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Let G be one of the following compact simply connected Lie groups: SU(3), Sp(2), G,.
In the first two cases there is a well known stable decomposition of G as @ v $¢ where
d=dim G and Q is a certain subspace of G. For SU(3), Q is the stunted complex quasi-
projective space X(CP?/CP') which fits into a cofibration sequence S*—~+Q—S° with
stable attaching map 7:S°—S*. For Sp(2), Q is the quaternionic quasi-projective space
HQ' and fits into a cofibration sequence S*—Q-S’ with stable attaching map
2v:§7—8* (Here n and v are generators of 73(S% and n5(S°) respectively.)

In this paper we describe a corresponding result for G,. This time we have a
cofibration X3—Q—Y'' where X3,Y!' are K-theory spheres to be described in
Section 2. We compute the stable class of the attaching map ¢: Y!'—+ZX3 by using the
complex Adams e-invariant

e{Y' X3} >Q/Z

Theorem A. {Y'',£X3}=7/60 with generator of e-invariant 1/60 € Q/Z. Hence e is
monic.

This theorem, proved as (3.2), is central. It enables us to extend to G, much of the
theory already developed for SU(3) and Sp(2). First, by computing the Chern character
on K*(G), we obtain, (4.12),

Theorem B. Stably the attaching map ¢ is twice a generator, so of order 30.

We then turn to the study of self-maps of G. H*(G;Q) is an exterior algebra on
integral generators h, and h, say, where (q,r)=(3,5), (3,7), (3,11) in the three cases
SUQ3), Sp(2), G, respectively. For a self-map f of G, we define d,(f), the degree of f in
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dimension i (i=gq,r), to be the integer in the equality f*(h)=d{f)h. We then define the
degree map

d=d;xd,.[G,G]-Z&Z
and similarly the stable degree map
&F=d;xd:{G,G}—>ZDZ.

K-theory shows that d (f)—d,(f) is a multiple of the integer n=2,12,30 for G=SU(3),
Sp(2), G,. It is known in the first two cases that this is the only restriction on d. This is
also true for G,, (5.6).

Theorem C. Imd=Imd*={(m,n)|m,ne Z,m=nmodr}.

Our final application concerns H-maps. Let u be an H-structure on G, for example
the Lie group multiplication, and suppose that a self-map f is an H-map with respect to
i, that is, u(fxf) is homotopic to fu. Then there are additional restrictions on d(f).
For G=SU(3) or Sp(2), d3(f)=0,1mod4, [10], [11]. For G=G, we prove that
dy(f)=0,1mod4 if d,,(f)=ds(f) mod 2n. With a recent result of Sawashita [20], this
gives, (7.8),

Theorem D. Suppose that a self-map f of G, is both a homotopy equivalence and an
H-map for some H-structure on G,. Then f is homotopic to the identity.

(The same result holds for Sp(2), [11]; the situation for SU(3) is a little more
complicated, [10].)

Most of the results on G, generalize easily to the H-spaces G, ,(—2=<b<35) introduced
by Mimura—Nishida-Toda in [13].

The paper is organized as follows. In Section 1 we review the definition of the
e-invariant in the form required for our application. In Section 2 we define the K-theory
spheres X3, Y''. {Y'', X3} is computed in Section 3. In Section 4 we discuss the
complex representation ring and the K-theory of G,; we compute the Chern character
and prove Theorem B. The image of the degree map for self-maps of G, is determined
in Section 5, with one computation deferred to Section 6. H-maps are discussed in
Section 7.

A part of this paper including Theorems A and D was obtained while the author
visited Bonn in 1982/83. The author would like to thank Professor F. Hirzebruch and
the Max-Planck-Institut fiir Mathematik for their hospitality and support. Many thanks
also go to Professor H. Minami, who directed the author’s attention to the book [23]
and allowed the author to include his computation of the Chern character for G, in this
paper.

The book [23] is an excellent guide to the representation theory of the classical
groups and the exceptional groups G, and F,. Unfortunately it is written in Japanese
and the author cannot find a similar work in English.
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Spaces in this paper are always assumed to be homotopy equivalent to CW
complexes and to have base points. Maps and homotopies also preserve base points.
[X,Y] denotes the set of homotopy classes of maps from X to Y, £" the n-fold
suspension, £'=%, and {X, Y} the additive group of stable maps from X to Y. We
sometimes denote a map and its homotopy class by the same symbol. Z and Z/n denote
additive groups isomorphic to the group of integers and integers modulo n, respectively;
the generator is enclosed in braces { }.

1. The e-invariant

We begin by recalling the definition, in suitable generality, of the (complex) Adams
e-invariant. Let Z be a finite complex and n a natural number with A"~ Y(Z;Q)=0. We
shall need the commutative diagram of Bockstein exact sequences:

. (Z2)@Q-m”NZ;Q/Z) > n(Z)~» n(Z) @ Q

d | B
K" Y2)@Q-K""YZ;0/2)-K"(2)-K"(Z)®Q

in which the vertical maps are Hurewicz homomorphisms (d-invariants) from stable
cohomotopy (with Z,Q,Q/Z-coefficients) to complex K-theory. n(Z)={Z,5"} is the
group of stable maps from Z to $". By assumption, "~ (Z)® Q =0.

Now consider a torsion element xenj(Z) with d(x)=0. It lifts uniquely to a class
Xen" YZ;Q/Z). We define the e-invariant of x to be e(x)=d(X) in

Coker {K""1(Z2)-»K""Y(Z)®Q} <K""YZ;Q/2).

It is useful in practice to have another description of e(x) using the Chern character,
ch. Let f:Z"Z—->S™*" (m=0) represent x. Form the mapping cone sequence

S g

Z"'Z ,Sm+n ch h ‘Zm+lz

and look at the associated exact sequences in K-theory and rational cohomology. We
obtain a commutative diagram

0— Rz 5 Rmvc) -Sz—0

ST

O——»ZFI"“”‘(Z; @)Tzﬁm+"+2i(cﬁ @)TQ—’O’

in which the inclusion Z—@Q is ch: K%(§°) - A°(S% @) and the summation is over i€ Z.
The map g*: A™*"(C; @)~ A°(S% Q) is an isomorphism. Let be A™*"(C ;@) map to
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1e@. Now choose a class ae K™*"(C,) with g*(a)=1. Then ch(a)—b=~h*(v) for some
class v in the group Y,A" '*?(Z;Q). Since the Chern character is a rational
isomorphism, we can think of v as an element of K"~ (Z) ® Q. Then

e(x)=vmod K"~ 1(Z).

This was the original definition of e(x).

In fact we must interpret the e-invariant in a somewhat broader context. Let X and Y
be finite complexes with {ZY,X}®Q=0, xe{Y,X} a stable map from Y to X
represented by a map f:X"Y—->X™X (for some mz=0). Assume that x is of finite order
and with vanishing d-invariant in the sense that

(1 A x)*: R¥(W A X)-»K*(W A'Y) is zero for every finite complex W.
Then we have an e-invariant
e(x)e Hom(K*(X)® Q,K* " (Y)®Q) mod Hom (K*(X), R*~Y(Y)).

Here and elsewhere we think of K-theory as Z/2-graded. Homomorphisms are of degree 0.
The definition reduces by S-duality to the one we have already given. Let X’ be an
n-dual of X (for some n=0). Set Z equal to X’ A Y. Then {Y, X} is identified with {Z,S"}
and K"~ (Z)® Q with Hom(R*(X)®Q, K* {(Y)® Q).
There is a direct interpretation of e(x) by using the Chern character (and this may, for
the purposes of this paper, be taken as the definition). Again form the mapping cone
sequence

ry-Logmx 2, c,—toEmtty,

We have an associated diagram

g*

0— . R°YY) — Rvc,) - RYX) —0

chl ch J chJ
0— Y A~ Y Q= Y A H(C Q0 Y (X @) —0.

The cohomology sequence has a unique splitting b: Y, A¥(X; Q) - Y, H"*%(C; Q)
preserving the degree i, since Hom (A?(X;Q), A '**(¥.Q))=0 by assumption. The
K-theory sequence splits because d(x)=0 (in the strong sense); choose a splitting
a: K%(X)—> R™(C,). If ue R%(X), then ch(a(u)) —b(ch (1)) =h*(v) for some unique class v
which we regard as an element of K ~(Y)® Q. In this way we obtain a linear mapping
K°(X)—» K~Y(Y)®Q which is well defined modulo homomorphisms K°(X)—K~L(Y)
and represents the 0-component of e(x). The other component is defined similarly.

In our applications X and Y will be K-theory spheres so that the groups concerned
are very simple.
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We remark that there is another definition of the e-invariant in terms of Adams
operations in K-theory (in which one usually works locally at a fixed prime). The reader
may prefer to rewrite proofs in the following sections from that point of view.

2. Some K-theory spheres

For our computations we quote some results on #3(S°), including Toda brackets
{,,>, from [21].

(a)
(b)
(c)
(d)
(e)
(f)
(8
(h)

mo(S°)=2Z {1},
mi(8°)=2/2{n},
m3(8)=2/2{n*}, () Q2un2>=n?

n3($9)=2/24{v}, (@) n*=12v, (d") <n,21,n>=6vmod 12, 2.1
(8% =0, (¢) nv=0,
3(8°) =0,

(S)=2/20%}, (g) (mvmy=v2,
(5% = 2/240{a}.

(Note that v and ¢ in [21] are the generators of the 2-primary parts.)
Denote the mod 2 Moore space by M"=5"| J,,e"*! and the usual cofibration by

st i M 4 S"+l.

Since 2=0, in the stable range there are elements

ﬁ:M"+l—>Sn,ﬁlsn—l—>M"-3

such that
(@) 7i=n,pi=1. (2.2)
By (2.1) (¢)), (d), (d") and (g)),
(b)  2i=n’p, 2f=in?,
(¢) 7ifj=%6v, (2.2)
(d  Tivp,Aiy=»2

Notice that 7 and # are not uniquely determined by (2.2)(a): there are two choices
differing in sign. Given #, we may fix 77 by requiring #7j = 6v.
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We define complexes X" (n=3), Y" (n26) as the mapping cones of 7, #:

M” +1 g3 N x—L M + 2
2.3)

Sn—l i Mn—3 v Y" i > S

The spaces X", Y" are independent, up to homotopy equivalence, of the choice of
attaching maps #,7. ((M*, $3] and[S®, M?] are both cyclic of order 4.)

We shall show that X" and Y”" are K-theory spheres. Notice first that they are
rationally equivalent to S” with equivalences i and j respectively. Let s,e H"(S")=Z,
o,€ K™(S") be generators with cho,=s,. Let x,e H(X")=Z, y,e H(Y")=Z be generators
with i*x,=s,, y,= j*s,. We denote the rational classes of s,, x,, y, by the same symbols.

Proposition 2.4. (a) K*(X")= K*(S"), K*( Y") RK*(S" as additive groups.
(b) There are generators ¢,e K(X") =12, n,e€ R"(Y")=Z such that

ché,=2x,  chn,=1y,
i*én = 20"’ j*o.ll = 2'7"'

Proof. One readily checks that K"(M"*')=27/2, K"~ {(M"*!)=0. (2.3) then gives an
exact sequence

0— R™(X")—— R(S") = Z/2 —» R"*1(X") = 0.

Now the element # of nj(S°) has non-trivial e-invariant, [2]: e(n)=1eQ/Z. Form a
homotopy-commutative diagram

M" +1_1 Sn { xn
I
Sn +1 __)Sll_) C,,
n
and consider the induced maps in K-theory
0 —RY(X") ——R(S")=2Z
0-——->IZ"_ I(Sn+ l)——’K"(C,,) ——PK"(S")—>0

Since i*: A"(X"; Q) - A*(S*;, Q) is an isomorphism, it is clear from the Chern character
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interpretation of the e-invariant that u.e(n)=0eQ/Z for all ueImi* < Z. It follows that
Imi* has index exactly 2; K"(X")=Z and K"*!(X")=0. The relations in (b) for ¢, are
easy. The case of Y" is similar. O

X" and Y™ are three-cell complexes: X"=5"| J,e"*'| J,,€" "2, Y"=8""2{ J,,e" *{J,e"
Our construction may be generalized to produce other three-cell complexes which are
K-theory spheres: $”( ),e"**| J,e"***! and S"~*"!{ ),e" % J,e", where aenj_ (S is
any element satisfying the condition

k is even, a and e(x) e Q/Z have the same order q. (2.5)

These are the simplest examples of K-theory spheres which are not homotopy
equivalent to spheres. (There can be no two-cell complex W with K*(W)= K*(5").)

3. Computation of {Y"*7, X"}

The maps i:S"— X" and j: Y"*7 > 8"*7 of (2.3) induce a homomorphism
i j* (8% - (Y7, X"}
It is known [2] that the e-invariant on 75(S°) is monic, more precisely
e(a)=1/240€Q/Z. (3.1
In the same way, the e-invariant as described in Section 1 is defined on the whole group
{Y"*7,X"} and under the identification (2.4) of K"(X") and K" }(Y"*7) with Z is a
homomorphism

e{Y"7, X" »Q/Z.

The purpose of this section is to show that this e-invariant is also monic, and
simultaneously to determine the group structure of {Y"*7, X"}.

Theorem 3.2. The group {Y"*7,X"} is cyclic of order 60 with generator igj, which has
e-invariant e(ioj)=1/60€ Q/Z. In particular, the e-invariant is monic on {Y"*7, X"}.

The proof is divided into three steps:

{87, X"} - {Y"*7, X"} is epic. (3.2a)
i, :75(S%) —{S"*7, X"} is isomorphic. (3.2b)
The kernel of j*:{S"*7, X"} - {Y"*7, X"} is of order 4. (3-2¢)

We shall need the following results of Mukai [16], which follow from (2.1), (2.2) and
the universal coefficient exact sequences.
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@) {S"t4 M =Z/2{fn?), (b) {S"*5,M"}=0,
(© {5"*S,M"}=2/2{iv?}. (3.3)

(a) {Mn+ 3’ Sn} — 2/2{,12’7}’ (b) {M"+4, Sn} =0,
© {M"*5,5"=2/2{v*p}. (34)

(a)  {M"*2 M"} =2/2{ini} ® Z/2{iinp} © Z/2{ivp},
(B) (MM} =Z/A{T} @Z/2v A L}, (b) Zi=in*=iin’p, (3.5)
©  {M"*4 M7} =2/2(ini}.

Proof of (3.2) assuming (3.2a), (3.2b), (3.2c). By (2.1)(h), the group is cyclic of order
240/4=60 with generator igj, whose e-invariant is easily computed from (3.1) and
naturality. ]

Proof of (3.2a). Consider the commutative diagram with exact rows, which are
induced by the first cofibration in (2.3):

{M"+4, Sn} is {M"+4, X"} U')a {M"+2, Mn} e {M"+3, Sn}

* * f* (3.6)
TI%(SO)-—i‘—>{S"+6, X"}—(Jlb{sn+4, M"}.
By (3.5)(a), (3.4)(a), (2.2)(a), (2.2)(c) and (2.1)(¢’), the second and the third factors Z/2 in

(3.5)(a) generate the kernel of #, in (3.6); hence, by (3.4)(b), (2.1)(g) and (3.3)(a), the
diagram (3.6) becomes

0 — (M4 x"L%7)2(5np} @ Z/2{ivp}—0
l fi* lﬁt fi*
Z/2{v?}—s{sn+8 xmy — D 7102}

By (2.2)(a) and (2.1)(¢'), the right #* is epic and its kernel is generated by ivp. By
definition of the Toda bracket, {#,ivp,#y=i, '7*(j), (ivp), which is non-trivial by
(2.2)(d). Therefore the middle #* is isomorphic. The second cofibration in (2.3) induces

the exact sequence:

{Mn+ 5’ X"}L {Sn + 7’ X"}—P—){ Y" + 7, Xn}_(_'l>{Mn+4’ X"}L{S"+6, X"}, (37)
where the last #* is isomorphic as before. Then j* is epic. O
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Proof of (3.2b). Consider the exact sequence:

{Sn+6’ Mn}Lﬁ(sO)_i‘_){sn«P?,Xn}ﬂ’{sni-s’ M"}=O,

where the last term vanishes by (3.3)(b). By (3.3)(c), (2.2)(a), (2.1)(¢"), 7, =0. Hence i, is
isomorphic. O

Proof of (3.2c). The element 777 lies in {M"** S"}, which is trivial by (3.4)(b).
Therefore AR7=0. Similarly, A77=0 by (3.3)(b). Thus the Toda bracket (7,77, #) is
defined. Then,

1,71, f>=606 or —600mod zero. (3.8)
We will prove (3.8) after completing (3.2c). By (3.2b) and (2.1)(h),
{§"*7,X"} =7Z/240{ic}.

This is cyclic, and hence, by the exact sequence (3.7), it is enough to show that the
maximal order of elements in the image of the first #* in (3.7) is 4. By (3.8), there is an
element y in {M"*> X"} such that (j'),y =77 and 7*(y)= £ 60is, an element of order 4.
By (2.2)(b) and (2.1)(c), 447=0, and hence the image is a Z/4-module. O

Proof of (3.8). By (3.5)(b’) and (2.2)(a),
241, 75, 1) = <A, fim, n*>.
It is enough to show
{7, 7in,m*> =1206 mod 0.

By [21], the suspension £®:m,,(S°%)=2Z/30—-n%(S°) is monic and the Hopf invariant
H:m,5(8%) -7, ,(8%)(=n4(S°) =2Z/24) is a monomorphism on 2-primary components. It
is therefore sufficient to show that {#,7n,1n%)> can be formed on S* with non-trivial Hopf
invariant 5. For n=3, 27n=0 holds on §". Therefore 7 on S" and # on M" exist for n>3.
Also, for n=3, n° on S is divisible by 4, 47=0 on M" and #j#*=0 on M". On §3, fij=V
a generator of the 2-primary component of ng(S>), and 7(fin) = v'n, which is non-zero on
§3, $* and becomes zero on S° [21]. Therefore the Toda bracket can be formed on S5.
We consider a part of the EHP exact sequence ’

Z/2{n} =7, o(S%)—— mg(SH)——74(S?).

(P=A, Z=E in [21]). The element ##jn in the middle group vanishes at the right end.
Hence P(n)=7##n. By the formula [21, (2.6)], we conclude that

H(,5mn*) on S =np’=n’eny(8%). O
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4. The representation ring and the Chern character of G,

We shall begin by quoting some results on G, and its complex representation ring
from, for example, [23].

We denote by € the (non-associative) field of Cayley numbers. Let ¢; (0<i<7) be the
usual R-basis for ¥ with multiplication rule:

eo=1 (the unit),
ef=—1(i21), ee;=—epe; (i+), i,j21),
€e;=¢y €€, =¢€; & e;=¢;
for (i, j,k)=(1,2,3),(1,4,5),(1,6,7), (2,5,7), (2,6,4), (3,4,7), (3,5, 6).

An R-linear isomorphism g:¢—% is said to be an automorphism of ¥ if it is
multiplicative: g(uv)=g(u)g(v), u,ve ¥. The compact, simply connected Lie group of type
G, is realized as the automorphism group of €:

G,=Aut%.

One introduces an R-linear conjugation: é,=e¢o,&=—e¢; (i21) and a norm [u| by
uii=|u|>. Let €o={ue€li=—u}=>7_ Re;. Any element geG, satisfies g(1)=1 and
lg(4)| =|u|, ue €. Therefore G, is a closed subgroup of O(%,) = 0(7).

Let p be the 7-dimensional complex representation €, ® zC of G,. Put p'= A ?p, the
exterior power. Then the complex representation ring of G, is the polynomial ring with
generators p, p':

R(G,)=Z[p,p']. (4.1)

Next, the subgroup H,={geG,|gle;)=e,} can be identified with SU(3). (If we
identify e; with the complex number ieC, then H, acts on Ce, @ Ce, D Ce;.) Let o be

the standard 3-dimensional representation of SU(3), & its complex conjugate. Writing
Jj:SU(3) - G, for the inclusion, we have

R(SUQB)=Z[0,6], j*p=0c+6+1. (42)
The subgroup H, ,={geG,|gle,)=e,,gle;)=e,} can be identified in a similar way

with SU(2)=SU(3). ¢ and & both restrict to 7+1, where t=% is the standard 2-
dimensional representation of SU(2). Write i: §*=SU(2) - G, for the inclusion. Then

R(SU(2))=Z[1], i*p =21 +3, i*p' =12 +61+5. (4.3)

Considering a representation simply as a continuous map to the infinite unitary group
defines the B-construction f:R(G)—K ~(G), and we have, by [9],
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Theorem 4.4. (a) K*(G,)=E(B(p), B(p")), K*(SU(2))=E(f(r)), where E denotes the
exterior algebra over Z.

(b) *B(p)=2p(v), i*B(p") =10B().
Part (b) follows from (4.2) and the properties of 8, [9].

The integral cohomology ring H*(G,) and the mod 2 cohomology H*(G,;Z/2) were
determined by Borel in [5].

Theorem 4.5. There are integral classes hy and h,, in H*G,), degh,=i, which
generate the ring H*(G,) with relations 2h3=0, h%=0, h3h,, =0, h?,=0. Hence the
additive group structure of H'= H(G,) is given as follows:

HO=7 H3=7{hy}, H¥=Z2{K,}  (i=2,3),
H11 =Z{h11}, H14=Z{h3h11}, Hl=0 for Other i.

Let x; be the mod 2 reduction of h; and x5 be the mod 2 class whose Bockstein is h3. Then
the mod 2 cohomology H*(G,;Z/2) has the Z/2-basis

1, X3, X4, X3, X3X55 X3, X1 1 = X3%X5,X3X 1 = X3Xs5
with
Sq2%x;=xs, Sq'xs=x3, Sq'x3x5=x3, Sq*x3=x,,.
From (4.5), since G, is simply connected, we may construct a (minimal) CW complex
A=83ue’uebuetue’uell et
homotopy equivalent to G,. Considering the squaring operations we see that the 6-
skeleton A® of A is homotopy equivalent to X3, (2.3), because n and 2: are detected by

Sq? and Sq! and the squaring operations determine the homotopy type of X3. Similarly,
AU/ A js homotopy equivalent to Y!!. We have, therefore, a cofibration

X3, q00_L,y11, 4.6)

Denote the next step of the sequence by ¢: Y!! - T X3,
By (2.4), ¢*=0 in K-theory and

RO(A" ) =0, RNA") =Z{&;} ® Z {1, 4}, 4.7
where 7j;, =1*n,, and &, is some element with k*&;=¢,. Thus

ch '711='5'h1 1 Ché_3=2h3+lhu (4.8)
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for some 1@, where, as before, we write h; also for the rational class and we identify
H*(A"Y; Q) with a subgroup of H*(A4;Q)=H*(G,; Q)= E(hs,h,,), the exterior algebra
over Q.

Now, by the self-duality of A=G, [7], the attaching map §'* - A"" of the top cell
in A is stably trivial. So G, splits stably as A"V v §'4 Hence we can write
R*(A)= R*(A"Y) @ K*(S') and H*(4)=H*(A"V)@® H*(S'*). (These decompositions
are independent of the stable splitting, because the summands are in different dimen-
sions.) In particular, K*(4) has no torsion and the Chern character for A4 is monic.
Write x,y for the classes in K~ 1(4) corresponding to &;,7,,. By (4.8), ch(xy)=h;h,,.
This gives an alternative form of the theorem (4.4) of Hodgkin:

Theorem 4.9. (a) K*(A)=E(x, y), the exterior algebra over Z.

(b) chx=2hy+4ih,,,chy=3h,, for some LeQ.

The element x is determined modulo y, while y is unique. We wish to know the
relation between the two generating systems {x, y} here and {B(p), B(0)} in (4.4).

The inclusion i: $*=SU(2) - G, is 4-connected. (We have a fibration S*>G, >V, ,,
where V, , is the Stiefel manifold of 2-frames in R’, given by mapping geG, to
(g(e,).g(e;)).) Hence we may identify i with the inclusion of the 3-skeleton §3=A® - A.
Consider i*: K~ '(4)—K ~(S%). By (2.4)(b) and the definition of x,y, we see that i*x is
twice a generator and y generates the kernel of i*. From (4.4)(b) we obtain

Lemma 4.10. There is a choice of x such that

Blp)=x, B(p)=5x+ty.

The coefficient 4 in (4.9)(b) determines the e-invariant of the stable class of ¢ in
{Y1L,EX3). e(¢)=24 (mod Z) in Q/Z.

Lemma 4.11. e(¢)= 1£1/30€Q/Z.

Proof. We compute the Adams operation ¥ on x,y. Apply [1,(5.1)(vi)] to (4.9)(b)
to get

chy?>x=8hy+64Ah, |, chy?y=232h,,.
Since ch is monic,
Yix=4x+120y. *)
On the other hand, Y?p=p?—2 A2p=p?—~2p'. By (4.10),
Y2x=y?B(p)=14B(p) — 2B(p") = 4xF2y.

Comparing this with (*) leads to A= 4(1/60). O
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By (3.2), the e-invariant faithfully determines the stable class of ¢.

Theorem 4.12. The stable class of the attaching map ¢:Y'' >IX3 is twice a
generator, i.e. 1 2igj. Hence it is of order 30.

Remark 4.13. For a prime p, G = X3 is a mod p stable retract of G, if and only if
p>5.

For p=2, (4.13) was recently obtained by Cohen and Peterson [8] by a different
method. For p=3, (4.12) asserts that ¢ localized at 3 is detected by a secondary
operation ®: HYXG,;Z/3) - H'*(£G,; Z/3); this is equivalent to the old result of Bott—
Samelson [6] that m,,(G,)3,=0. Similarly, (4.12) localized at 5 is equivalent to the non-
triviality of 2': H3(G,; Z/5)—H"!(G,; Z/5), originally obtained by Bott [6].

Remark 4.14. By [21], n,,(S7)=7Z/120{c¢’} and the generator ¢’ is not a suspension.
However, the composite

j I'd i
Y14_l,Sl4_,Sv_>X7

is a three-fold suspension. This is proved by showing that i, j*:7,,(S7) > [Y'4, X"] is
epic. Then ¢ gives the required desuspension (up to multiplication by a unit in Z/120).

Appendix. One would expect to be able to compute the Chern character on K*(G,) =
E(B(p), B(p')) by standard methods of representation theory. Professor H. Minami has
kindly supplied the author with such a proof and we briefly describe his method here.

Recall that, for any compact Lie group G, the f-construction may be written, up to
sign, as a composite [9]:

[

B: R(G)—— K°(BG)—> R°(BG)—— K ~}(G).

o is induced by the canonical map G — BG. To compute the Chern character on
K~ Y(G,) we work first on K°(BG,). At this level we can restrict to a maximal torus T of
G,. For T we choose the standard maximal torus of SU(3)=G, and then read off the
information on R(G,)— R(T) from (4.2)

To simplify the argument one can exploit the restriction to SU(2)<= G, and also use
the fact [4] that ch(B(p)B(p)) = hsh,,.

5. The degree of self-maps of G,

Mimura, Nishida and Toda constructed in [13] simply connected H-spaces G,
(—2=bZx5) of rank 2 with homology torsion, whose prototype is G, =G, 4. G, , is
p-equivalent to G, for primes p other than 3 or 5, to $3xS8'! or G, according as
b= -~2modp or not for p=3,5. On the homotopy type of G, ,, they proved
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Lemma 5.1. (a) [13, above (5.2), (5.2)] G, , is homotopy equivalent to a CW complex

Ay=S3ueluetuetue®uell uel?,

which coincides up to the 9-skeleton with A=A, (in Section 4), homotopy equivalent to
Gy: A, =4

(b) [13, (4.3)(ii), (5.3)] The attaching map w:S'°— A® of the top cell in AV is a
generator of m,o(A®)=Z/120 and the attaching map w,:S'®— AP = A of the top cell in
AtV is (8b+ w.

(c) [13, (4.3)(iii)] The image of w in m,o(AVY/A®)=n,(M®) =2Z/4{7} is the generator
+#; hence, so is the image of w,,.

(d) AP =X3 AQV/A® = Y11,

Since (8b+ 1)7j=1, the second parts of (¢) and (d) are clear. From (d) we get a map
¢p: Y1 5ZX?  (¢o=¢ in Section 4)
extending the cofibration A — A1 — A D/4©),
Lemma 5.2 Stably ¢,=(8b+1)¢.
Proof. Consider the diagram

J
Yll Sll

14),, szb

MB—— T X3 — T4

where the lower sequence is a cofibration and the square is stably commutative. The
difference ¢, —(8b+1)¢ in {Y*'!,TX3} lifts to {Y'!, M®}. Now the e-invariant is defined
on the whole of {Y!!,M®} and is zero, because H*(M%;@)=0 and K,,(M®=0. So
¢, —(8b+ 1)¢ has trivial e-invariant and is zero by (3.2). O

- The cohomology ring of G, , is isomorphic to that of G,, cf. [13, (2.2)], so we use
hs, hy, again for the multiplicative generators of H*(G, ;).

Theorem 53. There are elements x,yeK ™ G, ,) such that K*(G,.p)=E(x,y), the
exterior algebrd over Z, and

ch x=2hy —((8b + 1)/60)h,, chy=(1/2)h,,.

The proof is like that of (4.9). The coefficient of h,, in chx is e(¢,). The sign of the
e-invariant depends upon the orientation of the generators; we have fixed a choice here.
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We shall study the image of the degree map d and stable degree map d° for G, ,:
d=d3 Xdll :[Gz,ban,b]_’Z®Z,
@°:{G,,,,G,,,} 22 D Z,
defined as in the introduction for G,. Both d and d° preserve the addition, given by an
H-structure on G, , for [G, 4, G, ,] and the usual track addition in the stable case, and
the multiplication given by composition of maps.
Let n(b) be the order of 85+ 1 mod 30, that is, by (3.2) and (5.2), the order of e(¢,).
For —2<b<5, n(b) is given by:

b |—2 -1 0 1 2 3 4 5

(5.4)
n(b)f 2 30 3 10 30 6 10 30

Proposition 5.5. Imd<Imd*<{(m,n)|m,neZ, m=nmod n(b)}.

Proof. The first inclusion is obvious. For a given stable map f€{G, ; G, ,}, let
m=di(f), n=d{,(f). Thus f*(h;)=mh,, f*(h,,)=nh,,. We shall determine

f*:RYG,,)=Z{x}®Z{y} K (G,

From (5.3) it is immediate that f*(y)=ny,f*(x)=mx+ky for some keZ. One checks
that (8b + 1)(m — n) =30k, which implies the congruence m=nmod n(b). O

We shall prove that the K-theoretic estimate for Imd given in (5.5) is the best result,
namely,

Theorem 5.6. Imd=Imd*={(m,n)|m,neZ, m=nmod n(b)}.
Since d is a homomorphism and d(id)=(1,1), the theorem is equivalent to the
existence of a self-map f of G, , with d3(f)=0, d,,(f)=n(b). To construct such a map,

we need the following lemmas.

Lemma 5.7. n,,(G, ,)=Z{y}® Z/2{r,} and the image of the Hurewicz homomorphism
n,.(G,.5) = H,,(G,,,) has index 4n(b). '

Lemma 58. [Y'',G, ,1=Z{y'} ® Z/2{ j*z,} with j*y=4y". (j:Y'' > S'! as in (2.3))

As we need a number of computations to prove (5.8), we shall delay its proof until the
next section.

Proof of (5.7). The homotopy group is computed in [14, (3.3)]. Since n,,(G,,,)=

7, ,(A§'Y), the index equals the order of w,, the attaching map of the top cell in A",
which is 4n(b) by (5.1)(b).  OJ
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Proof of (5.6) (assuming (5.8)). The attaching map of the top cell in G, ;, as in G,,
is stably trivial. Hence, since ,3(Y*!) is already in the stable range, G, ,/G®,=Y'! v §4,
Let g:G, ,— Y'! be the projection. Then the composite f=y'g:G, ,—G, , clearly has
dy(f)=0. By (58), 4d,,(f)=d,,(vjg), which is equal to 4m(b), by (5.7), since
j*H'Y Sy A'Y(Y!Y) is isomorphic. Hence d,,(f)=n(b) and f has the required
degree. O

Remark. It is rather easier to compute Im d®. From the cofibration
AGD yi_#,yys3

we obtain an exact sequence
{YII,A;,U)}—P{Y“, Yll}_,{yll,zx3}‘

n(b)ide {Y'L, Y} lifts to {Y'!, A{'V}. By composing with g and the inclusion
AV > 4,=G, ,, we obtain a stable class f with d5(f) =0, di,(f) =n(b).

6. Proof of Lemma 5.8

We recall the cofibrations

2 i

Sn »S® >M" p >S”+1 (ngl),

M3y

i

Su—l

The second induces the exact sequence
(M2, GZ,b]—i‘_'nl 1(Gz.b)“L’[Yu: Gz,b]ﬂ’[Ms, G3,.] T 710(G2,)-

The above groups except the middle one were computed by Mimura and Sawashita
[14,(3.3),(3.5)]. But note that the M" in [13], [14] is different from ours: we write
M"=S"{ ),,&"*!, while M"=5""'{),,e" in [13], [14]). From their results (with our
notation for M"),

711(G2,p) = Z{y}®Z/2{z,},
[M®, G, ,]=2/2{7,7},
[M®, G, pl= Z/4{z,},

710(G3,) is an odd torsion group,
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where y and 7, are denoted by (2A:,3) and i [vZ], 77 is the element in (2.2) for suitable
n, 5, denoted by <{n2)> in [14], is a generator of ng(G, ,)=2Z/2 and 1, is an extension of
TS, 1€. T,i=T5.

By (2.2)(c), 7*[M?, G, ,]=0. Hence we get a short exact sequence

0-Z{y} ®Z)2{tr} >[Y'', G, ;] > Z/4{1,} —0.
The group extension at [Y'!,G, ,] is a 2-local problem because no odd torsion group is
involved in the short exact sequence. Since G, , is 2-equivalent to G,, the above

sequence is equivalent to

0,y (A) o[ Y1, 4125 [MB, 4]—0

\ |
Z{y} ® Z/2{z,} Z/4{1,}.

For a CW complex W, we denote the exact sequence
—— (W)= [Y", W] [M" 3, W]—

by [n, W]; thus (6.1)=[11, 4].
Since A is homotopy equivalent to G,, there is a well known fibration

SU(3)—— 4-F, 56

classified by the generator [2i1] e n5(SU(3))=Z with ds([21])=2. To determine the group
extension of (6.1), we examine the exact sequences [11,SU(3)], [11, 8¢], [10,SU(3)].

Lemma 6.2. (2) n,,(SU(3))=2Z/4{t}}, and j*:n,,(SU(3)) > [Y*',SU(3)] is epic, where
Ty =(i”)*7’1'

(b) m,0o(SU(3))=2Z/30{t,}, and the element j*t5 in [Y'°,SU(3)] is of order 15.

(c) The image of (i"),:[Y'',SUB)]1 - [Y"', 4] is Z/2, generated by j*t,=(i"), j*1}.

Proof. The results on n{SU(3)) are in [15], where 7} is denoted by [vZ] and the 2-
primary part of 73 by [vsn3]. By [12,(6.1)], the generator 1, €7, ,(G;)=n,,(4) in (6.1) is
in the image of (i"),, that is 7, =(i"),t}. Then part (c) is immediate from (a), (b). The
sequences [11,SU(3)] and [10, SU(3)] are connected by #*:[ M8, SU(3)] - n,(SU(3)). To
show (a), (b), it is enough to prove that the f* is an isomorphism at 2, because
[M?,SU(3)] is a 2-group. Let

$3-1,8U(3)2L 85
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be the usual S3-bundle with characteristic element nen,(S°). Consider the exact
sequence

(i1)y (P1)s

—2 M8, 57122 L8 SU3) -2 [ MR, 55—,

where the boundary homomorphisms 4, &' satisfy d(Za)=na,ae[M8 S*], 0(Za)=nd,
o' e[M7,5*]. We have, from the results on n{S?%), n(S°), i=8,9 in [21], that

[M®,8°1=Z/2{v'n7}
[M®, S°1=2/2{vnp} ® Z/2{n’7},
where V' is a generator of the 2-primary part Z/4 of ng(S>), and satisfies

(@) 2v=7x% in ngS%),  (b) pv=v'y in n,(S53). 6.3)

Then we have
v'nii = nvij = o(vij) e [ M, §°].
Hence (i), =0, and
&'(vmp)=nvip=vn’p, J(n*n)=n’i=v(2M)=vn’p

by an unstable version of (2.2)(b). Since vn®eng(S®) cannot be halved [21], v'n?p+#0;
hence

Ker &' =2z/2{vnp+n*7},
(P1),:[M8,SU(3)] »Ker @ is isomorphic.
We then g‘et the commutative diagram
[M8,SU(3)]——m:o(SU(3)) =Z/30

= (Pl)* (pl)*
Ker & ——>n,0(8%) =2/2{w?},

where the upper 7* is the one we are investigating. The lower #* is isomorphic, because
*(vnp + n*i) = vapii + 0’7

=vn* +n*(6v) =vn?
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by (2.2)(a), (c). As in [15, (4.1)], the right (p,), is an isomorphism at 2; hence, so is the
upper #7*. gd

Lemma 64. (a) (i)*:[Y'%,SUQB)]-[M’,SUQ3)] is an isomorphism on 2-primary
components.

(b) [Y'°,SU(3)1=2Z/30{z,}, [M’,SU(3))=2Z/2{ts}, where
J*13=21,, (()*ra=ts=[2i]vp=iv'7.
Proof. (a) By [15], no(SU(3)) is an odd torsion group, while [M’,SU(3)] is a 2-group.

Hence 7*=0:[M7,SU(3)] »n4(SU(3)) and (i)* is epic. The result is then immediate
from (6.2)(b).

(b) We compute [M7,SU(3)] in two different ways, one using the fibration of SU(3)
and the other the cofibration of M. By [15], n,(SU(3))=0 and ng(SU(3))=Z/12{[2:]v}.
The exact sequence induced from the cofibration of M7 then leads to [M7,SU(3)]=
Z/2{[21]vp}. We next consider the exact sequence induced from the fibration:

@i1)e (P1)s

[M®, 51— M7, §31-22 (M7, SU3)]-Z25 [M7, $5]—2- [ MS, §%],

where &, 0" satisfy 0(Za)=no, 0'(EZa)=na" for o«’e[M’,$*], a’e[MSS*] with
neny(S3). From the results on n{S%), n(S%) i=6, 7, 8, 9, in [21], we obtain

(M, 8)=Z/2{vp} ®Z/2{n’7i}, [M’,$*°1=Z/4{v'7},
(M7, S°1=Z/2{vp} ®Z/2{n7},  [M®,S°1=2/2{v'np} ®Z/2{n*7}.
In particular, by (2.2)(b), (6.3)(a), the following relations hold.
2vif=n*7=vn*p in [M’,S%]. (6.5)
We then have
d(mp)=nvip=vn’p=2vH,  d(’R)=nG=2v7,
d'(vp)=nvp=vnp,  F(nM)=nq,
by (6.3)(b) and (6.5). Therefore Coker &' =Z/2{v'7j} and Ker 8" =0, proving [M’,SU(3)] =
Z/2{i,v'ii}.
The odd primary part of [Y'° SU(3)] is isomorphic to that of ©,o(SU(3)) via j*, while
the 2-primary part is Z/2. Hence [Y'°,SU(3)]=2Z/30{r,} with j*;=21,. The last

relation (i')*t, =15 is immediate from (a). O

We next compute the exact sequence [11,S].
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Lemma 6.6. (a) The sequence [11,S°] is short exact, where the marginal terms are

1,189 =Z{[16, 161}, [M®, S°1=2/2{ni} ® Z/2{vp}.

(L5 t6] is the Whitehead square.)

()  [Y',5)=Z{y"} @ Z/2{Zts}, j*[16,161=2Y", (I)*y"=vp, ()*Zt3)=nA.

Proof. (a) This is clear from the table of n(S®) in [21], since m,,(S®)=0 and
[M?®,S9] is finite.

(b) We first compute [10,5°],[9,5°]. Extending the lower 7* to the right in the
commutative diagram in the proof of (6.2), we see that

()*:[Y!°,85]-[M7,5%]
is monic. As
(M7, 8%1=2/2{n7} ®Z2/2{vp}, ms(S°)=2Z/2{vn},
ni=0 and vpfi=vn in 7y(S°),
the image of (i)* is Z/2{n7}. Hence
[Y'°,5°1=2/2{re}, (i)*16=m.
By a similar computation, we obtain
[Y%,8%]=0.

We next study the EHP exact sequence
[Y10,55]— Y1, 51— [ ¥, 51 ]—-[¥*,5°]=0

in order to determine [Y!?, S6]. Since #7 is still non-trivial in [M8, §°], £14 is non-trivial

and generates ImX=27/2. Clearly, [Y'!,§'']=2Z{,}. Therefore there is an element '
with H(y")= j for which

[Y'L, S8 =Z{y"} ® Z/2{Z1¢}.
The Hopf invariant of [ig,1¢] is known to be 21,,; hence
H(j*[16,16]) =2},

Jj*[16, 1] =2y" mod Z1,.
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Clearly (i)*j*[14,16]=(ji)*[16,16}=0. Since [M?®,S®] is a Z/2-module, (i)*(2y”)=0.
Therefore j*[14,16]=2y" because (i)*(Zte)=n+#0. As (i)*:[Y'*,55] > [M8,S] is epic,
there is a choice of y” which satisfies (i)*y” =vp as well as the other relations. O
Now we are ready to prove Lemma 5.8.

Proof of (5.8). The commutative diagram of exact sequences

(i)

[11, SUG)1-E 111, 41225 111, $51—2[10, SUG)],

where the boundary homomorphism A satisfies AX=[2:],, becomes, by previous

computations:
0
5_ |
Z/4{} — Z/2{ j*'} — 0
(i/l)* (iﬂ)*
00—z @z} s (Y4 A] LN Z/4{t,}——0
(P")s (P") L(p”)*
0——Z{lie1s]]  —— Z{HIOZR{Zte > Z/2{ni) ®Z/2{wp}—0
A A A
d i - i
Z/30{z,} AN Z/30{c,} LN Z/2{rs}——0

Here we have also proved
(")yT1=11,
J*le161=2y", ()" =vp, ()*(Z1e)=n1,
J*13=21,, (IY*1a=1t5=[21]vp=i,v'7].
Since 7,4(A) =7,0(G,) =0, the left A is epic, hence

(P") 7= 3001, 16]-
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The right A is computed as follows.
Ay =2t =ivi=15 A(vp)={2Jvp=1s,

because of the formula A(Za)=[2:]x and the relation Ap=i;v' in [12, (6.3) with a=n,].
Therefore

(P)(t)=n7+vp, A(Y)=1t4, A(Z16)=151,.
Then we can find an element y' e[ Y!!, 4] with
(P =15y + 216, (I)*y =1,
[Y', A]=Z{y"} ®Z/2{j*1,},
where we may replace 1, by —1, if necessary. Then
(1) J*y=60y"=4(p"),y and j*y=4 modIm(i"),.

We may replace y by y+1, to get the exact relation j*y=4y'. d

7. Self-H-maps of G, ,

In this section we fix b, —2<b<35, and write G=G,, Let u:GxG—-G be an
H-space multiplication. (We assume only the existence of a unit for u) Let [G,G],
(respectively &(G)) denote the set of homotopy classes of H-maps (respectively homo-
topy equivalences) G—G. We put &4(G; )=[G,G],nE(G). All three sets are closed
under composition; &(G) and &y(G; u) become groups.

The group &(G) was determined, up to extension, by Mimura and Sawashita [14],
and, for b+ —2, we settled in [17] the group extension. Recent work of Sawashita [20]
states that £x(G; p) (for any b, any multiplication ) is either trivial or of order 2, and
that in the second case the non-trivial element, f say, has d;(f)= —1. The purpose of
this section is to eliminate the order 2 case if b# —2 by estimating the image of the
degree map on [G, G], using the same method as in [10], [11]. Our result is:

Theorem 7.1. For —2<b<5 and for arbitrary multiplication p,

d[G2.4,G2,], S {(m,m+In(b))|LmeZ and m=0,1mod4 if Iis even}.

Proof. Let P be the projective plane of the H-space G with multiplication p. P is the
cofibre of the Hopf construction on pu, H:XG A G~G+*G—-ZXG, and we have the
cofibration

G A G— 36— P—532G A G.
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The Kiinneth formula holds for K¥(Gx G), [3], and K*(G) becomes a primitively
generated Hopf algebra. H is the reduced co-multiplication map (via the suspension
isomorphism o).

We conclude that K°(P) is a free Z-module with basis {a, B, «* af, %, 7}, where

fa=x, *f=y, y= o} (xy®xy)),
ad=a?f=af?=p3=0,
ay=Py=7y>=0.
From the Chern character formula in (5.3),
Yix=4x—2(8b+1)y, Y y=64y.

Therefore we may put

Y2a=2B+ta® +uaf + vf* +wymod 4,

(7.2)
Y2B=aa’+baf +cp*+dymod 4,
for some integers t,u,v, w,a,b,c,d. We also have
Y2a?=0, Y2ap=0, Y?=0, Y*y=0mod4. (7.3)
Since Y2f=p?mod 2,
cis odd; a, b and d are even. (7.4)
Now let f: G— G be an H-map with d;(f)=m, d,,(f)=n. As in the proof of (5.5),
f¥x)=mx+ky, [*y)=ny,
where 30k =(8b+ 1)(m—n) and in particular 2k=m—nmod 4.
Since f is an H-map, there is a map g: P — P fitting into a commutative diagram
26——P-132G A G
lZG lg 122 faf
26— P—32G A G.
Then
g*ra=ma+kp, g*P=npmoda’ ap, B>y
gral=m?a® +2mkaf+k*B2,  g*B*=n’p?, (7.9

g*afp=mnof+knp?, ~ g*y=(mn)*y.
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We compare the coefficients modulo 4 of B2 in Y?g*B and in g*y2B. Let D be the
subgroup generated by «, 8,22, af,482%,y. Then

Y’g*B=ny?p=ncp?mod D,
g*V*p=ag*a® + bg*ap’ +cg*p+dg*y
=(ak?+ bkn+cn?)pf?>mod D,
by (7.2), (7.3) and (7.5). Hence
c(n* —n)+ (ak +bn)k=0mod 4.

By (7.4), n? —n=2skmod 4 for some seZ. So n2—n=s(m—n)mod 4. If m—n is divisible
by 4, then m=n=0, 1 mod 4. Since n(b)=2 mod4, (5.4), the theorem follows. 0O

Remark 7.6. When G=G, (so b=0) and u is the Lie group multiplication, we can
use the standard map P— BG, and the method of the appendix to Section 4 to
determine y? for P. The result is

Yrau=40—2B+a%, Y2p=64p—120>+ 120+ B2,
from which we can obtain further (complicated) restrictions on the degree of H-maps.
Corollary 7.7. For —1<b<5 and arbitrary multiplication p, d(E4(G, ,; p1))={(1,1)}.

Proof. If fe&y(G, 1), then m=ds(f)==1, n=d,(f)=+1. m=nmodn(b). But
n(b)> 2, by (5.4). Hence m=n. By (7.1) m=1. O

The result of Sawashita [20,(5.6)] states that, for —2<b<5 and any u, the map
G,.,—K(Z,3) which kills all the homotopy groups except 73 induced a monomorphism

Eu(Gy, b 1) = EUK(Z, 3); ).

The multiplication ux on the Eilenberg-MacLane space K(Z,3) is unique and
Ey(K(Z,3); uy) is of order 2 with generator g acting non-trivially on n;, Hy and H3. If
there were a lift h of g to &x(G, ,; 1), the action of h on H*® would have to be non-
trivial, which is impossible if b+ —2 by (7.7). In consequence, we have

Theorem 7.8. For —1=<b<5 and arbitrary multiplication p, &4(G, ,; p) = {id}.
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