A PACKING PROBLEM
R.G. Stanton, H.C. Williams, C.R. Zarnke

(received August 27, 1966)

1. Introduction. Consider three externally tangent circles
A,B,C, withradii a,b,c, respectively. Let D be the circle
which is externally tangent to all three and enclosed by them.
Pack circles so that Z1 =D and Z. is externally tangent to A,

i
B, Zi . Similarly Y1 = D; Yi is externally tangent to A, C, Yi L
Also X1 = D; X, is externally tangent to B, C, Xi = [see Fig.1].
i -

We use x,,yi, Zi’d’ for the radii of X ,Y.,,Z ,D, respectively.
i i’ 71
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We obtained and tabulated the ratio, R(a,b, c), of the packed
o0
area, namely, D+ 2 (X . + Y.+ Z.) to the total area of the
i i i
2
circular triangle bounded by A,B, C .

2. Method. It is well known (see, for example, [1],p.16)
that

abc
bc+catab+2A

H

2
where A = abc(atb+c) . Hence

x. bc
i

bc+x. b4+x. c+2N x. be(x,+b+c)
i i i i

This difference equation may be put into the following form:

1 1 b+c 1 b+c., 1
x =z 7 b T2 b ( bc ) X
it i
1 b+ 2 2 2
Set — = =< w° - —— . weobtain w.°, = (1+w.)° . Since
X, bc i b+ c i+ i

1

wi > 0 for all i, we obtain

W, =1+w., w. =1+K,
i+1 i 1

where K is a constant determined by the initial conditions.
Putting i = 0, we obtain

2 2 bc 1 1
=+
(a b+c

).

Hence x. =
b+c .2 + 2 /atb+c . 1
bc | ! abc a

Similarly, y, and z, may be written down by applying the cyclic
i i

permutation (abc) once and twice respectively to x. . Using
i

these results, we end up with the formula
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0
- 2 2 2 2
R(a,b,c) =T 1rr[d + 2 (x, +y. +z. )],
. i i i
i=2
where
2 -1 A 2 -1 A 2 -1 A
T=4-2a tan a(at+b+c) h tan b(a+tb+c) - ¢ tan c(atb+c) °

The referee has kindly pointed out that this result has just ap-
peared in Melzak, Z.A., Infinite Packings of Disks, C.J.M. 18

(1966), 838-852.

3. Special Cases. Clearly

R(a, b, c) = R(Ka, Kb, Kc) = R(a, ¢, b) = R(c, a, b), etc.,
for K any positive constant of similarity. Keeping this fact in
mind, we may discuss five cases: (1) R(1, o, o9; (2) R(1,1, «);
(3) R(1,1,1); (4) R(1,b,c); (5) R(4,b, o).

CASE 1. R(1, o0, ) .

We have a unit circle with two parallel tangents; we obtain

-2
x. =1, vy.=2, =1 . Thus
i i i
© a
nm+2 = i
F(1, o, ©) = lim =2 = T x 785398 .
T 4
n->o0o 2-E+4n

This is of course clear geometrically from consideration of the
ratio of the area of a disk to that of its circumscribed square.

CASE 2. R(1,1, ) .

We have
Sy = 1 " g = —
TV T2 - © T 2i(3iH)

i +2i+1 (i+1)2

Since T =2 - % , we obtain

o0 o0

(2—12[)R(1,'1,oo)=27r = 14+% = (—-ii—“z
i=2 (i+1) i=1
289

https://doi.org/10.4153/CMB-1967-029-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-029-3

ST © 1 2
i T
= 27w (—= - )+ = {= 4+ — 1
2 2
90 16 4i:1 i (i+1) i(i+1)
4 2 2
iy 17 ™ il T
2nlgg 1)ty gt g-1-2)
Thus 4 2
T 17 ™ -9
s - gty Ty
R(1,1, o) = -
2-3
x .820624
CASE 3. R(1,1,1) .
We set B =(3-1)/2 and obtain
AT S - e
i i i 212+2\/—3i+1 2 "itp i+g+1
Now
° 2 e 1 1 2
T2 ox =§ > [ >+ > - ]
i=1 i=1 (i+B) (i+[3+'1) (i+ﬁ)(i+[3+1)
and
o
- 1 B
i1 (i+B)(i+B+1) 148 °
therefore,
o) ©
2 T 1 1 2
mEox sy 2 /- > T 1)
i=1 i=1 (i+B) (1+B)
Since T =~N3 - m/2, we have
. 1 3 6 2
R(1,1,1) = 75 {6 = - - x _ ~ .
i=1 (i+p) (1+8) 1+ (1+B)° (2+B)
x 822206 .
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CASES 4 AND 5. R(1,b,c), R(1,b, ) .

Originally the results for Cases 1, 2, and 3 were worked
out from geometric considerations before the general formula
for R(a, b, c) was obtained. The sequences of radii and of
abscissae and ordinates of centres thus obtained are quite inter-
esting in their own right. For Cases 4 and 5, values of R were
computed on an I.B.M. 7040 computer for all values of b and c
(b < c) at unit intervals from b=c=1 upto b=c=150.

The series for R(a, b, c) is notvery rapidly convergent;
indeed, round-off error from many terms tended to pile up. In
order to obtain accurate results, the series was evaluated by
adding the first 98 terms together and then employing a correction
term (see, for example, [2], p.129) obtained from the Euler-
Maclaurin Series.

For most of the entries in the table, the correction term
began to have an effect in the third or fourth decimal place. The
results of the calculation, to six figures of accuracy, are re-
corded in Table I for Case 4; the similar results for Case 5 are
recorded in Table II.

As indicated above, the tables represent only a portion of
the computations performed. We have tabulated the results for
b and c at unit intervals from 1 to 10 and thereafter at intervals
of 10 from 10 to 150.

It might be useful to record here a very useful alternative
form of X, which has already been employed, namely,

N bc 1 1
Xi: 2 |:1+a/ T ita ]
1 2
where
a_A—aerc_ Vp _ A +albc N p

= = , o = = ,
1 a(b+c) alW s +Va) 2 a(b+c) aW s -\ a)

with p = abc, s =a+b+c . The vaules of y, and z, are
1 1

successively obtained by applying the cyclic permutation (abc) .
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c
b 1 2 3 4 5
1 . 822206
2 .821959 | .821765
3 .821704 | .821430 | .820966
4 .821522 | .821164 | .820586 .820103
5 .821390 | .820960 | .820287 .819718 | .819258
6 .821291 | .820802 | .820051 .819409 | .818885
7 .821214 | .820676 | .819860 .819157 | .818579
8 .821153 | .810574 | .819704 .818948 | .818323
9 .821103 | .820489 | .819573 .818773 | .818106
10 .821062 | .820418 | .819462 .818623 | .817921
20 .820859 | .820058 | .818887 .817830 | .816923
30 .820785 | .819920 | .818661 .817513 | .816517
40 .820746 | .819848 | .818541 .817342 | .816296
50 .820723 | .819803 | .818467 .817236 | .816157
60 .820707 | .819773 | .818416 .817163 | .816062
70 .820695 | .819751 | .818379 .817110 | .815993
80 .820686 | .819734 | .818351 .817070 | .815941
90 .820680 | .819721 | .818329 .817038 | .815899
100 | .820674 | .819702 | .818312 .817013 | .815838
110 | .820670 | .8197141 | .818297 .816992 | .815838
120 | .820666 | .819695 | .818285 .816974 | .815815
130 | .820663 | .819689 | .818275 .816959 | .815795
140 | .820660 | .819683 | .818266 .816946 | .815778
150 | .820658 | .819679 | .818258 .816935 | .815764
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TABLE I continued
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b c 6 7 8 9 10

1

2

3

4

5

6 . 818457

7 .818103 | .817706

8 .817805 | .8417372 | .817004

9 .817552 | .817086 | .816690 .816349

10 .817334 | .816839 | .816317 .816053 | .815736

20 .816147 | .815479 | .814898 .814388 | .813938

30 .815655 | .814907 | .814250 .813670 | .813154

40 .815386 | .814592 | .813891 .813270 | .812714

50 .815217 | .814392 | .813663 .813015 | .812433

60 .815100 | .814254 | .813506 .812837 | .812237

70 .815015 | .814154 | .813390 .812707 | .812093

80 .814950 | .814077 | .813301 .812608 | .811983

90 .814899 | .814016 | .813232 .812529 | .811896

100 | .814858 | .813967 | .813475 .812465 | .811825

110 |.814824 | .813927 | .813129 .812413 | .811767

120 |.814795 | .813893 | .813089 .812368 | .811717

130 |.814771 | .813864 | .813056 .812331 | .811675

140 |.814750 | .813839 | .813027 .812298 | .811639

150 |.814731 | .8138417 | .813002 .812270 | .811608
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TABLE I continued

C
b 20 30 40 50 60
20 .811243
30 .810074 | .808427
40 .809240 | .807498 | .806436
50 .808755| .806877 | .805717 .804924
60 .808412 | .806431 | .805196 .804345 | .803721
70 .808455| .806095| .804801 .803903 | .803241
80 .807957 | .805833 | .804490 .803555 | .802861
90 .807799 | .805623 | .804240 .803272 | .802552
100 | .807669 | .805450| .804034 .803038 | .802296
110 | .807562 | .805306| .803860 .802842 | .802080
120 | .8074714 | .805184 | .803713 .802674 | .801895
130 | .807393 | .805079 | .803586 .802529 | .801735
140 | .807326 | .804988 | .803476 .802403 | .801595
150 | .807267 | .804908 | .803379 .802291 | .801472
\\\C 70 80 90 100 110
LN
70 .802731
80 .802325 .801897
90 .801994 | .801547 | .801181
100 | .801748 | .801255| .800875 .800556
110 | .801485 | .801008 | .800615 .800286 | .800005
120 | .801286 | .800796 | .800392 .800053 | .799763
130 | .801113 | .800612| .800198 .799850 | .799553
140 | .800962 | .800450| .800027 .799671 | .799367
150 | .800828 | .800307| .799876 .7995413 | .799203

C
b 120 130 140 150
120 | .799514
130 | .799296 | .799072
140 | .799104 | .798874| .798671
150 | .798934 | .798698| .798491 .798306
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TABLE IT

C
b ]
1 .820624
2 .819614
3 .818148
4 .816775
5 .815552
6 .814469
7 .813504
8 .812639
9 .811858
10 .811148
20 .806390
30 .803691
40 .801876
50 .800540
60 . 799501
70 .798661
80 .797962
90 .797368
100 .796855
110 . 796406
120 .796008
130 .795652
140 | .795331
150 . 795040

4. Conjectures.

From the work included in this paper and the further tables
computed by the authors, it seems likely that for a and b

fixed and less than ¢, then S < <, implies R(a, Db, 01) greater

than R(a, b, CZ) . The complexity of the expression for R(a, b, c),
however, has prevented us from giving a proof in the present

paper.

The referee has drawn our attention to a stronger form of
this conjecture, namely: if a and b are fixed, then R(a, b, c)
is a function of ¢ which attains its maximum for c¢ between
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a and b . For example, we read off from the tables the fol-
lowing values for R(1, 10, c) .

c 0 1/10 1/8 1/5 1/3

R(1,10,c¢c) | .785398 | .811825 .813301 | .816157 .818661

Note that R(1,10,0) = R(1, o, w) , R(1,10,1/10) = R(4, 10, 100),
R(1, 10,1/8) = R(1, 8,80) , etc.

c 1/2 1 2 5 10

R(1,10,c) | .820058 | .821062 | .820418 | .817921 | .815736

c 50 100 150 00
R(1, 10, c) | .812433 | .811825 | .811608 | .811148

If we tabulate R(4, 10, c) for values of ¢ from .50 to 1.49,
we can find the location of the c-value which makes R a maximum.
The tabulation, in part, is given below.

a=1, b=10, ¢c= .50 R(1,10,c) = .8200576
.60 . 8204936
.70 . 8207663
.80 . 8209314
.90 . 8210228

1.00 .8210623
1.01 .8210640
1.02 . 8210653
1.03 .8210663
1.04 . 8210669
1.05 . 8210673
1.06 . 8210673
1.07 .8210670
1.08 . 8210664
1.09 .8210655
1.10 . 8210644
1.20 .8210393
1.30 . 8209940
1.40 .8209338

We thus see that R(4, 10, c) attains a maximum for ¢ = 1.055 .

In a similar way, we can tabulate R(1,1,c), R(4,2,c),
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R(4,3,¢), ..., R(1,10,c) . We obtain the following results,
which certainly support the conjecture.

a=1, b=1 R(1,b,c) = .8222063 occurs for c = 1.000
2 .8219811 1.160
3 .8217257 1.4150
4 .8215391 1.120
5 .8214033 1.105
6 .8213016 1.090
7 .8212228 1.075
8 .8211603 1.070
9 .8211094 1.060
10 .8210673 1.055

Another consequence of the conjecture would be that
R(a, b, c) attains its absolute maximum when a=b =c¢c . We
notice that .822206 is in fact the largest entry in Table I .
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