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Let G be one of the following compact simply connected Lie groups: SU(3), Sp(2), G2.
In the first two cases there is a well known stable decomposition of G as Q v Sd where
d = dimG and Q is a certain subspace of G. For SU(3), Q is the stunted complex quasi-
projective space E(CP2/CP1) which fits into a cofibration sequence S3-+Q-*S5 with
stable attaching map n:Ss-^S*. For Sp(2), Q is the quaternionic quasi-projective space
HQ1 and fits into a cofibration sequence S3-*Q->S1 with stable attaching map
2v:S7->S4. (Here n and v are generators of 7 (̂S°) and ^3(S°) respectively.)

In this paper we describe a corresponding result for G2. This time we have a
cofibration X3-+Q->Y11 where X3, Y11 are X-theory spheres to be described in
Section 2. We compute the stable class of the attaching map </>: Y1 1-*!^3 by using the
complex Adams e-invariant

Theorem A. {Y11,T.X3} = Z/6O with generator of e-invariant 1/60 e Q/Z. Hence e is
monic.

This theorem, proved as (3.2), is central. It enables us to extend to G2 much of the
theory already developed for SU(3) and Sp(2). First, by computing the Chern character
on K*(G), we obtain, (4.12),

Theorem B. Stably the attaching map <f> is twice a generator, so of order 30.

We then turn to the study of self-maps of G. H*(G;Q) is an exterior algebra on
integral generators hq and hr say, where (q, r)=(3,5), (3,7), (3,11) in the three cases
SU(3), Sp(2), G2 respectively. For a self-map / of G, we define dt{f), the degree of / in
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146 SHICHIRO OKA

dimension i (i=q,r), to be the integer in the equality f*(h,) = d,{f)hi. We then define the
degree map

and similarly the stable degree map

ds=ds
qxds

r: {G,G}->Z©Z.

K-theory shows that dq(f)-dr(f) is a multiple of the integer 7i = 2,12,30 for G = SU(3),
Sp(2), G2. It is known in the first two cases that this is the only restriction on d. This is
also true for G2, (5.6).

Theorem C. Imd = Imds = {(rn,ri)\m,neZ,m = nmodn}.

Our final application concerns //-maps. Let n be an //-structure on G, for example
the Lie group multiplication, and suppose that a self-map / is an //-map with respect to
fx, that is, n(fxf) is homotopic to fn. Then there are additional restrictions on d{f).
For G = SU(3) or Sp(2), d3(f) = 0,1 mod 4, [10], [11]. For G = G2 we prove that
d3(f) = 0, Imod4 if d n ( / ) = d3(J)mod27t. With a recent result of Sawashita [20], this
gives, (7.8),

Theorem D. Suppose that a self-map f of G2 is both a homotopy equivalence and an
H-map for some H-structure on G2- Then f is homotopic to the identity.

(The same result holds for Sp(2), [11]; the situation for SU(3) is a little more
complicated, [10].)

Most of the results on G2 generalize easily to the //-spaces G2b( — 2gb:S5) introduced
by Mimura-Nishida-Toda in [13].

The paper is organized as follows. In Section 1 we review the definition of the
e-invariant in the form required for our application. In Section 2 we define the X-theory
spheres X3, Y11. {Y11,'LX3} is computed in Section 3. In Section 4 we discuss the
complex representation ring and the X-theory of G2; we compute the Chern character
and prove Theorem B. The image of the degree map for self-maps of G2 is determined
in Section 5, with one computation deferred to Section 6. //-maps are discussed in
Section 7.

A part of this paper including Theorems A and D was obtained while the author
visited Bonn in 1982/83. The author would like to thank Professor F. Hirzebruch and
the Max-Planck-Institut fur Mathematik for their hospitality and support. Many thanks
also go to Professor H. Minami, who directed the author's attention to the book [23]
and allowed the author to include his computation of the Chern character for G2 in this
paper.

The book [23] is an excellent guide to the representation theory of the classical
groups and the exceptional groups G2 and F4. Unfortunately it is written in Japanese
and the author cannot find a similar work in English.
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HOMOTOPY OF THE EXCEPTIONAL LIE GROUP G, 147

Spaces in this paper are always assumed to be homotopy equivalent to CW
complexes and to have base points. Maps and homotopies also preserve base points.
[X, Y] denotes the set of homotopy classes of maps from X to Y, S" the n-fold
suspension, S1 = Z, and {X, Y} the additive group of stable maps from X to Y. We
sometimes denote a map and its homotopy class by the same symbol. Z and Z/n denote
additive groups isomorphic to the group of integers and integers modulo n, respectively;
the generator is enclosed in braces { }.

1. The e-invariant

We begin by recalling the definition, in suitable generality, of the (complex) Adams
e-invariant. Let Z be a finite complex and n a natural number with H"~1(Z;Q)=0. We
shall need the commutative diagram of Bockstein exact sequences:

if,- \Z) <g> Q-+ if- \Z; Q/Z) • <(Z)®Q

d

Kn~\Z) ® Q \Z\

in which the vertical maps are Hurewicz homomorphisms (d-invariants) from stable
cohomotopy (with Z, Q, Q/Z-coefficients) to complex X-theory. n"s(Z) = {Z,Sn} is the
group of stable maps from Z to S". By assumption, 7iJ"1(Z)®Q=0.

Now consider a torsion element x6 7r"(Z) with d(x) = 0. It lifts uniquely to a class
xen"s~

l(Z;Q/I). We define the e-invariant of x to be e(x) = d(x) in

Coker n~ Z)® Q} sKn~\Z\Q/Z).

It is useful in practice to have another description of e(x) using the Chern character,
ch. Let /:EmZ->Sm+" (m^O) represent x. Form the mapping cone sequence

SmZ-

and look at the associated exact sequences in K-theory and rational cohomology. We
obtain a commutative diagram

0- Kn~\Z)

ch

Km+n(Cf)

ch

in which the inclusion Z->Q is ch:K°(S0)->H0(S°;Q) and the summation is over ieZ.
The map g*:Hm+n(Cf;Q)-+H°(S°;Q) is an isomorphism. Let beHm+n(C/,Q) map to
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148 SHICHIRO OKA

l e Q . Now choose a class aeKm+n(Cf) with g*(d) = \. Then ch(a)-b = h*(v) for some
class v in the group £I-#II~1 + 2'(Z;Q). Since the Chern character is a rational
isomorphism, we can think of v as an element of Kn~l(Z)® Q. Then

e(x) = v mod Kn-\Z).

This was the original definition of e(x).
In fact we must interpret the e-invariant in a somewhat broader context. Let X and Y

be finite complexes with {Z^Z}®(Q=0, xe{Y,X} a stable map from Y to X
represented by a map f:T,mY-*'ZmX (for some m^O). Assume that x is of finite order
and with vanishing ^-invariant in the sense that

(1 A x)*: K*(W A X)->K*(W A Y) is zero for every finite complex W.

Then we have an e-invariant

eix)eUom(K*(X)<S>Q,K*-1(Y)®Q) mod Horn (K*(X),R*-\ Y)).

Here and elsewhere we think of K-theory as Z/2-graded. Homomorphisms are of degree 0.
The definition reduces by S-duality to the one we have already given. Let X' be an

n-dual of X (for some n^O). Set Z equal to X' A Y. Then {Y,X} is identified with {Z,Sn}
and Kn~i(Z)®Q with Horn(K*(X)®Q, K*-\Y)®Q).

There is a direct interpretation of e(x) by using the Chern character (and this may, for
the purposes of this paper, be taken as the definition). Again form the mapping cone
sequence

cf—"-+ z m + 1 Y.

We have an associated diagram ,

0 • K-

ch

0 £#

The cohomology sequence has a unique splitting b: J]152'(Z;Q)-v^1H"I+2'(C/;Q)
preserving the degree i, since Horn(fi2i(X;Q), ff~1 + 2i(Y,Q)) = 0 by assumption. The
X-theory sequence splits because d(x) = 0 (in the strong sense); choose a splitting
a:K°(X)->Km(Cf). If ueK°(X), then ch(a(u))-b(ch(a)) = h*(v) for some unique class v
which we regard as an element of K~i(Y)(g)Q. In this way we obtain a linear mapping
K°(X)->R.-i(Y)®Q which is well defined modulo homomorphisms SPW-tK-^Y)
and represents the 0-component of e(x). The other component is defined similarly.

In our applications X and Y will be X-theory spheres so that the groups concerned
are very simple.
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HOMOTOPY OF THE EXCEPTIONAL LIE GROUP G2 149

We remark that there is another definition of the c-invariant in terms of Adams
operations in K-theory (in which one usually works locally at a fixed prime). The reader
may prefer to rewrite proofs in the following sections from that point of view.

2. Some K-theory spheres

For our computations we quote some results on jr^(S°), including Toda brackets
<,,>,from[21].

(a)

(b)

(c) 4(S°) = Z/2{^}, (c') <2.,i,,2i> = f,2,

(d) 7rs
3(S

0) = Z/24{v}, (d1) r,3 = l2v, (d") <i,,2i,^> = 6vmodl2w, (2.1)

(e) 4(S°)=0, (e1) r,v = 0,

(f)

(g)

(h)

(Note that v and a in [21] are the generators of the 2-primary parts.)
Denote the mod 2 Moore space by Mn = Sn\J2te''+1 and the usual cofibration by

Since 2r\ = 0, in the stable range there are elements

rj: Mn+1 - • S", rj: Sn~» - • M n " 3

such that

(a) rji = r\,pf\ = r}. (2.2)

By (2.1) (c% (<f), id") and (gO,

(b) 2rj = ri2p,2rj=iri2,

(c) rjfj=±6v, (2.2)

(d) (rj,ivp,rjy = v2.

Notice that rj and rj are not uniquely determined by (2.2)(a): there are two choices
differing in sign. Given rj, we may fix rj by requiring rjrj=6v.
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150 SHICHIRO OKA

We define complexes X" (wS3), Y" (n^6) as the mapping cones of fj, fj:

(2.3)

Sn-1 _L^Mn-3j_^Yn-Usn

The spaces X", Y" are independent, up to homotopy equivalence, of the choice of
attaching maps fj, fj. ([M4, S3] and[S5, M3] are both cyclic of order 4.)

We shall show that X" and Y" are K-theory spheres. Notice first that they are
rationally equivalent to S" with equivalences i and j respectively. Let sneHn(S") = Z,
aneK"(S") be generators with chon=sn. Let xneH"(Xn) = Z, yneH"(Y") = Z be generators
with i*xn = sn, yn = j*sn. We denote the rational classes of sn, xn, yn by the same symbols.

Proposition 2.4. (a) K*(Xn) s K*(Sn), K*( Y") s K*(Sn) as additive groups.
(b) There are generators ZneKn(Xn) = Z, r]neKn(Yn) = Z such that

ch^n = 2xn, ch rjn=$ya,

Proof. One readily checks that Kn(Mn+1) = Z/2, Kn-1(Mn+1)=0. (2.3) then gives an
exact sequence

0 -> Kn{X")—l^-* Kn(S") -* Z/2 ->K"+\X") -* 0.

Now the element r\ of 7^(S°) has non-trivial e-invariant, [2]: e(t])=%eQ/Z. Form a
homotopy-commutative diagram

n
i

I

S- + 1 ,5" >c,

n

and consider the induced maps in X-theory

0 >Kn(X")

I I 1
0 *Kn-1(Sn+1) >K"(Cn) >Kn(S") >0.

Since i*: H"(X"; Q) -> H"{S"; Q) is an isomorphism, it is clear from the Chern character
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HOMOTOPY OF THE EXCEPTIONAL LIE GROUP G2 151

interpretation of the e-invariant that u.c(^) = 0eQ/Z for all uelmi* £ Z. It follows that
Imi* has index exactly 2; K"{Xn)^Z and K"+l{X") = 0. The relations in (b) for £„ are
easy. The case of Y" is similar. •

X" and Y" are three-cell complexes: Xn = Sn{J,e* + i {J2,e
n+2, Y" = Sn~2[j2,^-l[j^en.

Our construction may be generalized to produce other three-cell complexes which are
K-theory spheres: Sn\Jae

n+k[jqe
n+k+i and P~k~1\Jq^'~k\Jaer, where aenJ.^S0) is

any element satisfying the condition

k is even, a and e(<x) e Q/Z have the same order q. (2.5)

These are the simplest examples of K-theory spheres which are not homotopy
equivalent to spheres. (There can be no two-cell complex W with K*(W)^K*(S").)

3. Computation of {Yn+1,Xn}

The maps i:S"-*Xn and j : yn + 7->Sn + 7 of (2.3) induce a homomorphism

It is known [2] that the e-invariant on 7î (S°) is monic, more precisely

«(a) = 1/240 e Q/Z. (3.1)

In the same way, the e-invariant as described in Section 1 is defined on the whole group
{Yn + 1,Xn} and under the identification (2.4) of Kn(X") and Kn-1(Yn+7) with Z is a
homomorphism

The purpose of this section is to show that this e-invariant is also monic, and
simultaneously to determine the group structure of {Yn+1,Xn}.

Theorem 3.2. The group { Y"+ 7, X"} is cyclic of order 60 with generator iaj, which has
e-invariant e{iaj) = 1/60eQ/Z. In particular, the e-invariant is monic on {Y" + 1,X"}.

The proof is divided into three steps:

j * : {Sn+\ Xn} -»{Y"+\ X") is epic. (3.2a)

'*: *7(S0) -> {Sn+\ X") is isomorphic. (3.2b)

The kernel of j * : {Sn+7, X") ~* { Yn+\ X"} is of order 4. (3.2c)

We shall need the following results of Mukai [16], which follow from (2.1), (2.2) and
the universal coefficient exact sequences.
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(a) {Sn+\Mn} = Z/2{fjr,2}, (b) {S"+5,M"} = 0,

(c) {S"+6,Af"} = Z/2{iv2}. (3.3)

(a) {M"+\S"} = Z/2{r,2rj}, (b) {M"+4,Sn}=0,

(c) {M"+5,y} = Z/2{v2p}. (3.4)

(a) {M" + 2, M"} = Z/2{ii,ij} 0 Z/2{ wp} © Z/2{ivp},

(b) {M" + 3
)M

n} = Z/4{^-}©Z/2{vAlM}) (b') 2rjrj=ir,2rj=rjt,2p, (3.5)

(c) {M"+4,M"}

Proof of (3.2) assuming (3.2a), (3.2b), (3.2c). By (2.1)(h), the group is cyclic of order
240/4 = 60 with generator iaj, whose e-invariant is easily computed from (3.1) and
naturality. •

Proof of (3.2a). Consider the commutative diagram with exact rows, which are
induced by the first cofibration in (2.3):

{M»+\Sn} - ^{M" + 4 ,Z"} -^{M n + 2 ,M n }^^{M n + 3 ,S ' ' }

rj* jtf* J ^ (3.6)

By (3.5)(a), (3.4)(a), (2.2)(a), (2.2)(c) and (2.1)(e')( the second and the third factors Z/2 in
(3.5)(a) generate the kernel of fj+ in (3.6); hence, by (3.4)(b), (2.1)(g) and (3.3)(a), the
diagram (3.6) becomes

0 >{Mn+\X"}-^Z/2{rjr,p}®Z/2{ivp} >0

[a* [n*

By (2.2)(a) and (2.1)(e'), the right rj* is epic and its kernel is generated by ivp. By
definition of the Toda bracket, (,rj,ivp,rj} = i~lrj*(j')~1(ivp), which is non-trivial by
(2.2)(d). Therefore the middle rj* is isomorphic. The second cofibration in (2.3) induces
the exact sequence:

{M''+5,Xn}~{S'' + 1,X''}-^{Y'' + 1,Xn}^{Mn+\Xn}-^{Sn+6,Xn}, (3.7)

where the last fj* is isomorphic as before. Then j* is epic. •
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Proof of (3.2b). Consider the exact sequence:

where the last term vanishes by (3.3)(b). By (3.3)(c), (2.2)(a), (2.1)(e'); *7*=0- Hence i* is
isomorphic. •

Proof of (3.2c). The element fjfjfj lies in {Mn+4,S"}, which is trivial by (3.4)(b).
Therefore fjfjfj=0. Similarly, fjfjfj=0 by (3.3) (b). Thus the Toda bracket (fj,fjfj,fj) is
defined. Then,

<jj, rjfj, fjy = 60t7 or — 60CT mod zero. (3.8)

We will prove (3.8) after completing (3.2c). By (3.2b) and (2.1)(h),

This is cyclic, and hence, by the exact sequence (3.7), it is enough to show that the
maximal order of elements in the image of the first fj* in (3.7) is 4. By (3.8), there is an
element y in {M"+5,Xn} such that (j')*y = fjfj and rj*(y) = ±60HT, an element of order 4.
By (2.2)(b) and (2.1)(c), 4^ = 0, and hence the image is a Z/4-module. •

Proof of (3.8). By (3.5)(b') and (2.2)(a),

It is enough to show

<^, >?>?> >72> = 120<r mod 0.

By [21], the suspension Zc°:7t12(S
5) = Z/30-»7rs

7(S°) is monic and the Hopf invariant
H:nl2{S5)->nl2(S

9)( = n3(S
0) = Z/24) is a monomorphism on 2-primary components. It

is therefore sufficient to show that (fj, fjrj, rj2} can be formed on S5 with non-trivial Hopf
invariant r\3. For n ^ 3 , 2^ = 0 holds on S". Therefore fj on S" and fj on M" exist for n ^ 3 .
Also, for n ^ 3 , rj3 on S" is divisible by 4, 4fj=0 on M" and fjri3 = 0 on M". On S3, fjfj = V
a generator of the 2-primary component of 7t6(S

3), and fj(fjri) = v'f/, which is non-zero on
S3, S4 and becomes zero on S5 [21]. Therefore the Toda bracket can be formed on Ss.
We consider a part of the EHP exact sequence

(P = A, £ = £ in [21]). The element fjfjrj in the middle group vanishes at the right end.
Hence P(r}) = fjfjt]. By the formula [21, (2.6)], we conclude that

,n2> on S5) = ^ 2 = >/3e7r12(S9). •
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4. The representation ring and the Chern character of G2

We shall begin by quoting some results on G2 and its complex representation ring
from, for example, [23].

We denote by # the (non-associative) field of Cayley numbers. Let et (0 ̂  i = 7) be the
usual IR-basis for ^ with multiplication rule:

e0 = 1 (the unit),

ef = - 1 ( i^ 1), e,ej = -eje, (i±j, i, j^l),

for (ij,k) =(1,2,3), (1,4,5), (1,6,7), (2,5,7), (2,6,4), (3,4,7), (3,5,6).

An R-linear isomorphism g : ' ! ? -^ is said to be an automorphism of # if it is
multiplicative: g(uv) = g(u)g(v), u,ve<0>. The compact, simply connected Lie group of type
G2 is realized as the automorphism group of c€:

One introduces an R-linear conjugation: e0 = e0,e{ = — e( ( i^l) and a norm |u| by
uu = |u|2. Let cg0 = {uec£\u= —u}=Yl=\^er Anv element geG2 satisfies g(l) = l and
|g(i/)| = |w|, ue^. Therefore G2 is a closed subgroup of O(^o) = 0(7).

Let p be the 7-dimensional complex representation ^ 0 ® B C of G2. Put p'= A 2p, the
exterior power. Then the complex representation ring of G2 is the polynomial ring with
generators p, p'\

R(G2) = Z[p,p'± (4.1)

Next, the subgroup H1 = {geG2\g(el) = e1} can be identified with SU(3). (If we
identify et with the complex number ieC, then Ht acts on Ce2@Ce4®Ce6.) Let a be
the standard 3-dimensional representation of SU(3), a its complex conjugate. Writing
j:SU(3)-»G2 for the inclusion, we have

K(SU(3)) = Z|>,a], j*p = (j + a + l. (4.2)

The subgroup H12 = {geG2 \giel) = e1,gie2) = e2} can be identified in a similar way
with SU(2) <= SU(3). a and a both restrict to T + 1, where T = T is the standard 2-
dimensional representation of SU(2). Write i:S3 = SU(2)->G2 for the inclusion. Then

R(SU(2)) = Z[T] , J*P = 2T + 3, I V = T2 + 6T + 5. (4.3)

Considering a representation simply as a continuous map to the infinite unitary group
defines the ^-construction fi:R(G)^>K~l(G), and we have, by [9],
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Theorem 4.4. (a) K*(G2) = E{p(p),p(p')), /C*(SU(2)) = £(0(T)), where E denotes the
exterior algebra over Z.

(b) i*

Part (b) follows from (4.2) and the properties of /?, [9].

The integral cohomology ring H*(G2) and the mod 2 cohomology H*(G2',Z/2) were
determined by Borel in [5].

Theorem 4.5. There are integral classes h3 and hll in H*(G2), deg/j, = i, which
generate the ring H*(G2) with relations 2hl=0, /if = 0, hlhll=O, hli=0. Hence the
additive group structure of H' = H'{G2) is given as follows:

H° = Z,H3 = Z {h3}, H3i = Z/2{h\} (i = 2,3),

H11 = Z{h11}, H1* = Z{h3hll}, H'=0 for other i.

Let X; be the mod 2 reduction ofht and x5 be the mod 2 class whose Bockstein is hi. Then
the mod2 cohomology H*(G2;Z/2) has the Z/2-basis

1,X3, X4, X3,X3X5, X3,Xn = X3X5,X3X11 =X3X5

with

Sq2x3 = x5, Sq1x5 = x|, Sq1x3x5 = x3
l, Sq2x| = x u .

From (4.5), since G2 is simply connected, we may construct a (minimal) CW complex

homotopy equivalent to G2. Considering the squaring operations we see that the 6-
skeleton .4(6) of A is homotopy equivalent to X3, (2.3), because n and 2x are detected by
Sq2 and Sq1 and the squaring operations determine the homotopy type of X3. Similarly,
X(11)//l(6) is homotopy equivalent to Y11. We have, therefore, a cofibration

Z 3 - ^ A ( 1 1 ) - U y 1 1 . (4.6)

Denote the next step of the sequence by <j>: Y11 ->I.X3.
By (2.4), 0*=O in K-theory and

} , (4.7)

where f\ll = l*nll and f3 is some element with fc*f3 = ^3. Thus

(4.8)
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for some XeQ, where, as before, we write ht also for the rational class and we identify
H*(A(11);Q) with a subgroup of H*(A;Q) = H*(G2;Q) = E(h3,hil), the exterior algebra
over Q.

Now, by the self-duality of A = G2 [7], the attaching map S13->A(ll) of the top cell
in A is stably trivial. So G2 splits stably as y4(11)vS14. Hence we can write
K*(A) = K*(A(ll))@K*(Si*)) and H%4)=H%4(11))©tf*(S14). (These decompositions
are independent of the stable splitting, because the summands are in different dimen-
sions.) In particular, K*{A) has no torsion and the Chern character for A is monic.
Write x,y for the classes in K'1(A) corresponding to ?3,»/ii. By (4.8), ch(xy) = h3htl.
This gives an alternative form of the theorem (4.4) of Hodgkin:

Theorem 4.9. (a) K*(A) = E{x, y), the exterior algebra over Z.

(b) chx = 2/i3 + l/i11, ch_y=^/j11 for some A eQ.

The element x is determined modulo y, while y is unique. We wish to know the
relation between the two generating systems {x,y} here and {P(p),P(p')} in (4.4).

The inclusion i:S3 = SU(2)->G2 is 4-connected. (We have a fibration S3-• G2->• F7i 2,
where F 7 2 is the Stiefel manifold of 2-frames in R7, given by mapping geG2 to
(g(ei)>g(e2))-) Hence we may identify i with the inclusion of the 3-skeleton S3 = A(3> -»• A.
Consider i*:K~1(A)^K~1(S3). By (2.4)(b) and the definition of x,y, we see that i*x is
twice a generator and y generates the kernel of i*. From (4.4) (b) we obtain

Lemma 4.10. There is a choice of x such that

The coefficient X in (4.9) (b) determines the e-invariant of the stable class of <j) in
3 ) = 2k (modZ) in Q/Z.

Lemma 4.11. e(</>) = +1/30 e Q/Z.

Proof. We compute the Adams operation ij/2 on x,y. Apply [l,(5.1)(vi)] to (4.9)(b)
to get

ch \}/2x = 8/i3 + 64A/i! i, ch\j/2y =

Since ch is monic,

il/2x = 4x+ l20Ay.

On the other hand, \j/2p = p2-2 A 2p = p2-2p'. By (4.10),

i,2x = t2ftp) = I4p(p) - 2p(p') = 4x + 2y.

Comparing this with (*) leads to k= ±(1/60). D
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By (3.2), the e-invariant faithfully determines the stable class of </>.

Theorem 4.12. The stable class of the attaching map cj>.Yil -*T,X3 is twice a
generator, i.e. ± liaj. Hence it is of order 30.

Remark 4.13. For a prime p, G2
6) = X3 is a mod p stable retract of G2 if and only if

p>5.
For p = 2, (4.13) was recently obtained by Cohen and Peterson [8] by a different

method. For p = 3, (4.12) asserts that <f> localized at 3 is detected by a secondary
operation <t>:fJ4(EG2;Z/3)->H12(EG2;Z/3); this is equivalent to the old result of Bott-
Samelson [6] that nlo(G2){3) = 0. Similarly, (4.12) localized at 5 is equivalent to the non-
triviality of &>1:H3(G2,Z/5)^>H11(G2,Z/5), originally obtained by Bott [6].

Remark 4.14. By [21], 7t14(S
7) = Z/120{V} and the generator a' is not a suspension.

However, the composite

is a three-fold suspension. This is proved by showing that imj*'-Tii4r{S1)^[_YlA,X1'\ is
epic. Then <j) gives the required desuspension (up to multiplication by a unit in Z/120).

Appendix. One would expect to be able to compute the Chern character on K*(G2) =
E(fi(p), P(p')) by standard methods of representation theory. Professor H. Minami has
kindly supplied the author with such a proof and we briefly describe his method here.

Recall that, for any compact Lie group G, the ^-construction may be written, up to
sign, as a composite [9]:

a is induced by the canonical map "LG->BG. To compute the Chern character on
K~l{G2) we work first on K°(BG2). At this level we can restrict to a maximal torus T of
G2. For T we choose the standard maximal torus of SU(3)£G2 and then read off the
information on R(G2)-*R(T) from (4.2)

To simplify the argument one can exploit the restriction to SU(2)sG2 and also use
the fact [4] that ch(p(p)P(p')) = h3hll.

5. The degree of self-maps of G2

Mimura, Nishida and Toda constructed in [13] simply connected H-spaces G2>(,
( — 2^b^5) of rank 2 with homology torsion, whose prototype is G2 = G20. G2b is
p-equivalent to G2 for primes p other than 3 or 5, to S3xSil or G2 according as
b= — 2modp or not for p = 3,5. On the homotopy type of G2b, they proved
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Lemma 5.1. (a) [13, above (5.2), (5.2)] G2b is homotopy equivalent to a CW complex

4 = S3ue5ue6ue8ue9ueuuc14,

which coincides up to the 9-skeleton with A = A0 (in Section 4), homotopy equivalent to

(b) [13, (4.3)(ii), (5.3)] The attaching map co: S1 0 -* A{9) of the top cell in / 1 ( 1 1 ) is a
generator of nl0(A

i9)) = ZI\20 and the attaching map cob: S
i0 -> Ab

9) = A(9) of the top cell in
Ab

ll) is(Sb + l)co.

(c) [13, (4.3)(iii)] The image of co in n10(^
9)/^6)) = n10(M

8) = Z/4{fj} is the generator
±fj; hence, so is the image of tob.

(d) AP = X\A<t

Since (Sb + l)fj = fj, the second parts of (c) and (d) are clear. From (d) we get a map

<j)b: Y
1 i -»ZX3 ((p0 = <p in Section 4)

extending the cofibration Ab
6) -> Atf" -> Ab

n)/Ab
6).

Lemma 5.2 Stably <j)b = (8fe +1)0 .

Proof. Consider the diagram

M 8 >£X3

where the lower sequence is a cofibration and the square is stably commutative. The
difference 0f c-(8b + l)<£ in {Y11,^3} lifts to {Y11,!^8}. Now the e-invariant is defined
on the whole of {Y11,!^8} and is zero, because H*(M8;Q) = 0 and £ u ( M 8 ) = 0 . So
<j>b—(Sb+ l)<p has trivial e-invariant and is zero by (3.2). •

The cohomology ring of G2tb is isomorphic to that of G2, cf. [13, (2.2)], so we use
/ i 3 , / i u again for the multiplicative generators of H*(G2,b)-

Theorem 5.3. There are elements x,yeK~\G2tb) such that K*(G2b) = E(x,y), the
exterior algebra over Z, and

chx = 2h3-({8b+l)/60)h11,chy = (l/2)hll.

The proof is like that of (4.9). The coefficient of htl in chx is e((j)b). The sign of the
e-invariant depends upon the orientation of the generators; we have fixed a choice here.
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We shall study the image of the degree map d and stable degree map ds for G2 b:

defined as in the introduction for G2. Both d and ds preserve the addition, given by an
H-structure on G2<b for [G2b,G2^\ and the usual track addition in the stable case, and
the multiplication given by composition of maps.

Let n(b) be the order of 8b + 1 mod 30, that is, by (3.2) and (5.2), the order of e(<t>b).
For — 2^b^5, n(b) is given by:

(5.4)

Proposition 5.5. Im d £ Im ds £ {(m, n) | m, n e Z, m = n mod n(b)}.

Proof. The first inclusion is obvious. For a given stable map fe{G2J,,G2b}, let
= d%{f), n = d\1{f). Thusf*(h3) = mh3,f*(h11) = nhli. We shall determine

b

n(b)

- 2

2

- 1

30

0

30

1

10

2

30

3

6

4

10

5

30

From (5.3) it is immediate that f*{y) = ny,f*(x) = mx + ky for some keZ. One checks
that (8fc + l)(m — n) = 30fc, which implies the congruence m = n mod n{b). •

We shall prove that the K-theoretic estimate for Im d given in (5.5) is the best result,
namely,

Theorem 5.6. Im d = Im ds = {(m, n) | m, n e Z, m = n mod 7i(b)}.

Since d is a homomorphism and d(id)=(l, 1), the theorem is equivalent to the
existence of a self-map / of G2,6 with d 3 ( / )=0 , d1 1(/) = 7t(fe). To construct such a map,
we need the following lemmas.

Lemma 5.7. nll(G2J,) = Z{y} @Z/2{Tt} and the image of the Hurewicz homomorphism
iii(G2.*)-»ffii(G2il) has index 4n{b).

Lemma 5.8. [y11,G2,fc] = Z{/}eZ/2{j*T1} wir/i j*y = 4y'. (j: Y^-tS11 as in (2.3).)

As we need a number of computations to prove (5.8), we shall delay its proof until the
next section.

Proof of (5.7). The homotopy group is computed in [14, (3.3)]. Since ntl(G2,b) =
ftii^*11'). the index equals the order of cob, the attaching map of the top cell in Ab

ll),
which is 4n(b) by (5.1)(b). •
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Proof of (5.6) (assuming (5.8)). The attaching map of the top cell in G2,b, as in G2,
is stably trivial. Hence, since n^Y11) is already in the stable range, G2JG2

6\ = Y11 v S14.
Let g'G2b->Y11 be the projection. Then the composite f — y'g'-G2b-*G2b clearly has
d3(/) = 0.' By (5.8), 4d11(/) = d11(y;g), which is equal to An(b), by' (5.7), since
j*:Hl\Sll)^fill{Y") is isomorphic. Hence dll(f) = n{b) and / has the required
degree. •

Remark. It is rather easier to compute Im ds. From the cofibration

411)

we obtain an exact sequence

7t{b)ide{Y11,Yi1} lifts to {Y11,^,11'}. By composing with g and the inclusion
Aili)fAb = G2tb, we obtain a stable class / with d\(f) = 0, d\l(f) = n(b).

6. Proof of Lemma 5.8

We recall the cofibrations

S" -JUS"

The second induces the exact sequence

[M9, G 2 > f c ] -^ j i 1 1 (G 2 > t ) -^ [y" , G2 > i , ]-^[M8, G2, J - £

The above groups except the middle one were computed by Mimura and Sawashita
[14, (3.3), (3.5)]. But note that the M" in [13], [14] is different from ours: we write
M" = S"Q2le

n+1, while Mn = Sn~l[j2lef in [13], [14]. From their results (with our
notation for M°),

7Iio(G2,l>) is an odd torsion group,
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where y and Tj are denoted by <2Ai13> and i*[v§], rj is the element in (2.2) for suitable
n, x'2, denoted by <f/|> in [14], is a generator of 7r8(G2ii)) = Z/2 and T2 is an extension of
T'2) i.e. T2i = T2.

By (2.2) (c), fj*[M9, G2,j,]=0. Hence we get a short exact sequence

O-+Z{y} © Z / 2 { T J - » [ y » , G 2 , J ^ Z / 4 { T 2 } - 0 .

The group extension at [711,G2-6] is a 2-local problem because no odd torsion group is
involved in the short exact sequence. Since G2,b is 2-equivalent to G2, the above
sequence is equivalent to

0 >7t l l(A)-^[Y1U]^[MiU] >0

(6.1)

} Z/4{T2}.

For a CW complex W, we denote the exact sequence

—>7in(W0—[J™, W] ̂ [ M " - J , w ] — >

by [n,WQ; thus (6.1) = [11, A].

Since A is homotopy equivalent to G2, there is a well known fibration

classified by the generator [2i]e7t5(SU(3)) = Z with <25([2i]) = 2. To determine the group
extension of (6.1), we examine the exact sequences [11,SU(3)], [11, S6], [10,SU(3)].

Lemma 6.2. (a) 7t11(SU(3)) = Z/4{r'1}, and ;*:7i11(SU(3))-[y11,SU(3)] is epic, where

T1=(i'%T'1.

(b) 7I10(SU(3)) = Z/30{T3}, and the element j*z3 in [Y10,SU(3)] is of order 15.

(c) The image o/(i"),:[y11,SU(3)]-^[y11,/l] is Z/2, generated by ;"*T1=(r)»j*t/
1.

Proof. The results on 7i((SU(3)) are in [15], where T\ is denoted by [v|] and the 2-
primary part of T3 by [vs^|] . By [12,(6.1)], the generator T1e7r11(G2) = 7r11(/4) in (6.1) is
in the image of (i")%, that is T1=(i")*r'1. Then part (c) is immediate from (a), (b). The
sequences [11,SU(3)] and [10,SU(3)] are connected by f7*:[M8,SU(3)]->7r10(SU(3)). To
show (a), (b), it is enough to prove that the rj* is an isomorphism at 2, because
[M8,SU(3)] is a 2-group. Let
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be the usual S3-bundle with characteristic element yen^S3). Consider the exact
sequence

where the boundary homomorphisms 8, 8' satisfy d(Sa) = f/a,<xe[M8,S4], d'(L<x') = rja',
a 'e[M7,S4] . We have, from the results on 7i,<S3), n,(S5), i = 8,9 in [21], that

[M8, S5] = Z/2{vijp} 0 Z / 2 { ^ } ,

where v' is a generator of the 2-primary part Z/4 of TT6(S
3), and satisfies

(a) 2v' = r,3 in n6(S% (b) ,v = v'f, in n^S3). (6.3)

Then we have

v'nfj=rivrj=d(vi]) e d[M9, S5].

Hence (i'i)* = 0, and

d'(vrip) = rjvrip = Vrfp, d'(r]2fj) = ri3rj = v'(2rj) = Vr}2p

by an unstable version of (2.2)(b). Since v't]2en8(S
3) cannot be halved [21], v'?/2p =/=();

hence

(Pi)*: [M8, SU(3)] -> Ker 8' is isomorphic.

We then get the commutative diagram

[M8, SU(3)]^^^io(SU(3)) = Z/30

= j (Pi), | (Pi).
Ker 3' —>nl0(S

5) = Z/2{vr,2},

where the upper rj* is the one we are investigating. The lower fj* is isomorphic, because

fj*(vrjp + rj2rf) = vrjprj + rj2fjfj
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by (2.2)(a), (c). As in [15, (4.1)], the right ( p ^ is an isomorphism at 2; hence, so is the
upper fj*. •

Lemma 6.4. (a) (i')*:[Y10,SU(3)]->[M7,SU(3)] is an isomorphism on 2-primary

components.

(b) [ Y 1 0 , S U ( 3 ) ] = Z / 3 0 { T 4 } , [M7, S U ( 3 ) ] = Z /2{T 5 } , where

; * T 3 = 2T4, (f)*t4 = T5 = [2i] vp = ii v'fj.

Proof, (a) By [15], 7i9(SU(3)) is an odd torsion group, while [M7, SU(3)] is a 2-group.
Hence f/*=0:[M7,SU(3)]->-7r9(SU(3)) and (*')* is epic. The result is then immediate
from (6.2) (b).

(b) We compute [M7, SU(3)] in two different ways, one using the fibration of SU(3)
and the other the cofibration of M7. By [15], TT 7 (SU(3))=0 and 7t8(SU(3)) = Z/12{[2i]v}.
The exact sequence induced from the cofibration of M7 then leads to [M7, SU(3)] =
Z/2{[2i]vp}. We next consider the exact sequence induced from the fibration:

where d', d" satisfy d'(La') = no!, d"(I.oi') = na" for <x'e[M7,S4], <x"e[M6,S4] with
f/6 7t4(S

3). From the results on rc^S3), 7cf(S
5) i = 6, 7, 8, 9, in [21], we obtain

[M8, S5] = Z/2{vr,p} 0 Z/2{ijafj}, [M7, S3] =

[M7, S5] = Z/2{vp} 0 Z/2{^^}, [M6, S3] = Z/2{v'r,p} ® Z/2{n2fj}.

In particular, by (2.2) (b), (6.3) (a), the following relations hold.

2v'fj = ri3fj = v'r,2p in [M7,S3-\. (6.5)

We then have

d'(vnp) = nvnp = v'n2p = 2v'fj, d'(t]2fj) = n3rj = 2v'fj,

d"(vp) = r]vp = v'np, d"(nrj) = n2fj,

by (6.3)(b) and (6.5). Therefore Coker d' = Z/2{v'rj} and Kerd" = 0, proving [M7,SU(3)] =
Z/2{ilV'rj}.

The odd primary part of [F 1 0 , SU(3)] is isomorphic to that of 7tlo(SU(3)) via j * , while
the 2-primary part is Z/2. Hence [ Y 1 O , S U ( 3 ) ] = Z /30{T 4 } with ; * T 3 = 2T4. The last
relation (i')*T4 = Ts ' s immediate from (a). D

We next compute the exact sequence [11,S6].
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Lemma 6.6. (a) The sequence [11,S6] is short exact, where the marginal terms are

, i6]}, [M8,s6]=z/2{iw} ez/2{vP}.

([i6, i6] is the Whitehead square.)

(b) [y11,S6]

Proof, (a) This is clear from the table of n^S6) in [21], since TC10(S6)=0 and
[M9, S6] is finite.

(b) We first compute [10,S5],[9,S5]. Extending the lower fj* to the right in the
commutative diagram in 'the proof of (6.2), we see that

is monic. As

[M7, S5] = Z/2{r,fj} 0 Z/2{vp}, n9(S
5) =

r]fjfj = O and vprj = vr] in n9(S
5),

the image of (f)* is Z/2{»/^}. Hence

By a similar computation, we obtain

[y9 ,s 5 ]=o.

We next study the EHP exact sequence

in order to determine [ y 1 1 ^ 6 ] . Since rjfj is still non-trivial in [M8, S5], ET6 is non-trivial
and generates Im£ = Z/2. Clearly, [y11,511] = Z{y}. Therefore there is an element y"
with H(y") = j for which

The Hopf invariant of [i6, i6] is known to be 21^; hence
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Clearly (ITJ*[»6.«6] = UO*[«6. '6] = 0. Since IM8,S61 is a Z/2-module, (i)'*(2y") = 0.
Therefore ;*[i6,i6] = 2y" because (0*(ZT6) = W ^ O . AS (i')*:|T11,S6]-»[M8,S6] is epic,
there is a choice of y" which satisfies (i')*y" = vp as well as the other relations. •

Now we are ready to prove Lemma 5.8.

Proof of (5.8). The commutative diagram of exact sequences

where the boundary homomorphism A satisfies A£ = [2i]*, becomes, by previous
computations:

0 >Z{y}©Z/2{r1}

(p'%

A

Z/30{T 3 }

0

I

(P'%

Z{y"}©Z/2{lT6}

A

Z/30{T4}

(•')•

(••)•

(•')*

Z/4 {T 2 } -

(P'%

Z/2{r,fj}@Z/2{vp}-

A

Z/2{T 5 }

Here we have also proved

; * T 3 = 2T4, (J')*T4 = T5 =

Since 7i10(^) = 7r10(G2)=0, the left A is epic, hence
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The right A is computed as follows.

because of the formula A(Sa) = [2i]a and the relation An = ilv' in [12, (6.3) with
Therefore

, A( / )=r 4 ,

Then we can find an element y'e[Yil,A] with

where we may replace T2 by — x2 if necessary. Then

(p")*J*y = 60y" = 4(p")*y' and ;*y = 4 /

We may replace y by y + ti to get the exact relation j*y=4y'. •

7. Self-H-maps of G2 >b

In this section we fix b, —2^b^5, and write G = G2b. Let n:GxG-*G be an
H-space multiplication. (We assume only the existence of a unit for /i.) Let [_G,G\
(respectively <%{G)) denote the set of homotopy classes of H-maps (respectively homo-
topy equivalences) G^G. We put ^H(G;/z) = [G,G]An^(G). All three sets are closed
under composition; <?(G) and (aH(G;(i) become groups.

The group S(G) was determined, up to extension, by Mimura and Sawashita [14],
and, for b=£ — 2, we settled in [17] the group extension. Recent work of Sawashita [20]
states that SH{G; /i) (for any b, any multiplication fi) is either trivial or of order 2, and
that in the second case the non-trivial element, / say, has d3(f)= — 1. The purpose of
this section is to eliminate the order 2 case if b± — 2 by estimating the image of the
degree map on [G,G']ll using the same method as in [10], [11]. Our result is:

Theorem 7-1. For —2^b^5 and for arbitrary multiplication n,

and msO,lmod4 if Us even}.

Proof. Let P be the projective plane of the H-space G with multiplication fi. P is the
cofibre of the Hopf construction on fi, B.JLG A G^G* G->I,G, and we have the
cofibration

EG A G-^I.G—^P—^&G A G.
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The Kunneth formula holds for K*(G x G), [3], and K*(G) becomes a primitively
generated Hopf algebra. H is the reduced co-multiplication map (via the suspension
isomorphism a).

We conclude that K°(P) is a free Z-module with basis {a, /?, a2, a/?, fl2, y}, where

i*a = x, i*/?=y, y = j*{o2(xy®xy)),

From the Chern character formula in (5.3),

Therefore we may put

toe2 + uafi + vfi2 + wy mod 4,
(7.2)

^2J? = aa2 + bixP + cP2 + dy mod 4,

for some integers t, u, v, w, a, b, c, d. We also have

i/^VsO, iA2ay? = O, il/2p2 = 0, il/2y = 0mod4. (7.3)

Since \l/2p=±p2 mod 2,

c is odd; a, b and d are even. (7.4)

Now let / : G -* G be an H-map with d3{f) = m, d11(f) = n. As in the proof of (5.5),

f*(x) = mx + ky, f*(y) = ny,

where 30k = (Sb+l)(m — n) and in particular 2k = m—nmod4.
Since / is an //-map, there is a map g:P^P fitting into a commutative diagram

EG—Up—UE 2 G A G

g

EG—Up-^->.I2G A G.

Then

= npmodoc2,<xP,p2,y.

2, g*p2 = n2p2, (7.5)

g*y = (mn)2y.
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We compare the coefficients modulo 4 of /?2 in \jj2g*fi and in g*\]/2p. Let D be the
subgroup generated by a, /?, a2, a/?, 4/?2, y. Then

\]/2g*P = n<p20=nc02 mod D,

g*t//2P = ag*a2 + bg*aP2 + cg*P + dg*y

= (ak2 + bkn + cn2)02 mod D,

by (7.2), (7.3) and (7.5). Hence

c(n2 — n) + (ak + bn)k=0 mod 4.

By (7.4), n2 — n~2skmod4 for some seZ. So n2 — n = s(m — n) mod4. If m — « is divisible
by 4, then m = n = 0,1 mod 4. Since 7t(6) = 2 mod 4, (5.4), the theorem follows. •

Remark 7.6. When G = G2 (so b = 0) and /z is the Lie group multiplication, we can
use the standard map P -*• BG2 and the method of the appendix to Section 4 to
determine ip2 for P. The result is

from which we can obtain further (complicated) restrictions on the degree of H-maps.

Corollary 7.7. For -l^b^5 and arbitrary multiplication fi, d(£H(G2ib;n)) = {(l, 1)}.

Proof. If feS'H(G2ib;n), then m = d3(f)=±l, n = d11(f)=±l. m = nmodn(b). But
nib) > 2, by (5.4). Hence m = n. By (7.1) m = 1. •

The result of Sawashita [20,(5.6)] states that, for -2^b^5 and any n, the map
G2b->K(Z, 3) which kills all the homotopy groups except n3 induced a monomorphism

The multiplication fiK on the Eilenberg-MacLane space K(Z, 3) is unique and
Sf^KSJL, 3); /xK) is of order 2 with generator g acting non-trivially on n3, H3 and H3. If
there were a lift /i of g to S[^G2J;,n), the action of ft on H3 would have to be non-
trivial, which is impossible if b =/= — 2 by (7.7). In consequence, we have

Theorem 7.8. For — 1 ^ b ^ 5 and arbitrary multiplication \i, SH(Glb\ fi) = {id}.
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