 1—a contradiction. Hence P an elation center 
implies Q is an elation center. A similar proof shows that Q an elation center 
implies P is an elation center. 

If R is not unique and m ^ pl + 1 for some integer t then by Theorem 1 
p = 2, E{ir) = SM, \M\ = m is odd. We show tha t in this case neither P nor 
Q can be centers of affine elations. Since we will need this result later, we s ta te 
it as a lemma. 

LEMMA 1. / / in addition to the hypothesis of Theorem 2, statement (v) of 
Theorem 1 holds, then neither P nor Q are centers of nontrivial affine elations. 

Proof. Since p = 2, \a\ is odd. If P is a center of a nontrivial affine elation r 
then <T = T~1GT is an affine homology with center P and co-center QT ^ Q. 
Then w has affine homologies with center P and distinct co-centers Q, QT, 
Qra. By André [1] P is the center of a t least 2 nontrivial affine elations. This 
contradicts the fact tha t if (v) of Theorem 1 holds then P is the center of a t 
most one nontrivial affine elation. This proves the lemma and also Theorem 2. 

Theorem 2 gives us the following simple classification of EH-p\anes: 
Type 1. S ta tement (1) of Theorem 2 holds. 
Type 2. S ta tement (2) of Theorem 2 holds. 
T y p e 3. S ta tement (3) of Theorem 2 holds. 

Note than an £i7-plane of type 1 cannot be of type 2 or of type 3, bu t an 
EH-plane could possibly be of type 2 and of type 3. Johnson and Ostrom [8] 
have constructed translation planes of order 3 2 r , possesssing affine elations of 
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order 3 and affine homologies of order 2. These planes satisfy s ta tements (2) 
and (3) of Theorem 2. The planes constructed by Ostrom in [14, Theorem 2.1] 
are EiJ-planes of type 2, bu t not of type 3, in which s ta tement (ii) of Theorem 
1 holds. Desarguesian planes will always be EiJ-p lanes of type 2 in which 
s ta tement (ii) of Theorem 1 holds. Semi-field planes are EH -planes of type 1. 
Hall planes of characteristic two are £ i / - p l a n e s of type 3 in which s t a t ement 
(v) of Theorem 1 holds. T h e Luneburg-Ti ts planes are not £ i7-planes of any 
type since they do not possess affine homologies (see Lemma below). 

As in [9] we make the following definitions: 

Definition. Let w be an EiJ -p lane and let H be a group of affine homologies 
of 7T in the translation complement with center P and co-center Q (on lœ). 
T is of type k with respect to H, k = 1, 2, or 3, if P and Q satisfy s t a t ement (k) 
of Theorem 2. 

Remark. Note t ha t with respect to a specific group H ir is of one type only. 

Let 7T be an EH-p\ane of order p7', let C = C(w) be the translat ion comple
ment of 7T, E = E(TT) the group generated by the affine d a t i o n s of -K in C, 
H a group of affine homologies in C with center P Ç lœ and co-center Q £ L 
(and hence axis OQ). Let L = L(H) = {E, H). Since E is generated by all 
the affine da t ions in C, E < C and therefore L = EH. Note tha t in all three 
types of EiJ-planes , H Pi CL(E) consists only of the ident i ty (CL(E) is the 
centralizer of E in L) and thus H induces under conjugation a nontrivial 
group of automorphisms of E isomorphic to itself. T h u s we have the obvious 

T H E O R E M 3. Let T be an EH-plane with order pT of type k with respect to a 
group H of affine homologies in C(TT). If E(T) is the group generated by the affine 
dations of ir in C(w), then L(H) = (E(w), H) = E(T)H and H is isomorphic to a 
group of automorphisms of E(w). 

T h e notat ion E(w), C(ir), L(H) will be used throughout the rest of this 
article in the sense used above. 

3 . E i Y - p l a n e s of t y p e 1. In this section we determine the action of L(H) on 
the line lœ for an EH-p\ane of type 1. 

T H E O R E M 4. Let TT be an EH-plane of order pr
} and assume w is of type 1 with 

respect to a group of affine homologies H in C(ir). L(H) is a group of central 
collineations which induces a permutation group L on the points of lœ with L ~ L. 
L has the following action: 

(i) L fixes the point R, the center of the affine dations in E(T); 
(ii) L has one orbit tyl of order \E\ on which it acts as a Frobenius group with 

Frobenius kernel Ë and Frobenius complement H; 
(iii) every other orbit has length \L(H)\ and L acts as a regular group on each 

of these orbits. 
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Furthermore E(j) C\ H consists only of the identity, \L{H)\ = |£(7r)| \H\ and 

\H\\(E(r)\-l). 

Proof. The proof of Theorem 4 in [9] applies since the hypothesis p ^ 5 is 

not used there. 

A divisor of pr — 1, p a prime, is a p-primitive divisor if it is relatively prime 
to ps — 1 for every positive integer 5 with s\r. I t is easy to see tha t if u is a 
prime ^-pr imit ive divisor of pr — 1, then u does not divide ps — 1 for all 
^ < r, s ^ 0. As in [9] we have the following corollary: 

COROLLARY 4.1 . Let TT be an EH-plane of order pr and assume T has a homology 
a of order u which is a prime p-primitive divisor of pr — 1. Then T is not of type 1. 

Proof. The proof of Corollary 4.1 in [9] carries over without any change. 

4. E i f - p l a n e s of t y p e 2. In this section we look a t EH-pl&nes of type 2 and 
determine the nature of L(H) = E(ir)H. To do th i s we need the following 
results: 

LEMMA 2. Let T be a Luneburg-Tits plane of order 22s, s ^ 3. Then TT has no 
nontrivial affine homologies. 

Proof. If 7T has an affine homology a 9e 1 with center P, co-center Q, and 
axis OQ then for every point R £ lœ, R ?± Q, ir has an affine homology aR ^ 1 
with center R and co-center Q. This follows from the fact t ha t the stabilizer 
in C(w) of Q is transitive on the other q2 points of lœ (Lùneburg [12, p. 89]). 
By André [1] -K is (Q, Q)-transitive which is impossible (Lùneburg [12, p . 95]). 
This proves a does not exist. 

By Lemmas 1 and 2, if w is an EH-plane of type 2, then either s ta tement (ii) 
or s ta tement (iii) of Theorem 1 holds. We therefore make the following 
definition. 

Definition. An EH-plane w of type 2 is of type 2a if s ta tement (ii) of Theorem 
1 holds; 7T is of type 2b if s ta tement (iii) of Theorem 1 holds. 

Remark. We define the notion "T is of type 2a (or 2b) with respect to a 
group H of affine homologies" in the obvious way. 

For planes of type 2 we have the following comprehensive theorem: 

T H E O R E M 5. Let w be an EH-plane of type 2 with respect to the group H of affine 
homologies in C(w) and let N be the elation net of T with degree ps + 1. E(w) r\ H 
consists only of the identity, L(H) is the semi-direct product of E(w) and H and 
is isomorphic to a subgroup of GL(2, ps), H is cyclic, and \H\\ps — 1. L, the 
permutation group induced on lœ by L(H), has one orbit of length ps + 1 con
sisting of the centers of the affine central collineations in L (H) and all other orbits 
of L have length divisible by ps\H\. Furthermore, either (i) T is of type 2a with 
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respect to H and E(T) = 5 L ( 2 , ps) or (ii) T is of type 2b with respect to H, 
p = 3, 5 = 2, 2|r, |ff||8, and E(v) 9Ë SL(2, 5). 

Proof. Either -K is of type 2a or 7r is of type 2b. If ir is of type 2a, the proof 
of Theorem 5 in [9] carries over without any change. If -K is of type 2b, the 
same proof can be used since in this case N is a Desarguesian net of degree 10 
containing a Desarguesian subplane of order 9. 

Remark. Note that in Theorem 5, if \H\ > 8 or if \H\ is divisible by any 
odd integer, then ir is of type 2a. 

Using this remark, the proof of Corollary 5.1 in [9] gives 

COROLLARY 5.1. Let -K be an EH-plane of order pr and assume TV has a homology 
a of order u which is a prime p-primitive divisor of pr — 1. If w is of type 2 with 
respect to H = (a), then ir is Desarguesian. 

Examples. As already remarked, Desarguesian planes and the planes of 
Ostrom [14] are Ei7-planes of type 2. Recently O. Prohoska and M. Walker 
have discovered a translation plane of order 81 possessing a set of affine 
dations which generate SL(2, 5), but it is not known (to the present authors) 
whether or not this plane possesses affine homologies. 

5. EH-planes of type 3. Just as for Eif-planes of type 2, we can divide the 
class of EiJ-planes of type 3 into several subclasses. For this purpose we make 
the following definition: 

Definition. Let T be an EH-p\ane of type 3. w is of type 3a (3b, 3c, 3d) if 
statement (ii) ((in), (iv), (v)) of Theorem 1 holds. If if is a group of affine 
homologies of 7r, IT is of type 3a with respect to H if w is of type 3a; similarly, 
for type 3b, 3c, 3d with respect to H. 

Remark. The planes of Johnson and Ostrom [8] are of type 3a (and also of 
type 2a). 

LEMMA 3. Let T be an EH-plane of type 3 with respect to a group H of affine 
homologies. If w is not of type 3d, then E(ir) C\ H consists only of the identity. 

Proof. If 7T is not of type 3d, then it is of type 3a, 3b, or 3c. If the type is 3a 
or 3b let it be the Desarguesian subplane contained in the elation net N, while 
if 7T is of type 3c, let f be the Liineburg-Tits subplane contained in the elation 
net N. In all three cases the group E(ir) fixes f. If a £ E(ir) C\ H and a 9e I 
then a is an affine homology fixing f. Lemma 4.24 of Hughes and Piper [7, p. 
102] says that the center and axis of a are in it—a contradiction. Thus a = 1. 

Remark. Lemma 3 is not true if TT is of type 3d. See the examples after 
Corollary 6.1. 

We turn now to obtaining some necessary conditions for w to be of type 3. 
We start with: 
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LEMMA 4. Let TT be a translation plane of order pT with a Desarguesian net N of 
degree ps + 1, s\r, such that N contains a Desarguesian subplane f of order ps. 
N is the union of (pr — l)(ps — 1 ) _ 1 Desarguesian subplanes of order p\ any 
two of which intersect in only one point 0 common to all of them. Furthermore, if a 
is a collineation of TT fixing N then a permutes these subplanes among themselves. 

Proof. Let irf be the Desarguesian plane of order pr containing N and assume 
ir' is coordinatized by a field K of order pr. We may choose our coordinate 
system such tha t f is coordinatized by a subfield F of K having order ps and 
the origin 0 = (0, 0) is in #. Let irit i = 1, . . . , d = (pr - l)(ps - l ) " 1 be 
the dist inct images of f under the (0 , lœ)-homologies (x, y) —> (x/3, yfi), 
($ £ K* = K — {0}. (Thus ft correspond to the distinct cosets of F* = F — 
{0} in K*.) Then 

d 

N = \J fit and TT * O ^ = {0} if i ^ j . 

(See Exercise 4.23 on p. 105 of Hughes and Piper [7]). 
Let a be a collineation of T fixing N and consider the Desarguesian subplane 

7f. f is a subplane of w of order ps contained in N. Let P G ïïu P 5e O. 
Then Pa G fj for some j . fj and fta have the same points on lœ and have the 
points P and 0 in common. Every other point of 7r; is the intersection of a 
line through 0 and a point Q G 7TJIH /œ and a line through P and a point 
i^ G 7Tjifl lœ. This implies # ̂  contains all the points of fj and hence fja = fj. 
T h u s a- permutes these subplanes among themselves. 

We have the following theorem which is a generalization of Theorem 6 in [9]. 
The proof is a modification of a proof for the same Theorem 6 communicated 
to the second author by C. Hering. 

T H E O R E M 6. / / TT is an EH-plane of type 3a, 3&, or 3c having order pT and an 
elation net N of degree ps + 1, then d i m ^ = r/s is even. 

Proof. Assume dim irN = r/s = t is odd, and let a be an affine homology in 
C(TT) with axis /, / not a line of N. Let u = \a\. Since a is a homology with axis / 
not in TV, the center of a is a point a t infinity of T which is not in N. T h u s 
u\ps + 1, the number of such points. Also, u\pT — 1 since a fixes two points 
a t infinity of T and is fixed-point-free on the other points a t infinity. If / = 
dim^Tr = r/s, then p'tyi'-»8 + 1) = ps(pr~s + 1) = (pr - 1) + (ps + 1) 
implies u\(p^~l)s + 1). Hence u\(p^~2)s - 1) since ps(p^~^s - 1) = 
(£('-D* + l ) _ (p* + 1). An easy induction shows tha t for 1 ^ k S t, 

u\p(t-k)s -[- i if £ i s 0 d d and u\p{t~k)s — 1 if k is even. Thus t odd (our hypoth
esis) implies u\(p{t~t)s + 1) = 2. Thus u = 2. 

Note tha t u = 2 implies p 9^ 2 and hence in part icular 7r is not of type 3c. 
Assume T is of type 3a or 3b. AT" is a Desarguesian net containing a Desarguesian 
subplane it of order ps. By Lemma 4 TV is the union of (pr — l)(ps — 1 ) _ 1 

Desarguesian subplanes and a permutes these subplanes among themselves. 
If a fixes one of these subplanes, then the center and axis of a are in N (Lemma 
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4.24 of [7, p. 102]). This is a contradiction. Hence a acts semi-regularly on the 

set of these subplanes and therefore 2 = \a\ divides (pr — l)(ps — 1 ) _ 1 = 
ps(t-i) + ps(t-2) + m _ + ps + 1 t o d d i m p i i e s (pr _ i^ps _ ! ) - i i s o d d 

(since p is odd) and hence 2 does not divide (£ r — 1) (ps — 1) _ 1 . This gives a 
contradiction. T h e theorem is proved. 

COROLLARY 6.1. Let TT be an EH-plane having non-square order. One of the 
following holds: 

(i) 7T is of type 1 
(ii) 7T is of type 2a. 

(iii) 7T is of type 3d. 

Proof. Follows from Theorem 5 and Theorem 6. 

Examples. Translat ion planes coordinatized by semi-fields (of either square 
or non-square order) are Ei7-planes of type 1. T h e only known EH-planes of 
type 2a are the Desarguesian planes, the planes discovered by Ostrom [14], 
and the planes of characteristic 3 discovered by Johnson and Ostrom [8]. 
The planes in the last two classes all have square order, however. 

Consider a t ranslat ion plane TV coordinatized by a proper nearfield Q of order 
2r, r ^ 6. Then every component of ir, except for the x- and ^-axis, is the axis 
of an elation of order 2. Specifically, the component y = ax, a ^ 0, is the axis 
of the elation <f)a: (x, y) —> (a~ly, ax). Choose a, b £ Q — {0} such t h a t ab ^ ba 
and let c = a~lb. Then pn = <t>a<t>b<t>c<t>i'' (x, y) —* (x, dy) where d = b~laba~l ^ 
1. T h u s p is a nontrivial affine homology with axis y = 0 and center (oo). 
This examples shows tha t Lemma 3 is not true for planes of type 3d in general. 

We also remark t ha t the Hall planes of characterist ic 2 as well as the t rans
lation planes derived from planes coordinatized by regular nearfields of 
characteristic 2 are EH-p\a.nes of type 3d. 

We turn now to investigating the na ture of the group L(H) for £ i7-planes 
of type 3. 

T H E O R E M 7. Let -K be an EH-plane of type 3 with respect to a group H of 
affine homologies having center P and co-center Q, let T have order pr

} let N be the 
elation net in ir, and let K be the subgroup of L(H) fixing each component of N. 

(i) If ir is of type 3a and N has degree ps + 1, then L(H)/K is isomorphic 
to a subgroup of PTL(2, ps) containing PSL(2, ps). 

(ii) If it is of type 3b then L(H)/K is isomorphic to a subgroup of PTL(2, 5) 
containing PSL(2, 5) . 

(iii) If 7T is of type 3c and N has degree 22s + 1, then L(H)K is isomorphic to 
a subgroup of Au t (Sz (2 s ) ) containing Sz(2 s ) . 

(iv) If T is of type 3d and N has degree m, then L(H)/K is isomorphic to a 
subgroup of Aut M, M the Frobenius kernel of E(w). 

Proof. In all four cases there is a natura l (1 — 1) correspondence between 
the components of N and the Sylow ^-subgroups of E(T) such t ha t r G K 
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if and only if the automorphism p —» r~lpT of E(ir) induced by r fixes all the 
Sylow ^-subgroups of E(T). 

The proof of Theorem 7 (iii) in [9] gives (i). If ir is of type 3b then E(T) = 
SL(2, 5 ) . If r € L(H) then r induces by conjugation an automorphism f of 
E(ic). If r Ç K, then f fixes the Sylow 3-subgroups of E(ir). By a proof similar 
to the proof of Lemma 4 in [9], f fixes the Sylow 3-subgroups of SL(2, 5) if 
and only if f is the identi ty automorphism. Thus K consists of the collineations 
of L(H) which induces the identi ty automorphism by conjugation on 5L(2 , 5) . 
Hence L(H)/K is isomorphic to the automorphism group induced on E(w) ~ 
5L(2 , 5) by L(H) and (ii) follows since Au t (5L(2 , 5)) ^ PTL(2, 5) (Hua [6]) 
and SL(2, 5) induces PSL(2, 5) by conjugation. 

Assume now tha t w is of type 3c. Let T £ K. The automorphism f induced by 
conjugation on E(w) = Sz(2 s) fixes all the Sylow 2-subgroups of E(w). By 
Lemma 11 of [18] f = 70ft*, where 8 £ E(ir) and 75 : p—^ô^pô is the inner 
automorphism induced by 5, a £ Aut (GF(2S)) and /3a is the outer auto
morphism induced by the semi-linear transformation a defined in 4-dimensional 
vector space over G F (2s). For every Sylow 2-subgroup S of E(TT), Sy$a = S 
orô - 1 5ô = S/3a-i. Now fia-i fixes a t least 3 Sylow 2-subgroups of Sz (2s) =E(w). 
This implies ô is in the normalizer of three distinct Sylow 2-subgroups of E(w) 
and this is only possible if ô = 1. Hence r = /3a and /3a fixes all the Sylow 
2-subgroups of Sz (2 s) . This can only happen if a = 1. Hence f = 1. 

T h u s if 7T is of type 3c, L(H)/K is isomorphic to the group of automorphisms 
induced on E (TT) ^ Sz (2s) by L (H). Thus L (H)/K is a subgroup of Aut (Sz (2s) ) 
containing Sz(2 s) (since L(H) ^ E{r) ^ Sz(2 s ) ) . 

If 7T is of type 3d, then the elements of K induce (by conjugation) automor
phisms of E(TT) fixing each Sylow 2-subgroup of E(T). Since a Sylow 2-sub
group of E(ir) has only one non-identi ty element, this implies the auto
morphisms on E(TT) induced by elements of K fix the 2-elements of E(TT). 
Hence these automorphisms fix E(w) pointwise since E(ir) is generated by its 
2-elements. Thus L(H)/K is isomorphic to the automorphism group induced 
on E(T) by L(H). Since M is characteristic in E(w), (iv) follows. 

The last result of this section is a continuation of Corollary 4.1 and Corollary 
5.1. 

T H E O R E M 8. Let T be an EH-plane of order pT with an affine homology of order 
u, u a prime p-primitive divisor of pr — 1. One of the following holds: 

(i) T is Desarguesian. 
(ii) 7T is of type Sb, u = 5, and pr = 34 . 

(iii) 7T is of type 3c with pr = 24 s , 22 s + 1 the degree of the elation net N, and 
u\22s + 1. 

(iv) 7T is of type 3d with p = 2 and u\mym the degree of the elation net N. 

Proof. By Corollary 4.1 w is not of type 1 with respect to (p) and by Corollary 
5.1 7T is Desarguesian if it is of type 2 with respect to (p). If ir is of type 3d 
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with respect to (p) then u\rn, the degree of TV, since p acts semi-regularly on 
the points of N Pi lœ. 

Assume w is of type 3 with respect to (p) but not of type 3d. Let N have 
degree pl + 1. If 2t < r, define d = g.c.d. (2t, r). Then d = 2tx + ry for 
integers x, y, and 

P* - 1 = £ 2 ^ n / _ 1) + (p2i* - 1) = ^ ' * ( p ' - l)Xl + (Pl + l)yi 

for integers Xi, 3/1. Therefore u\pd — 1 and rf|r—a contradiction to the fact 
that u is a ^-primitive divisor of £ r — 1. Hence 2/ = r, since t\r (Theorem 1) 
and 2\r/t (Corollary 6.1). 

If 7T is of type 3a with respect to (p), the proof of Theorem 8 in [9] gives a 
contradiction since that proof depends only on the properties of SL(2, ps) and 
not on p being greater than 3. 

Assume w is of type 3b. Then N has degree 10 and this implies u = 5 since 
u\10 and u ^ 2. The only power of 3 having 5 as a 3-primitive divisor is 34. 

Assume TT is of type 3c. Then p = 2 and r = 4s since iV has degree 22s + 1 
in this case. The fact that u\22s + 1 follows from the fact that p acts semi-
regularly on the points of N C\ lœ. This proves the theorem. 

Examples. The nearfield planes of characteristic 2 as well as the Hall planes 
of characteristic 2 are £i7-planes fulfilling the hypothesis of Theorem 8 and 
they satisfy statement (iv). For the nearfield planes m = pT — 1 and for the 
Hall planes m = ps + 1, s = r/2. The authors do not know any planes 
satisfying the hypothesis of Theorem 8 and either statements (ii) or statement 
(iii). Possibly the plane recently observed by O. Prohoska and M. Walker 
satisfies statement (ii). 

6. Applications. In this section some implications of the results derived 
above will be presented. As is true of our other results, the results given here 
will be generalizations of results in [9]. Our starting point is the following 
result of Ostrom [16, Theorem 3.12]. 

THEOREM 9. Let ir be a translation plane of non-square order and let a be an 
affine homology of prime order u with center P and co-center Q. One of the following 
holds: 

(i) P and Q are fixed by every collineation of T. 
(ii) {P, Q] is an orbit of the collineation group of T on lœ. 
(iii) 7T has affine dations. 
(iv) u S 5. 

Combining with the results of the previous sections, Ostrom's theorem gives 
the following: 

THEOREM 10. Let ir be a translation plane of non-square order pT with an 
affine homology a of prime order u ^ 2, 3, 5. If P is the center and Q the co-center 
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of a and C — C(ir), the translation complement of T, then one of the following 
holds: 

(i) P and Q are fixed or interchanged by C and C is a solvable group. 
(ii) P is fixed by C but Q is moved by C; ir is an EH-plane of type 1 and C is 

solvable. 
(iii) Q is fixed by C but P is moved by C; ir is an EH-plane of type 1 and C is 

solvable; 
(iv) x is an EH-plane of type 2a with an elation net N of degree ps + 1, 

s\r. If A is the set of points at infinity of N then A is the orbit of P under C and 
the center and co-center of every affine collineation of TT is in A. C is non-solvable if 
ps > 3 and C/K, K the subgroup of C fixing A pointwise, is isomorphic to a sub
group of PTL(2, ps) containing PSL{2, ps). 

(v) p = 2, 7T is an EH-plane of type 3d with an elation net N of degree m, 
m odd, and the center and co-center of every affine homology of -K lies outside of A, 
the set of points at infinity of N. 

Proof. By Theorem 9 the points P, Q are fixed by C, interchanged by C, 
or 7T has affine elations. If one of the first two possibilities occurs, then CPtQ, 
the stabilizer of P and Q, has index 1 or 2 in C and by Burmeister and Hughes 
[2] CP)Q is solvable. Hence C is solvable. 

Assume ir has affine elations, ir is an Ei7-plane and by Corollary 6.1 one of 
the three possibilities can occur: (1) ir is of type 1, (2) TT is of type 2a, (3) ir is 
of type 3d. If TT is of type 3d then (v) follows. (See Lemma 1 for the last part 
of (v).) 

Assume -K is of type 1. Then either P is fixed and Q is moved, or Q is fixed 
and P is moved. Assume P is fixed and let B be the orbit of Q under C. By a 
classical result of André [1], B is the orbit of Q under E(ir) and hence C = 
E{TT)CQ. Since C fixes P, by Burmeister and Hughes [2] CQ is solvable and 
therefore C is also since E(w) is elementary abelian. Thus (ii) holds. If Q is 
moved and P is fixed, a similar proof shows (iii) holds. 

Assume T is of type 2a. Then (iv) holds. C is non-solvable if ps > 3 since C 
contains a subgroup E(ir) = SL(2, ps). The fact that ir has no affine central 
collineation with center and co-center not in A follows from Theorem 6. The 
proof of the statement concerning C/K is essentially the same as the proof of 
Theorem 7 (iii) in [9]. 

By T(pT) we mean the group of all mappings on GF(pr) of the form x —» xaa^ 
where a G GF(pT), a ^ 0, and a is an automorphism of GF(pr). T(pT) is 
solvable of order r(pT — 1). As an immediate consequence of Theorem 10 we 
have: 

COROLLARY 10.1. Let TT be a translation plane of non-square order pr and 
assume it has an affine homology of order u, u a prime p-primitive divisor of 
pr — 1, with center P and co-center Q. One of the following holds: 

(i) P and Q are fixed or interchanged by the translation complement C(TT) of TT, 
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C(j) is solvable, and the permutation group induced on OP by C(ir) is isomorphic 
to a subgroup of T(pr). 

(ii) 7T is Desarguesian. 
(iii) p = 2 and ir is an EH-plane of type 3d. 

Proof. Clearly u 9e 2 and the beginning of the proof of Corol lary 10.1 in [9] 
shows u 9^ 3, 5. Then Theorem 10 applies. If (i) of Theorem 10 holds, then 
s ta tement (i) above holds by the proof of Theorem 10 in [9]. T h u s by Theorem 
10, 7T is an EiJ -p lane of type 1, type 2a, or type 3d. By Corollary 5.1, T is not 
of type 1. By Corollary 5.1, if w is of type 2a then it is Desarguesian. This 
proves the Corollary. 

COROLLARY 10.2. Let -K be an affine plane of non-square order n in which every 

affine line is the axis of a non-trivial homology of prime order u ^ 2, 3, 5. x is 

a translation plane of order pT for some prime p and some integer r ^ \; further

more, one of the following holds: 

(i) 7T is a semi-field plane. 

(ii) 7T is Desarguesian. 

If u is a p-primitive divisor of pr — 1 then (ii) holds. 

Proof. T h e first conclusion follows from Theorem 11 of [9]. We can therefore 
apply Theorem 10. Clearly (i) and (v) of Theorem 10 cannot hold. If either 
(ii) or (iii) of Theorem 10 holds, then the first pa r t of the proof of Theorem 11 
in [9] can be applied to show t h a t -K is a semi-field plane. If (v) of Theorem 10 
holds, then w is an EH-plane of type 2a and every afifine line must be the axis 
of an affine elation. Hence the elation net of T has degree pr + 1 and ir has a 
collineation group isomorphic to SL(2, pr). Hence w is Desarguesian (Liineburg 

[ i i ]) . 

Remarks. As remarked in [9], the results of this section are close to being 
best possible. I t is necessary to exclude the possibility u = 2. For in every 
nearfield plane and in every Hall plane of odd order, each component is the 
axis of a homology of order 2. Also in planes derived from regular nearfield 
planes of square order as wrell as certain generalized André planes there are 
components which are axes of involuntary homologies. Johnson and Ostrom 
[8] have discovered André translat ion planes possessing affine homologies of 
order 3 with distinct centers and co-centers bu t no affine da t ions . 

If an a t t e m p t is made to remove the hypothesis "non-square order ," a t 
least one addit ional class will have to be admi t ted as a possibility. For the 
Hall planes of order q, which are not Ei7-planes if q is odd, have q(q — 1) 
components tha t are axes of homologies of order q + 1. 
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