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Abstract. The EoR foregrounds can be up to three magnitudes greater than the cosmolog-
ical signal we wish to detect. Multiple methods have been developed in order to extract the
cosmological signal, falling roughly into three categories: foreground removal, foreground sup-
pression and foreground avoidance. These main approaches are briefly discussed in this review
and consideration taken to the future application of these methods as a multi-layered approach.
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1. Introduction
The first direct detection of the Epoch of Reionization is a challenge on many fronts, not

least of them the removal of the foregrounds. The astrophysical foregrounds in an EoR ex-
periment are expected to consist of bright compact sources, diffuse Galactic Synchrotron,
diffuse Galactic free-free and extragalactic foregrounds. While other foregrounds such as
radio recombination lines (e.g. Gleser, Nusser & Benson. (2008)) and RFI (e.g. Offringa,
van de Gronde & Roerdink (2012)) of course exist they are thought to be easily identifi-
able and removable and are not dealt with under the umbrella of foreground mitigation
methods. The diffuse foregrounds alone can be up to 3 magnitudes greater than the cos-
mological signal when observed with a radio telescope and foreground mitigation methods
need to be extremely precise and accurate in order to ensure the cosmological signal re-
mains intact. Theoretically the form of the foregrounds are quite well-known (e.g. Jelić
et al. (2008)) and there have been observations with current generation instruments (e.g.
Mozdzen et al. (2017), Procopio et al. (2017), Carroll et al. (2016)). However the action
of the instrument complicates their structure in several ways, for example the leakage of
polarized foregrounds into the total intensity (e.g. Kohn et al. (2017), Nunhokee et al.
(2017), Asad et al. (2015)).

2. Foreground Mitigation
Broadly speaking, foreground mitigation can be broken up into two stages. The first

is bright source removal while the second is diffuse foreground mitigation which itself
divides into foreground removal, suppression and avoidance.

In the early development of the EoR experiments it became apparent that the fore-
grounds were a significant obstacle to the signal detection. The sheer magnitude of the
foregrounds compared to the tiny signal was already overwhelming and it was later re-
alised that the instrument itself could change this foreground signal in extremely complex
ways which were difficult to detect and remove. How to best mitigate those foregrounds
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Figure 1. Left: The line of sight spectrum of simulated 21-cm cosmological signal (light blue,
solid), Galactic free-free (black, dash dot), Extragalactic diffuse (blue, dot) and 600h of LOFAR
noise (red, dash). Right: As Left but with Galactic Synchrotron (magenta, solid).

Figure 2. The LOFAR NCP data before (left) and after (right) the bright compact source
sky model is subtracted. The right data temperature scale is multiplied by ten for clarity. The
horizontal lines of missing data are RFI excisions whereas the black dashed lines border define
three redshift ranges. Taken from Patil et al. (2017)

depends on the dominant source of foregrounds, the instrument being used and the in-
formation one wishes to extract from the data.

2.1. Bright Source Removal
One of the first stage of foreground mitigation is to model and remove the bright compact
sources in the data. The sensitivity of the telescope tapers off outside the primary beam
with a series of frequency-dependent sidelobes so even a single bright source far from the
centre of the field of view can provide intensity to all pixels in an image. It is within
the calibration stage that the bright point sources are most often dealt with in a process
called peeling. In the current pipelines, the extent of bright compact source removal
depends on the overall foreground mitigation philosophy of the instrument in question.
LOFAR for example has built up a sky models containing tens of thousands of compact
sources by comparing years of observations to previous catalogues. This sky model is
compared to an observation and used to first calibrate the data so that the gains of the
telescope are pinned down by comparing a calibration source between the observation
and sky model. The sky model, or a portion of it, can then be subtracted from the
observed data resulting in observation data with as many compact sources removed as
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possible (Yatawatta et al. (2013)). Of course the difficulty of calibrating a telescope for
the ever-changing data means that there will always be residual compact source intensity
in an image. This complete compact source removal tactic is employed because LOFAR
hopes to use as much of the data as possible and does not want to discount the smaller
scales dominated by compact sources. For MWA, who have chosen to concentrate on
the large scales on the sky, it makes more sense to avoid the possibility of incorrectly
calibrated and removed compact sources biasing the entire data set and so they remove
only the very brightest hundred or so sources, planning to avoid the scales where the
remaining sources dominate (Tingay et al. (2012)).

Calibration and foreground mitigation are necessarily intertwined due to the fore-
grounds having a role in calibrating the instrument in the first place and the calibration
of the instrument informing the form of the residual foregrounds for the next stage. Even
when the bright compact sources are removed down to the mK level we are left with
unresolved emission which clearly dominates over the 21-cm signal and requires further
mitigation (Morales, Bowman & Hewitt (2006)).

2.2. Foreground Removal

2.2.1. Multi-frequency approaches and polynomial fitting

The dominance of the Galactic Synchrotron on all angular scales meant that separation
of the 21-cm cosmological signal based purely on the angular scales was not feasible
(Di Matteo, Ciardi & Miniati (2004), Oh & Mack (2003), Di Matteo et al. (2002)). It
was noted however that the addition of spectral information could provide a solution.
While the foregrounds appear coherent with frequency, the 21-cm cosmological signal
is markedly decoherent with frequency above a certain frequency separation of about
0.1-0.5 MHz (see Right panel of Fig. 1). Zaldarriaga, Furlanetto & Hernquist (2004),
Cooray & Furlanetto (2004) and Di Matteo et al. (2002) calculated the spectra and
cross-correlations between signals and foregrounds and found that a method exploiting
the high coherency of the foreground spectra could succeed.

Initial attempts focused on differencing neighbouring slices and exploiting the corre-
lations between multiples slices to remove the foregrounds (Zaldarriaga, Furlanetto &
Hernquist (2004), Santos, Cooray & Knox 2005). The very smooth power law form of the
simulated foregrounds however lent itself to a broader method, called polynomial fitting
(e.g. Wang et al. (2006); McQuinn et al. (2006); Bowman, Morales & Hewitt (2006); Jelić
et al. (2008); Gleser, Nusser & Benson (2008); Liu, Tegmark & Zaldarriaga (2009); Liu
et al. (2009); Petrovic & Oh (2011); Liu & Tegmark (2011)) - simply the idea of sub-
tracting a power law representing the foreground model from the observed data, most
popularly a polynomial in the form:

log I = a3 + a2 log ν + a1(log ν)2 + .... (2.1)

One uses a fitting method to define the polynomial coefficients for each line of sight, with
the function then subtracted from the mixed data either over the entire frequency range
to boost signal to noise, or a smaller subsection to avoid signal evolution (McQuinn et al.
(2006), Wang et al. (2013)). This method is neat and successful if the foregrounds are
well approximated by a power law Fig. 1). But the concern over the effect of polarisation
leakage and the frequency dependence of the instrument, as well as the desire to have an
independent method to cross-check results, motivated the development of methods which
stepped away from assuming completely spectrally smooth foregrounds - non-parametric
methods.
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Figure 3. Left Figure: Top Panel: simulated foreground spectrum. Middle Panel: simulated
foreground and cosmological signal spectrum. Bottom Panel: recovered 21 cm signal (dashed),
the true simulated signal (solid) and the residual (recovered minus simulated 21 cm signal; grey).
Taken from Wang et al. (2006). Right Figure: The 2D power spectrum of simulated cosmological
signal (red solid), 600h LOFAR noise (pink dot), foregrounds (black dash). The red points are
the recovered cosmological signal after foreground removal with GMCA (Chapman et al. (2013)).

2.2.2. Non-parametric methods

Harker et al. (2009) introduce the Wp smoothing method for application to EoR data,
a minimisation fitting method which penalises changes in curvature, so whereas the
smoothness is preferred, it is not an assumption. This could in theory model non-smooth
elements of the foregrounds, but it could also erroneously pick up the natural EoR and
noise wiggles as being a foreground model too and therefore required calibration with
a smoothing sensitivity parameter. This is a theme with most non-parametric methods,
while you are letting the data choose the form of the model, this freedom can result
in erroneous models and thus requires careful testing on simulations to ensure fixed
parameters such as the smooth sensitivity parameter are calibrated.

Blind Source Separation methods have also been successfully applied to EoR data,
whereby the data is represented by a mixing model. For an observation of m frequency
maps each constituting t pixels and a choice of n independent foreground components:

X = AS + N (2.2)

where X[m,t] is the mixed, observed signal, S[n,t] are the independent components of
that signal, N[m,t] is the noise and A[m,n] is a mixing matrix. This is an example of
a Blind Source Separation problem, whereby we want to estimate both A and S at the
same time. We would seek a solution to that equation such that (in a zero-noise ex-
ample) we would find W such that S = WX. The first method introduced, FASTICA
(Chapman et al. (2012), Hyvärinen (1999)) using statistical independence to separate
out the independent components of the observed signal. Central limit theorem states
that the more statistically independent components a signal consists of, the more Gaus-
sian that signal’s probability distribution function. Thus by using an iterative algorithm
to maximise the non-Gaussianity of potential independent components one can find the
independent components of the mixed signal. An alternative method, GMCA ( Chap-
man et al. (2013), Bobin et al. (2008)) uses the same mixing matrix framework but uses
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Figure 4. Left: The dependence of the 21-cm signal recovery on the number of independent
components chosen within the HIEMICA method for data with S/N=5. Spherically averaged
three-dimensional power spectra of the simulated 21-cm signal (black), noise (black-dotted),
reconstructed 21-cm signal for 2 ICs (red-dotted), 3 ICs (green-dashed) and 4 ICs (blue long–
dashed). Taken from (Zhang et al. (2016)). Right: The 2D cylindrical power spectrum as taken
from Dillon et al. (2014).

morphological diversity instead of statistical independence to separate out the compo-
nents. Specifically, the data is broken down in a wavelet basis where independent com-
ponents will have few and different basis coefficients, providing a means for separation.

Because the cosmological signal is noise-like compared to the foregrounds, the BSS
methods consider it to be a noise component, N along with the instrumental noise.
The BSS methods instead produce a foreground model AS which is subtracted from
the observed data leaving a signal containing cosmological signal, noise and foreground
fitting errors. The cosmological signal can then be extracted by subtracting off the known
noise power spectrum. Though technically a BSS method these methods are in fact semi-
blind due to the requirement to choose the number of independent components within
the foreground model. The choice of this parameter does have an effect on the recovered
21-cm spectrum as demonstrated in Fig. 4 and while this can be found empirically or
through Bayesian model selection it prevents the methods from being purely blind.

This mixing model framework can be used in a more parametric way by including
‘known’ information regarding the form of the foregrounds. For example the method
Correlated Component Analysis (CCA) (Bonaldi & Brown (2015)) is a “model learning”
algorithm which sets the mixing matrix columns to consist of a power law with unknown
spectral index to capture the synchrotron emission alongside another power law with a
fixed spectral index of -2.08 to capture the free-free emission. The mixing matrix can be
extended to include more parametric components to capture other foreground emissions.

GMCA, CCA and FASTICA are all method which have previously been applied to
the CMB data and indeed the Planck and WMAP missions have provided a multitude of
methods to transfer to the 21-cm HI experiments. For example the CMB method SMICA
has also been extended and applied to 21-cm HI simulations (Zhang et al. (2016)) within
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the HIEMICA algorithm: a fully Bayesian framework to infer the 3D power spectrum and
maps of the underlying HI signal by finding the mixing matrix describing the uncorrelated
foreground components.

While this section has left the details of the individual methods for the reader to pursue
with the individual papers, it is clear that there is now a multitude of non-parametric and
parametric foreground removal methods for recovering the HI signal, a valuable catalogue
to have when the first detections will require careful verification using several methods.

2.3. Foreground Avoidance and Suppression
By defining a foreground model and then removing it the foreground removal methods
change the data on every spatial and frequency scale. While this leaves the largest possible
amount of data for analysis, boosting signal-to-noise, it also introduces a foreground
removal bias, however small, on every scale. Thus, even the relatively foreground-free
scales risk contamination by inaccurate foreground removal. As a result, methods have
been developed which step away from this all-scale removal, instead opting to define a
foreground model and then avoid or suppress it.

For any discussion of foreground avoidance and suppression it is most useful to consider
the 2D cylindrical power spectrum, (see right panel of Fig. 4). Because of the expected
spectral smoothness of the foregrounds it was expected that they would occupy the
very lowest k‖ scales of the cylindrical power spectrum. One could make a horizontal
cut in the k‖ axis such that only data above that line are used in analysis. This has
the benefit of leaving all data above the cut-off untouched by foreground removal bias,
providing an “EoR window”. However, a large body of literature within the last decade
has shown that the interaction of the foregrounds with the instrument can in fact throw
power up from the k‖ scales into the EoR window, producing a wedge-like structure (e.g.
Thyagarajan et al. (2015), Hazleton et al. (2013), Pober et al. (2013), Morales et al.
(2012), Trott et al. (2012), Vedantham et al. (2012), Datta et al. (2010)). If you were sill
relying on the foreground model where this wedge was not included then your recovered
cosmological signal would be significantly biased (Chapman et al. (2016), Jensen et al.
(2016)). Thankfully the wedge is mathematically easy to define and there are different
intuitive frameworks within which to work to avoid wedge effects (Liu et al. (2014a), Liu
et al. (2014b), Parsons et al. (2012)). PAPER has successfully employed this foreground
avoidance method (Ali et al. (2015)) and, assuming one knows both their instrument
and foreground signal well, can provide a clear sample of the EoR signal, albeit with less
scales available.

The final philosophy to add to foreground removal and foreground avoidance is fore-
ground suppression. Given a foreground model, the scales where foregrounds are domi-
nant can be down-weighted, such that all the scale information remains in some form.
This again relies on an accurate foreground and instrument model and can introduce a
bias on all scales but can be neatly folded into power spectrum estimation codes such as
the MWA pipeline power spectrum estimator CHIPS (Trott et al. (2016)).

3. Discussion
The current generation of EoR experiments have been gathering data for over 5 years.

Before and during that time there has developed a multi-step approach to foreground
mitigation. First, the brightest sources must be peeled within the calibration step, in-
extricably linking foreground mitigation and calibration. Next, the methods divide into
three philosophies: foreground removal, foreground suppression and foreground avoid-
ance. With foreground removal you keep all data but have the possibility of introducing
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a hopefully small bias across the data, with foreground suppression you keep all the data
but down-weight the most foreground-dominated scales while with foreground avoidance
you opt to keep the EoR window pure from foreground mitigation bias and throw away
any scales which are foreground dominated. Each of these approaches has advantages
and disadvantages. For example, assuming you know your instrument and foreground
signal extremely well, parametric foreground removal, foreground suppression and fore-
ground avoidance will provide a clean, bias-free 21-cm signal recovery. This makes these
approaches very valuable especially in the later stages of an experiment when the instru-
ment and foreground models have undergone lengthy calibration. Experience with the
current generation has shown however that even the instrument itself can bring surprises
such as the wedge, and blind belief in a theoretical foreground and instrument model
can risk an unknown bias entering into the recovered signal. Non-parametric foreground
removal is especially powerful in the early stages of an experiment as it can identify
unexpected components of the signal early on.

If we are to take one lesson forward it should be that the these methods can each
access different parts of the power spectrum with different degrees of success, motivating
a collaborative approach. There is no reason why data could not use non-parametric
foreground removal to identify the foreground model before using foreground suppression
to suppress the scales of that model for example.

One area which has been fairly unexplored is the finer effect of these methods on the
underlying cosmological signal. While there has rightly been a concentration of effort on
finding methods to remove the foregrounds well enough to make a first detection, we need
to really understand how the cosmological signal is biased as a result of each method.
For example the assumption held in most of the foreground removal methods that the
cosmological signal is Gaussian results in the loss of information but that has not been
addressed in detail so far.

4. Conclusion
In this review a brief summary of the various approaches to foreground mitigation

within the EoR field has been presented. While multiple methods are now in existence,
each with their own advantages and disadvantages, a holistic approach to foreground
mitigation has not yet been developed. To truly understand the observed foreground
signal, foreground mitigation should be considered alongside the calibration and under-
standing of the telescope model. The methods of foreground avoidance, suppression and
removal should not be seen as separate choices but options depending on the data taken
and possibly to be applied together. As we build the SKA more work should be done on
pinning down precisely when each method is best applied, i.e. which acts most favorably
in the very earliest stages of an experiment when the sky model is incomplete and how
each method can bias the cosmological signal itself.
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