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1. Introduction. In [1], the natural representation module of the symmetric groups, here-
after called the first natural representation module of the symmetric groups, was analysed.
It is the purpose of this paper to analyse the second natural representation module of the
symmetric groups.

We begin by defining these modules. Let K be a field of characteristic/;, and let xu..., xn

be commuting, independent indeterminates over K. Let <]>„ denote the group algebra of the
symmetric group Sn on {xu.. .,xn} over K. The ring of polynomials K[xu..., xn] may be
turned into a <I>n-module in the obvious manner, namely by taking

%f{xu ... ,xn) =f(xxy,..., zxn)

for a\lf(xi ,...,xn)e K[xt,..., xn] and T e Sn. We select certain On-submodules of K[xt,..., xn]
which are finite-dimensional vector spaces over K. The first natural representation module

n

MJ(n) consists of all polynomials of the form £ a,;^ with ateK. The second natural repre-

sentation module M2(n) consists of all polynomials of the form V a,,xtxs with a,,eK.
They have AT-bases {xf. 1 ^ i ^ «} and {JC,*,: 1 ^i<j£n} respectively.

In [2], we are given a method of constructing a full set of irreducible inequivalent repre-
sentation modules of Sn over a field of characteristic zero. These modules, which we shall call
Specht modules, are constructed as submodules of K[xu...,xn] as follows. We require a
module for each partition of n. Let n = Xy +... + XT (Ax ^ A2 ^ . . . ^ Xr > 0) be a partition
of n, denoted by (A). We write down the associated tableau

Xl X2 X3 • • • • • xX,-i XXi

Xn-Xr+l ' Xn

with r rows, and Xj entries in the j-th row.
If {at: i = 1,...,s} is a set of elements of any ring, the difference product A(a l f . . . ,a,)

is defined by
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26 M. H. PEEL

We define the polynomial fw(xu ...,xn) to be the product of the difference products of the
entries in each column of the tableau, i.e.

/ 0*1 *)

where s is the smallest integer such that Xs + Xs+l, or, if no such integer exists, s = r. The
Specht module Sw corresponding to the partition (X) is none other than <S>n.f

w(x1,...,xn).
Over a field of characteristic zero, these Specht modules are irreducible and no two are <Dn-iso-
morphic. Over a field of non-zero characteristic they may reduce, although they are
indecomposable, except for characteristic 2.

n n

Let Mj(n) denote the set of polynomials of the form £ Xtxt with £ ^, = 0, and let M%(n)
i = l i = l

denote the set of all polynomials of the form £ XtJ x-t Xj with £ X{j = 0. Then

these are <I>n-submodules of Ml{ri) and M2(«) respectively. Mo(n) is generated over K by
polynomials of the form {xt — xj), and is clearly the Specht module Sw corresponding to the
partition (X) of n defined by « = Xx +X2, where Xy = n— 1 and A2 = 1.

it

Mj(n) is irreducible when p does not divide n. When p divides n, s — £ xt is contained
i = l

in Mj(n), and MQ(/I)/XS is irreducible. These are the results of Theorem (5.2) of [1],
If (n) is the partition n = Hi +//2> A*i = w ~ 2 , ^2 = 2, then clearly S(><) is a <D,,-submodule of

Mo(»); it is generated over ^ by the set of polynomials of the form (xt—Xj)(xk—xt) with
ij, k,l distinct integers between 1 and n. Note that S(") is not defined if n < 4. Indeed, we
need only consider n ^ 4 since M2(3) « MJ(3) and M2(2) a /(T. We shall write S(n) for S("»
in the following.

The first result is that
Afg(n)/S(n)«Mj(n).

We show that 5(n) is a direct summand of Ml{n) if and only if p does not divide « - 2 . We
find that S(n) is irreducible if/? does not divide n— 1 or « —2, and we find how S(n) reduces if p
divides n— 1 or n — 2. We also show that Ml(n) is a direct summand of M2(ji) if and only if/>
does not divide n(«—1)/2.

In the following, the range of any summation symbol will be 1 to n unless otherwise stated.
Further, £ x,- will mean x1 + . . . + x k _ 1 + x k + 1 + . . . + xn. Also, whenever we have defined a

set {Ajj-: 1 ̂  i <_/ is M} of elements of T̂, we shall suppose that A(J- is also defined for i > j by
X;j = Xjt.

The author wishes to thank Dr H. K. Farahat for his guidance throughout the work which
led to the preparation of this paper, the referee for his helpful comments, and the Science
Research Council for their financial support.

2. Two exact sequences. We first construct the tools which will enable us to solve the

problem. We have already denoted by s the element £ *; of Ml(n). Set
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SECOND NATURAL REPRESENTATION OF SYMMETRIC GROUPS 27

If T e Sn is such that xxt = xk, then xa, = ak. We denote by N the <Dn-submodule of M2(n)
generated over K by {a , , . . . , an}, i.e.

Set

We denote by $ the On-submodule of N generated over K by the fcfj. $ is in fact generated
over Kby {b^y.j = 2 , . . . , « } . Finally, let

Then, by induction on n, we have

In §4 we shall write FJ(n) and N(n) for Jv" and Â  as defined above, so that we may speak of
f}(n — 1) and N(n—1) defined in terms of xu...,xn-i without confusion. We shall then
denote by a(n-\), fl,(«— 1) ( /= 1 , . . . ,« -1) , etc., elements of Af2(n-1), and by a,a,, etc.,
elements of M2(n).

A linear transformation of vector spaces is uniquely determined by its action on a basis
of the domain space. Any <5n-module is a vector space over K, and any <Dn-homomorphism is
a ^T-linear transformation. We shall define certain <I>n-homomorphisms by giving the action
of the map on a basis, leaving it to the reader to check that the resulting linear transformation
is indeed a On-homomorphism. This principle is illustrated in the next paragraph.

Define the $n-homomorphism d: M2(n) -> Ml(ri) by

and let d denote the restriction of d to MQ(«). Clearly, d may be written in terms of the
partial differentiation operators d/dXj in the following way:

«?(*!*;)= t /-(*!*;)• (1)
*=1 oxk

Ml(n) has AT-basis {xixj-xix1:i <j and (i,j) ^ (1, 2)}. Clearly, d maps Ml(n) into
Mo(n). In fact, d maps MQ(«) onto Ml

0{n), since

xi-Xj = d(xixs-xJxs)

if s # i,j. We now obtain an expression for the image of an element of M2(n) in Mi(n).

LEMMA 1. Let

X =

Then
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28 M. H. PEEL

where

h = .E/fcj-

Proof. By definition

"W = L '

We proceed by induction on n. The proof for n = 1 is immediate. Suppose that

V 3 ( A. \ - V {T : \
ZJ W T " ^ ] ~ 2-I \ 2-I jk ]Xk-

lgi<jgn *=1 \j*k /

Then

l£l<j£n+l k=l \j<tk

n /n+1 \ n

n + 1 /n+1

(

n 1 /n

= 1 ( 1
fcl\

This proves the lemma.
We have already noted that S(n) is contained in Ml(n). In fact we have

THEOREM 1. The following sequence of$n-modules is exact:

0 ^ S ( n ) ^ i M g ( n ) ^ M i ( n ) — 0 . (2)

Proof. We prove exactness at Ml(ri). First, by expressing d in the form (1), and by
applying the product rule for differentiation, we see that

d((xi-xJ)(xr-xs)) = 0,

and hence S(ri) c Kerrf.
Suppose that x = E hjxixj> w i t n E ^y = ^ an<^ ^W = -̂ Then, by Lemma 1,

ij ij

Set

9"j = xn(s -xn~xi- XJ) + xi XJ

for 1 ^ i <j< «; then

E *ijOij= E ^v x i x j + E ^ijxtt(s-x
lgi<y<n lgi<7<n lgi<j<n

But

E ^= E ^-Z4, =
l g i < < l g i < j § i*
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and hence
/ n- l \

% = £ *ij Xl Xj - Xn I <*(*) - £ ^«(*i + *„)
lgi<j<n \ i=l /

n - l

= 2J ^y xi xj — x-
lgKjgn

Since £ Ay = 0 (as proved above), x = £ ^(Ofj — 0"2). However,
lgi lgi

and thus X6 5*(«).
This proves that Ker d <= ^ n ) , and hence that Kerrf = 5(n).

COROLLARY 1. 77ze dimension of S(n) over K is n{n - 3)/2, and

A = {0J2-0&: 1 ̂  i <7 < ii, (i,y-) # (1,2)}

iy a basis for S(ri).

Proof. dimK S(n) = dimK Mj(n) — dimK MQ(M)

From the theorem, the set A generates S(ri) over K, and we have the required number of
elements; hence the set is a linearly independent basis.

COROLLARY 2. (i) Ifp # 2, aeS(n) if and only ifp divides n-\.
(ii) Ifp = 2, o-eS(/3) if and only ifn is of the form Aa +1 /or some integer a.

Proof. From the theorem, we have S(ri) = {xeMl{ri):d(x) = 0}. By Lemma 1,

Also, the sum of the coefficients of a is n{n—1)/2, and o-eMo(n) if and only if this sum is zero.
The corollary follows from these statements.

THEOREM 2. The exact sequence (2) splits if and only ifp does not divide n—2.

Proof. Suppose that p does not divide n—2. Define <f>: M1^) -*• M2(n) by

Then <j> is a <J>n-homomorpliism. Let ^ be the restriction of {l/(n-2)}<£ to Mv
0(n). Then the

image of i/r is contained in MQ(«) , and we have

, - x;) = d(a, - ay)/(i» -2) = d( (xt - xj)(s -x-- xj) )/(n - 2)

= (xf-*,.)(« ~2) / (n-2) ,
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using (1) and the product rule for differentiation. Hence

Thus dty is the identity on MQ(H), and the sequence splits.

In order to prove the converse, we establish the fact that, if x = £ hjxixj is any element

of M (n), and if x is the permutation (xr xs) with r < s, then

x-xx= £ (krj-ks^xrx}-xsxj). (3)

To begin with
X-TX =

If i = r and_/ = J, then xt x7- — Txf Xj = 0. Again, if/,_/, r, j are all different, then xi x} — xx, xs = 0.
Hence

j=fcr,s j^r,s

= 2u \r.rj~ Kj)\Xr Xj~Xs Xj)•
j*r,s

Le t / : Mo(n) -> Mo(n) be a <Dn-homomorphism, and set

/(Xi - x2) = X ^u ^i Xj with £ ^y = °-
i<j i<j

Let T be the permutation (xr xs) with 2 < r < s ̂ n. Then /(Xi — x2) is invariant under T.
Using (3), we see that

0 = E (Ki ~ Kdixr xi~xsxd {2<r<sS n).

Equating coefficients, we obtain
Ki=Ki = v (say) (2<r<s^n),

hi = ks2 = w (say) (2 < r < s g n),

Arfc = l s t (fc > 2, 2 < r < s g n).

From the last of these we see that ktJ = k^ whenever a,fi,i,j are all greater than 2. Write
ktJ = y(2<i<j^n).

Then we have
n n

f(xl-x2) = v X XiXj + w Z x2xJ + k12x1x2 + y ^ xixi-
j=Z j = 3 2<i<j-&n

Now let x be the permutation (xx x2). Then

This immediately gives v = — w and 2A12 = 2y = 0. Hence

/ ( x t - x 2 ) = t)(a! -a2) + y Y (xixj—xix2) (4)

because ^ A, • = 0.
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Now suppose that the sequence (2) splits, i.e., that there exists a $n-homomorphism
/ : Ml(n) -> MQ(H) such that df is the identity on AfJ(n). Then/has the form (4), and

i.e.,
Xl-x2 = v(n-2)(xl-x2).

Hence v(n — 2) = 1, and p does not divide n — 2. This completes the proof of the theorem.
This theorem tells us that, when p does not divide n — 2, MQ(/I) is the direct sum of S(n)

and the image of \j). But the image of \ji is clearly JV, and so we have the result that

M2
0(n) = S(n)®N.

In particular, we have ft x Mj(n) when p does not divide n — 2.
The second exact sequence deals with the embedding of MQ(W) in M2(n). We consider

the field AT to be a $n-module in which the operation of S(n) is the trivial one, namely tot = a
for all a e AT and x e S(n). We then define a 3>n-homomorphism a: M2(n) -* K by

THEOREM 3. The following sequence is exact:

Further, the sequence splits if and only if p does not divide n(n—1)/2.

Proof. The sequence is clearly exact.
Suppose that/? does not divide n(n—1)/2, and define/:K-> M2(ri) by

2(7

n(n- l )

Then/is a 3>n-homomorphism, and clearly a/is the identity on K. Hence the sequence splits.
In order to prove the converse, suppose that / : K->M2(ri) is a $n-homomorphism, and

let
/(i) = Z

Since / ( I ) is invariant under all transpositions, the coefficients Ay are all equal, say, to y
(using (3)). Then

/(I) = ya.

Now suppose that af is the identity on K. Then

Hence p does not divide n{n—1)/2. This completes the proof.
Theorem 3 implies that, when/7 does not divide n(n—1)/2,

M2(n) = M2
0(n)®Kc.
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We can also deduce that MQ(«) is not a direct summand of M2(n) when p divides n(n—1)/2.
For if M2(n) = Ml(n)®B, then B contains an element y which is invariant under
all permutations. Applying formula (3), we see that y = Xa for some XeK. But oeMl(n)
when p divides n{n—1)/2, and this is a contradiction. This result may be compared with (2.1)
of [1]. A similar argument shows that, when/? | n—2, S(n) is not a direct summand of Ml(ri).

3. Analysis of S(n) when/? does not divide n—2. Recall that

0y = xn(s -xn-Xi- Xj) + Xi Xj.

LEMMA 2.

f a if p tfi 2 and p\n — 1, or if p = 2 and n =
IJta\f-aH if P*2 and / > | n - 2 , or if p = 2 and « = 2(2a

Proof.

Under each of the four conditions described in the statement of the lemma, (n— I)(/i—2)/2 is
zero in K, and, by applying Lemma 1 to the last term,

n - l

/ -*»(«- 2 ) E *t = <*-*!.-(«-2K-
i l

If/> ^ 2 andp divides n — 1, then «—2 = — 1 (mod/?), and so

E
15i

If/> # 2 and/? divides n—2,

E
The results for ̂  = 2 follow similarly.

We now turn to the problem of analysing S(n).

THEORBM 4. (i) Suppose that p is not equal to 2. S(n) is irreducible when p divides neither
n—\ nor n—2. When p divides n — \, a composition series for S(n) is given by

Ocfoc S(n).

(ii) Suppose that p is equal to 2. S(n) is irreducible when n = 2a +1 with a odd. When
n = 2a +1 with a even, a composition series for S(n) is given by

O C K J C S(n).

Proof. Let xeS(ri). We may write

x= £ Vi" with E ^ = °
l£i<j<n l£Kj

(Corollary 1, Theorem 1).
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Supposing either that p ^ 2 and/? does not divide «—1 orn—2 or that/? = 2andn = 2 a + l
with a odd, we shall assume that x # 0 and prove that Onx = S(«); supposing either that/? & 2
and/? divides n— 1, or that/? = 2 and n = 2a+\ with a even, we shall assume that 3c, the coset
of x in S(n)IKa, is not zero, and we shall prove that <bn x = S{n)IKo. The theorem will follow
from this, except for the case n = 4.

Let f/ denote the permutation (x4 x,), where 1 ̂  fc < / < n. By the method of the proof
of (3), we find that

Further, let r and s be two integers less than n such that r, s, A:, / are four distinct integers. If
fj. denotes the permutation (xr xs), we have

= (Ari - Art - A,,+Ark)(xs - xr)(x, - xt).

If, for some set {r, s,k,l}, (Xsl—Xsk—Xrl+Xrk) ^ 0, then clearly Onx contains (xs—xr)(xk—x,),
which generates S(ri), and hence On x = S(ri). Otherwise

ASJ — *sk = A,.J — /.,(;

for all r, J, A:, /. In this case,

= (Arj-Art) J] (x,xt-x,xk-x,xH+xkxJ
i*k,l,n

= (A,i - Kk) I E (*i *i - *« **) - (*i x - - x* xn) ~ (» - 3X*i xn - xk xn) 1

= (Ar« - Art) ( (a, - a*) - (n - 2)xn(x, - xt) ).

Suppose there exist /, k such that Ar,—Xrk ^ 0. Then On x contains (a, - at)—(«—2)xn(x, - xk),
and, if/ is different from k,l,n, Q>nx also contains (a, — ak) — (n — 2)x,(x, — xk). <t>nx also con-
tains the difference of these two, namely (n—2)(xn—x,)(x,—xk), and, since/? does not divide
n-2, <S>nx contains (xn-xt)(xj—xk), which generates S(n). Thus Onx = 5(«). Otherwise,
Ki = Kk f° r a ' l r> >̂ >̂ i - e - t n e coefficients are all equal, say to X. But £ Ay = 0, and hence

i

This is where we must distinguish between the different cases.
If/? 76 2 and/? does not divide « — 1 or n—2, then A = 0 and x = 0, contrary to assumption.

If/? ^ 2 and/? divides n— 1, then, by Lemma 2,

x = A £ 0,",.
lg(<;<n

= ka,

and thus x = 0 in S(ri)/Ka, contrary to assumption. This completes the proof of part (i).
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If p = 2 and n = 2a+1 with a odd, then £(n- 1)(«-2)A = 0 implies X = 0 and hence
x = 0, contrary to assumption. If p = 2 and n = 2a +1 with a even, we again have x — Xo,
and hence x = 0, contrary to assumption. This completes the proof, except for the case n = 4,
p = 3. But this case is trivial since the ^-dimension of 5(4) is 2, and 5(4) contains the sub-
module KG.

This completes the study of the cases when p does not divide n — 2. We have M§(n) =
A?0S(n) with # » M$(n), and M2(n)IM&n) at K.

For the situations considered in this section, composition series can easily be constructed
from the chain

0 c ft c # + S(n) = M§(«) c M2(n),

using Theorem 4 and the results from [1] quoted in Section 1. For instance, in the case
p =£ 2, p | n— 1, we obtain the composition series

0 c / ? c J ? + X ( 7 c M&n) <= M\n).

4. The case p divides n — 2. In order to calculate the composition factors of S(n) when p
divides n—2, we look at S(ri) considered as a <£„_ j-module. Any <Dn-module may be regarded
as a On_!-module. The operation of Sn_j on the module is determined by the process of
restriction from Sn to its subgroup Sn_t.

By Corollary 1, Theorem 1, S(ri) has a A-basis

{0?2-07,,:lgi < ; < « , ( * , / ) * (1,2)}.

MQ(M — 1) is the set of polynomials of the form £ Xtj xt Xj with £ A,-; = 0. It has
lgi<j<n lgi<j<n

a A!-basis

{XJXJ-XIXJ.: 1 ^ i < j < n, (i,j) * (1,2)}.

There is an obvious <Dn_ i-isomorphism

/ :Mg(«- l ) -S(n) , (5)
namely that defined by

/ (x j x2 - x, x;) = Q\2- % (l£i<j<n, (i,j) * (1,2)).
This proves

LEMMA 3. S(ri) and Ml{n — 1) are <&n..-i-isomorphic.

In the case n = A, p divides « - 2 implies that p = 2. S(4)« MQ(3) over O3) and
MQ(3) « MQ(3). The latter is irreducible over <£3, and hence 5(4) is irreducible over O3.
But any O4-submodule of 5(4) is also a $3-submodule of 5(4), and hence 5(4) is irreducible
over O4. We shall next use Lemma 3 and the results of the last section to find the composition
factors of M2(n) when p divides n — 2 and n > 4.

Set ri = n — \. Then p divides «' —1. The composition factors of M2(ri) are known.
We treat the cases p = 2 and p # 2 separately, taking first the case p ± 2. A composition
series for M2(n') is given by

0 c % - l ) c ft(n-l)+Ka(n-l) c ft(n-1) + S(n-1) = Mg(n-l) c M2(n-1).
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f}(n — l) has a A^basis {b1/n—l):j = 2,...,n — l}, for it is generated by this set, and,
being isomorphic to Mx

0{n — 1), it has A>dimension «—2. By definition,

bij(n-l)= £ (Xlxk-xjxk).

Using the isomorphism (5), we obtain

Also, by Lemma 2,

We show that $(n) and ff(n— l)+Ko(n— 1) correspond under the isomorphism/. To
do this we show that Ft(n) has a basis {bl2,...,bHn-l), o-an). This set is linearly indepen-
dent since/is an isomorphism. Also

;=2 J=2 j=2

Since /> # 2, or—^eAfyj), and, since this is a On-module, o—aneft(ri). This shows that
dimK^(n) ^ n - 1 . But fit(n) is generated over K by {6 1 2 , . . . , bln}, so that d i m ^ ^ n ) ^ n—1.
Hence dimK^(n) = «—1, and it follows that {bi2, • • • ^i^-^, a—an} is a A-basis for #(n).
Thus the isomorphism (5) leads to the chain

0 c N(n) c S(n)

in which S ( n ) a M g ( n - l ) and J^(/J) W fif(n— 1) + Ka(n— 1) over * B - i . Hence / induces a
On _ j -isomorphism

(n -1 )} -» S

The former is irreducible over $n_i , and hence the latter is irreducible over <!>„.
We now observe that Fi(n) is irreducible when p ^ 2 and /> divides «—2. In fact

#(n) a Mj(«); this is clear since f}(n) has a /T-basis {bi2, • • •,bin}, whilst MQ(«) has a A-basis
{xj—x2,... ,Xi— xn} and the map #, defined by

is a On-isomorphism. The results of [1] show that f}(n) is irreducible. This completes the
proof of
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THEOREM 5. When p is not equal to 2 and p divides n—2, the following is a composition
series of M2(n):

0 c f}(n) <= S(n) c M2
0(n) c M2(n).

Recall that, by Theorem 1,

M2
0(ri)IS(n)« Mj(n).

We use a similar method to find a composition series for M2(n) when/? = 2 and n is even.

THEOREM 6. Let p = 2.

(i) Ifn = 2a with a even, S(ri) has a composition series

0 <= ff(n) c S(n).

(ii) Ifn = 2a with a odd, then S(n) has a composition series

Proof. We use the ^^-isomorphism (5).
(i) If n = 2a with a even, then n' = n — 1 = 2 ( a - 1 ) + 1 , with a - 1 odd. A composition

series for MQ(« — 1) is given by

(ii) If n = 2a with a odd, then n' = n— 1 = 2(a— 1) + 1 with a— 1 even, and a composition
series for M%(n — 1) is given by

In both cases we have/(6u(n — 1)) = b1Jeff(n) for j = 2,...,n— 1, and so we know that
{bij'-j = 2 , . . . , « — 1} is a linearly independent set. Also, {bifj = 2 , . . . , «} generates $(n),
and

Z bij= t (ai + aJ) = {n-l)a1+fjaJ = a1 + (2a + ai) = 0.
j=2 j=2 }=2

Thus {blj:j = 2,...,n—l} generates #(«)• This set is therefore a .K-basis for #(«), and

()
This proves that N(n— 1) and fl(n) are On_ j-isomorphic. Since the former is irreducible

over <&„_!, the latter is irreducible over $„.
In the case n = 2a with a even we also have a ^ .

induced by / . Hence we have 5(«)/^(n) irreducible over On. This completes the proof of
part (i).

Now consider the case n = 2a with a odd. By Lemma 2,f{p(n—1)) = a—an. OB(<r—on)
is a submodule of S(n) containing $(/i), and {bl2,. .,&!(„_!), CT—an) is a linearly independent
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set. Further, <J>n(<r - an) is generated over K by {a—a2,..., <x—an), and so both of these sets form
a K-basis for <Dn(<T-an). Hence / induces a $„_^isomorphism between N(n— \) + Ko{n— 1)
and On(ff—an). Hence/induces a On-j-isomorphism

M2
0(n -1)1 {X(n - 1 ) + Ka{n -1 )} - S(n)/<D.(o-- fln).

The former is irreducible over <!>„_!, and so the latter is irreducible over 5>M. This completes
the proof of part (ii).

This theorem and the fact that Mo(n)/S(n) is isomorphic to Mo(n) tell us the composition
factors of M2(n) when p = 2 and n is even. In this case, it was found that Mj(n) has an
irreducible factor space of ^-dimension n — 2. We show that this is isomorphic to N(ri).

We have the following exact sequences of $n-modules:

0 — Ks ^ i M \n) - 1 - N(n) — 0

and

0 —>• AfJ(n) —• M ' (n) —• Ks —>• 0.

The mappings <j> and a are defined by

and

respectively. Hence Nx M\n)IKs and Ks « M\n)jMl{n). This shows that N and JVfJ(n)
have the same composition factors. From a knowledge of the composition factors of MQ(«) ,

we deduce that 0 c f}(n) c N(n) is a composition series for N(n) and that $(n) is isomorphic to
the (n — 2)-dimensional composition factor of Mj(n).

Thus when p = 2 and /> divides n — 2, the irreducible On-module Ft appears twice in a
composition series for M2(n). We saw that the same was true when /> # 2 and p divides n — 2.

This completes the analysis of the second natural representation module of the symmetric
groups. We have obtained certain irreducible representation modules, namely factor modules
of S(ri), in addition to the irreducible representation modules obtained in (5.2) of [1].
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