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TRACE FUNCTIONS IN THE RING
OF FRACTIONS OF POLYCYCLIC GROUP RINGS, II

A. I. LICHTMAN

ABSTRACT. We prove the existence of trace functions in the rings of fractions of
polycyclic-by-finite group rings or their homomorphic images. In particular a trace
function exists in the ring of fractions of KH, where H is a polycyclic-by-finite group
and char K Ù N, where N is a constant depending on H.

1. Introduction. Let K be a field of characteristic zero, H be a polycyclic-by-finite
group, A be a semiprime ideal in the group ring KH. The semiprime ring K[H] ≥ (KH)ÛA
is a Goldie ring; let R be its ring of fractions. The existence of trace functions in the matrix
rings over the ring of fractions of the group ring KH was established by the author in [6].
In this note we generalize this result by proving the following theorem.

THEOREM 1. Let K be a field of characteristic zero, A be a semiprime ideal in KH,
R be the Goldie ring of fractions of the ring K[H] ≥ (KH)ÛA. Then

(1) 1 Â2 [R, R].

The relation (1) means then it is impossible to find elements xj, yj 2 R (j ≥ 1, 2, . . . , k)
such that

(2) 1 ≥
kX

j≥1
[xj, yj].

It is well known (see [3]–[15]) that the relation (1) implies an existence of a nontrivial
trace function in Rnðn. Indeed it is easy to see that if X ≥ (xij) is an n ð n matrix over R
and X 2 [Rnðn, Rnðn] then (

P
i xii) 2 [R, R]. If now R is a K-algebra with a trace function

T: R ! K then we can define Tn(X) ≥
P

iT(xii) and if char K Â≥ 0 then (1) implies that
T(1nðn) Â≥ 0.

Now let char K ≥ p Ù 0. By applying Theorem 3.12 in [7] we will obtain the follow-
ing theorem.

THEOREM 2. Let H be a polycyclic-by-finite group, R be the ring of fractions of KH.
Then the relation (1) holds in R provided that p Ù N, where N is a constant depending
on H.

The restriction on the characteristic of K cannot be removed; in Section 8 we consider
the case when char K ≥ p Ù 0, the group H is torsion free and is an extension of an
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TRACE FUNCTIONS 789

abelian group by a finite p-group. It is known that in this case the group ring KH contains
no zero divisors and has a division ring of fractions D; the dimension of D over its center
is a power of p. We show that in this case the relation (1) is not true anymore i.e. the unit
element is a sum of commutators in D. We conjecture however that the following fact is
true.

Let char K ≥ p Ù 0 and H be a polycyclic-by-finite group which contains no finite
normal p-subgroups, R be the ring of fractions of KH. Then

[R, R] Â≥ R.

It is worth remarking that this holds in the case when R is the division ring of frac-
tions of a group ring of a torsion free abelian-by-finite group. This can be obtained as
a corollary of Lorenz’s results [10]. I am grateful to the referee who brought this to my
attention.

We prove in Section 7 the following theorem which is a generalization of M. Lorenz’s
theorem in [9].

THEOREM 3. Let H be a finitely generated nilpotent group, A be a semiprime ideal
in KH, R be the ring of fractions of (KH)ÛA. Then the relation (1) holds in R.

Lorenz obtained this result for the case when char K ≥ 0.

2. The following fact is well known and its proof is straightforward.

LEMMA 1. Let R be an algebra over a field K, K1 be a field extension of K. If the
relation (1) holds in R then it holds also in K1 
 R.

LEMMA 2. Let K[G] be an algebra generated by a finite group G over a field K. If
char K does not divide the order (G : 1) then the relation (1) holds in the ring K[G].

PROOF. Clearly, we can assume that K is algebraically closed. We have in this case

(3) K[G] '
kX

ã≥1
Kmãðmã

,

where mãj(G : 1) (ã ≥ 1, 2, . . . , k). The decomposition (3) now reduces the proof to the
case when K[G] ' Kmðm where m is prime to char K. We observe now that the relation
(2) can not hold in Kmðm because the trace of the right side is zero whereas the trace of
the left side is m Â≥ 0. This completes the proof.

LEMMA 3. Let R be a ring. Assume that there exists a system of subrings Ti (i 2 I)
and homomorphisms íi: Ti ! Ri (i 2 I) such that for every given elements

(4) rj 2 R (j ≥ 1, 2, . . . , k)

a subring Ti containing these elements can be found. If the relation (1) holds in every
ring Ri (i 2 I) then it holds also in R.

PROOF. Assume that the relation (2) holds for some elements xj, yj 2 R (j ≥ 1, 2, . . . ,
k). We find a homomorphism íi: R ! Ri such that its domain Ti contains all the elements
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790 A. I. LICHTMAN

xj, yj (j ≥ 1, 2, . . . , k) and obtain the following relation for the elements x̄j ≥ íi(xj),
ȳj ≥ íi(yj) (j ≥ 1, 2, . . . , k) in the ring Ri:

kX
j≥1

[x̄j, ȳj] ≥ 1

which contradicts the assumption of the assertion. This completes the proof.

3.

LEMMA 4. Let G be a soluble group which contains a finite subgroup U of order
n such that the quotient group GÛU is free abelian of finite rank k. Then G contains a
free abelian subgroup V of rank k and of finite index such that all the prime divisors of
(G : V) are divisors of n.

PROOF. Since the commutator subgroup G0 is finite we conclude easily that for every
element g 2 G there exists a number m(g) such that the power gm(g) belongs to the center
of G and hence the center has a finite index. We obtain then that there exists a central
torsion free subgroup Z of finite index.

Let V � Z be the subgroup of G which is the inverse image of the Hall n0-subgroup of
GÛZ (it is worth remarking that the group GÛZ is soluble); clearly, all the prime divisors
of (G : V) are divisors of n.

Since the group VÛZ is an n0-group we obtain from Schur’s theorem that V0 is a finite
n0-group. But V0 � U and hence V0 is an n-group. This implies that V0 ≥ 1, i.e. V is
abelian. Since V is an extension of a torsion free group Z by an n0-group VÛZ all the
elements of finite order in V must be n0-elements; once again, since (U : 1) ≥ n we
obtain that V\U ≥ 1 and hence V is isomorphic to a subgroup (of finite index) of GÛU.
This implies that V is free abelian of rank k and the proof is completed.

LEMMA 5. Let H be a polycyclic group, F be nilpotent normal subgroup of H. As-
sume that the order of the torsion subgroup of F is n and the quotient group HÛF is free
abelian. Then H contains a poly-finfinite cyclicg subgroup H1 of finite index such that
all the prime divisors of (H : H1) are divisors of n.

PROOF. Let c be the nilpotency class of F. Malcev’s theorem (see [2]) implies that the
group Fnc

, generated by the nc-powers of the elements of F, is torsion free. The quotient
group H̄ ≥ HÛFnc

is an extension of a finite nilpotent group F̄ ≥ FÛFnc
by a free abelian

group H̄ÛF̄ ' HÛF. Hence by Lemma 4 H̄ contains a free abelian subgroup H̄1 of finite
index (H̄ : H̄1) whose prime divisors divide the number nc. The inverse image H1 of H̄1

is a subgroup of H which is an extension of a torsion free nilpotent group Fnc
by a free

abelian group H̄1; hence H1 is poly-finfinite cyclicg and satisfies all the other conclusions
of the assertion.

LEMMA 6. Let K[H] be a ring generated by a group H over a field K. Assume that
there exists a finite central subgroup C � H such that K[H] is isomorphic to a suitable
cross product K[H] ' K[C] Ł (HÛC) where the group HÛC is torsion free. Let H1 be
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a torsion free subgroup of finite index m in H. Then the subalgebra K[C, H1] generated
by the subgroups C and H1 is isomorphic to the group ring K[C]H1, the subgroup H2 ≥
hC, H1i is isomorphic to the direct product C ðH1 and K[H] is a (left) free module over
K[C]H1 of finite dimension m1 ≥ ind(H : H2) and m1 j m.

PROOF. Since H1 \ C ≥ 1 the subgroup H1 can be included into a transversal of C
in H; the properties of cross products now imply that K[C, H1] ' K[C]H1; the relation
H2 ' H1 ð C is obvious. If h1 ≥ 1, h2, . . . , hm1 is a transversal of H2 in H then the
elements hi (i ≥ 1, 2, . . . , m1) form a basis of KH over KH2; clearly, m1 j m.

4. We need now a few concepts and results on polycyclic groups. If A is a non-
unit torsion free abelian normal subgroup of an arbitrary group H, then the conjugation
in H defines in A a structure of ZH-module. This subgroup A is a plinth in H if H and
all its subgroups of finite index act rationally irreducible on A. (See Roseblade [13] or
Passman [11], Chapter 12). Every infinite polycyclic-by-finite group H has a subgroup
of finite index which contains a plinth (see [13] or [11], 12.1.4). It is not difficult to prove
the following fact (see [7], Section 3.1).

LEMMA 7. Let H be a polycyclic-by-finite group. Then it contains a polyplinthic nor-
mal subgroup H0 of finite index, i.e. H0 is torsion free, and contains a series of nilpotent
normal subgroups

(5) H0 � A1 � A2 � Ð Ð Ð � Ar�1 � Ar ≥ 1,

where AiÛAi+1 is a plinth in H0ÛAi+1, A1 � C(AiÛAi+1), the quotient groups
H0ÛC(AiÛAi+1) and H0ÛA1 are free abelian and hence all the groups H0ÛAi

(i ≥ 1, 2, . . . , s) are torsion free.

(Here C(AiÛAi+1) is the centralizer of the factor AiÛAi+1, i.e. C(AiÛAi+1) ≥ fh 2 H0 j
[h, a] 2 Ai+1 for all a 2 Aig.) We would like to point out that this definition of the
polyplinthic group differs from the corresponding definition in the book of Shirvany and
Wehrfritz [14] (see [14], p. 142).

We will need the following fact which is Theorem 3.12 in [7].

PROPOSITION 1. Assume that H is a polyplinthic group with a Hirsch number h and
K is a finitely generated commutative field of characteristic zero or p Ù C(h), where
C(h) is a constant depending on h. Let D be the division ring of fractions of KH,

(6) x1, x2, . . . , xs

be given non-zero elements of KH and t be a given natural number. Then there exists an
ideal C � KH such that K[H̃] ≥ (KH)ÛC is isomorphic to a semiprime subalgebra of a
matrix algebra (K1)mðm, where

(7) m ≥ 2åã1ã2 Ð Ð Ð ã‡qm1
1 qm2

2 Ð Ð Ð qm‡

‡
,
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the numbers qi are prime and qi Ù t, ãi j (qi � 1), (i ≥ 1, 2, . . . , ‡), the group H̃ is finite
and ‡ does not exceed the number r, the length of the plinth series (5), å � r and

mi � ß(h) (i ≥ 1, 2, . . . , ‡)

where ß(h) is an integer valued function of the Hirsch number h; K1 ≥ K(è) is a cy-
clotomic extension of degree q1q2 Ð Ð Ð q‡ over K. Furthermore, the images x̃j of the el-
ements xj (j ≥ 1, 2, . . . , s) are invertible in the ring (KH)ÛC and the homomorphism
ã: KH ! K[H̃] is extended to a specialization ô: D ! K[H̃], i.e. there exists a subring
D � T � KH and an epimorphism ô: T ! K[H] such that kerô is a quasiregular ideal
at T.

REMARK. We use in this paper the concept of “specialization” as defined in Pass-
man’s article [12].

It follows also from Theorem I and Proposition (2.2) in [7] that for every given number
q ≥ qi in (7)

q � 1
2

≥ p1p2 Ð Ð Ð ps

where pã Ù q
1

2h (ã ≥ 1, 2, . . . , s) are distinct prime numbers.

PROPOSITION 2. Let H be a polyplinthic group with Hirsch number h, K be a field of
finite characteristic p Ù max

�
2, C(h)

�
, D be the division ring of fractions of KH. Then

the relation (1) holds in D.

PROOF. Clearly, we can assume that K is finitely generated. Now assume that non-
zero elements rj 2 D (j ≥ 1, 2, . . . , k) be given. Let

rj ≥ ajb
�1
j (j ≥ 1, 2, . . . , k).

Take t ≥ p2h and apply Proposition 1 to the set of elements aj, bj (j ≥ 1, 2, . . . , k). We
obtain a specialization í: D ! K[H̃] � (K1)mðm such that its domain T contain all the
elements aj, bj and hence the elements rj (j ≥ 1, 2, . . . , k), and p does not divide the
number m. The assertion now follows from Lemmas 2 and 3.

PROOF OF THEOREM 2. Lemma 7 implies that H contains a polyplinthic normal
subgroup of finite index m ≥ (H : H0); hence, R is isomorphically imbedded into a matrix
ring Dmðm, where D is the division ring of fractions of KH0 (see [14]). Proposition 2 now
implies that the relation (1) holds in Dmðm if char K Ù N, where N ≥ max

�
2, m, C(h)

�
.

Hence it holds in R.

5. We will need the following fact in the proof of Theorem 1.

LEMMA 8. Let K be a field of finite characteristic p, K[H] be a domain generated
by a polycyclic group H over K, R be the division ring of fractions of K[H]. Assume
that H contains a finite central subgroup C such that the quotient group H̄ ≥ HÛC is
poly-finfinite cyclicg and K[H] is isomorphic to a suitable cross product

K[H] ' K[C] Ł (HÛC).
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Assume that there exists a nilpotent normal subgroup F � C such that the quotient
group HÛF is free abelian. Assume also that the relation (1) holds in the division ring of
fractions of KH̄. Then it holds also in R.

PROOF. It is well known that the group C is cyclic: in fact, it is a finite subgroup of a
field K[C]. Furthermore, the order of C is prime to p. Now apply Lemma 5 and obtain a
poly-finfinite cyclicg subgroup H1 � H such that the index m ≥ (H : H1) is prime to p.
Lemma 6 now implies that the index m1 of the subgroup H2 ≥ hC, H1i ≥ CðH is prime
to p and that K[H] has a faithful representation of degree m1 over the group ring K[C]H1,
hence R has a faithful representation of degree m1 over the ring of fractions S of K[C]H1.
Finally, H1 is a subgroup of H which does not intersect C; hence, it is isomorphic to a
subgroup of the quotient group H̄ ≥ HÛC. Since the relation (1) holds in the division
ring of fractions of KH̄ it must hold, via Lemma 1, in the ring of fractions of K[C]H̄
and hence in its subring S. Finally, since R is imbedded isomorphically in Sm1ðm1 and
(p, m1) ≥ 1 we obtain that the relation (1) holds in R.

6. We will prove in this section Theorem 1. Clearly, we can assume that the ideal A
in Theorem 1 is prime and faithful. We need first the following fact which is statement
ii) in Proposition 3 in [8].

PROPOSITION 3. Let A be a prime ideal of KH, R be the Goldie ring of fractions of
the ring K[H] ≥ (KH)ÛA. Then R has a finite left dimension over a division subring D,
which is isomorphic to the ring of fractions of a domain K[H1], where H1 is a torsion
free normal subgroup of finite index in H. Furthermore, K[H1] is isomorphic to a suitable
cross product

K[H1] ' K[C] Ł (H1ÛC)

where C is a central subgroup of H1 and the group H1ÛC is poly-finfinite cyclicg.

PROOF OF THEOREM 1. Since Proposition 3 implies that R has a faithful matrix
representation over D we can assume in the proof of Theorem 1 that in fact H1 ≥ H, i.e.
K[H] is a domain,

(8) K[H] ' K[C] Ł (HÛC),

and C is central in H. Furthermore, we can find a normal subgroup H0 � C of finite index
in H such that the group H0ÛC is polyplinthic. The representation (8) implies that

(9) K[H] ' K[H0] Ł (HÛH0)

where the group HÛH0 is finite. We conclude from (9) that D has a finite left dimension
over the division subring D0, generated by K[H0]. Once again, we see that we can assume
that the group HÛC in (8) is polyplinthic; this implies, in particular, that there exists a
nilpotent normal subgroup F � C such that HÛF is free abelian.

Now let Ki be an arbitrary finitely generated subfield of K. The ideal Ai ≥ A \ KiH
is completely prime in KiH and the ring Ki[H] ≥ (KiH)ÛAi is a subring of K[H]; Ki[H]
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generate a division subring Di � D. Since D is a direct limit of the division subrings Di

we reduced the proof to the case when the field K is finitely generated.
Let K0 be an arbitrary finitely generated subring of K such that K is the field of frac-

tions of K0. Once again, the ideal A0 ≥ A \ K0H is completely prime in K0H and D is
isomorphic to the division ring of fractions of the ring K0[H] ≥ (K0H)ÛA0; it is easy to
see also that

(10) K0[H] ' K0[C] Ł (HÛC) ≥ S Ł H̄

where S is a finitely generated central subring and H̄ ≥ HÛC is polyplinthic. Let h be the
Hirsch number of H̄.

We pick now in S an infinite system of maximal ideals Ai (i 2 I) such that
T

i2I Ai ≥ 0
and the quotient rings Si ≥ SÛAi are finite fields of characteristics pi Ù max

�
2, C(h)

�

(i 2 I), where C(h) is the same as in Proposition 2. Every ideal Ai generates in S Ł
H̄ a completely prime ideal (Ai) ≥ Ai Ł H̄. This ideal is localizable by Roseblade’s
Theorem 11.2.9 in [11]. Let Ti ≥ (SŁH̄)M�1

i where Mi ≥ (SŁH̄)n(AiŁH̄). Then TiÛJ(Ti)
is a division ring Di, which is isomorphic to the ring of fractions of (K0[H])Û(Ai). On the
other hand we have for the ring K0[H]Û(Ai) a representation

(11) K0[H]Û(Ai) ' Ki[Hi],

and

(12) Ki[Hi] ' Si Ł H̄

where Ki is an image of the ring K0 and Hi is the image of the group H. Since pi Ù C(h)
the representations (11) and (12) show that every division ring Di satisfies the conditions
of Lemma 8 and hence the relation (1) holds in Di.

Now assume that elements (4) in D are given. Apply Proposition 1(i) from [8] and
obtain that there exists a cofinite subset I1 � I such that for every i 2 I1 the elements (4)
belong to the subring Ti � D, where Ti is the domain of the specialization íi: D ! Di.
Theorem 1 now follows from Lemma 3 and the proof is completed.

7. We will need in the proof of Theorem 3 the following fact which is proved in [5]
(see [5], Corollary 1.2 or Proposition 2.8).

LEMMA 9. Let H be a finitely generated torsion free nilpotent group, K be an arbi-
trary field, ∆ be the division ring of fractions of KH and

(12) xj (j ≥ 1, 2, . . . , n)

be given non-zero elements of ∆. Let q Â≥ char K be a given prime number. Then there
exists a specialization ô: ∆ ! K[G̃] such that its domain T contains the elements (12),
K[Ḡ] is a finite dimensional simple algebra generated by a finite q-group G̃ ≥ ô(G) and
kerô is the Jacobson radical S(T) of T.

PROOF OF THEOREM 3. Let H be a finitely generated nilpotent group, A be a prime
ideal of KH, R be the ring of fractions of KH; we can assume that the ideal A is faithful.
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Theorem 1 makes possible to assume that char K ≥ p Ù 0 and Lemma 1 reduces the
proof to the case when K ≥ Zp. Let C ≥ ∆(h) ≥ fh 2 H j h has a finite number of
conjugates in Hg. We obtain now from Zalesskii’s Theorem 11.4.5 in [11] that (KH)ÛA
is isomorphic to a suitable cross product

(13) K[H] ' K[C] Ł (HÛC)

where the group HÛC is torsion free nilpotent and the group C is abelian-by-finite. Since
K[H] is prime the ring K[C] contains no nilpotent ideals. But the group C is finitely gener-
ated abelian-by-finite; hence K[C] is a PI-ring and we obtained that K[C] is semisimple.

Let Q be a primitive ideal of K[C]; since C is abelian-by-finite and we assumed that
K ≥ Zp we obtain that K[C]ÛQ is a finite dimensional algebra over K generated by a
finite group C̄, the image of C; since the algebra K[C̄] is simple and C̄ is nilpotent it
must be a p0-group. Since H acts as a finite group on C ≥ ∆(H), we conclude that the
orbit h�1Qh(h 2 H) of Q must be finite because the image of C in K[G]ÛQ is finite. Let
Q1 ≥ Q, Q2, . . . , Qr be the orbit of Q and

B ≥
r\

ã≥1
Qã.

The ideal B � K[C] is H-invariant and the quotient algebra K[C]ÛB is semisimple ar-
tinian and generated by a finite p0-group C̃, the image of C; the group C̃ is a subdirect
product of the groups C̄ã, the images of C in K[C]ÛQã (ã ≥ 1, 2, . . . , r).

We take now an arbitrary system of primitive ideals Qi � K[C] (i 2 I) with intersec-
tion zero. Let Bi ≥

T
h2H h�1Qih. Then

T
i2I Bi ≥ 0 and every ideal Bi is H-invariant. We

consider now the system of ideals (Bi) ≥ Bi(K[H]) � K[H] (i 2 I). Since H is nilpotent
every ideal (Bi) (i 2 I) is polycentral and it can be localized in K[H] by Roseblade’s
Theorem 11.2.9 in [11].

Pick now some i 2 I and consider the ring K[Hi] ≥ K[H]Û(Bi) and its ring of fractions
Ri. We will prove that the relation (1) holds in the ring Ri. Since for every i 2 I the ideal
(Bi) is localizable we see that there exists a specialization íi: R ! Ri and once again as
in the proof of Theorem 1 Theorem 3 will follow from Lemma 3.

The ring K[Hi] is isomorphic to a suitable cross product

K[Hi] ' K[Ci] Ł (HiÛCi),

where H̄i ≥ HiÛCi is a finitely generated torsion free nilpotent group and Ci is a finite
p0-group, say of order mi. Let ci be the nilpotency class of Hi. Once again, as above, the

group Ui ≥ H
m

ci
i

i is torsion free, it generates over K[Ci] a subring, isomorphic to the
group ring K[Ci]Ui and K[Hi] is isomorphic to a suitable cross product

K[Hi] ' (K[Ci]Ui) Ł (HiÛVi),

where Vi ' Ci ð Ui, the index (Hi : Vi) is finite and prime to p; hence, once again, the
proof is reduced to the case when Ri is isomorphic to the ring of fractions of the group
ring K[Ci]Ui. Since the field K is algebraically closed we have

(14) K[Ci] ' Kn1ðn1 + Kn2ðn2 + Ð Ð Ð + Knrðnr
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where nj j (Ci : 1) and hence p Â jnj (j ≥ 1, 2, . . . , r).
The decomposition (14) implies that the group ring K[Ci]Ui is isomorphic to a direct

sum of group rings over the matrix rings Knjðnj (j ≥ 1, 2, . . . , r) and the ring of fractions
of K[Ci]Ui is a direct sum of the rings of fractions of the group rings (Knjðnj )Ui (j ≥
1, 2, . . . , r); but for every given j the ring of fractions of (Knjðnj )Ui is isomorphic to the
matrix ring of degree nj over the ring of fractions of KUi. Since Ui is a torsion free
nilpotent group the assertion now follows from Lemmas 3 and 9.

8. Let H be a torsion free group which is an extension of an abelian group U by a
cyclic group of order pk. It is known that under these conditions the group H must be
poly-finfinite cyclicg (see, for instance, [4]), the group ring KH is an Ore domain; let D
be the division ring of fractions of KH. Since the quotient group HÛU is cyclic of order
pk we obtain easily that D is a cyclic algebra of dimension p2n (n Ú k) over its center. It
follows now from Proposition 0.3 in [1] that 1 is a commutator in D, i.e. the condition
(1) does not hold in division rings of fractions of group rings of poly-finfinite cyclicg
groups when char K ≥ p Ù 0.

An explicit example can be constructed in the following way. Let H be a semidirect
product of two infinite cyclic groups, i.e. H ≥ hg, h j ghg�1 ≥ h�1i. The group H is
an extension of the free abelian subgroup U ≥ hg2, hi by a cyclic group of order 2. We
consider its group ring KH over an arbitrary field K of characteristic 2 and observe that

[g, hg�1] ≥ ghg�1 � h ≥ h�1 � h

is a central element of KH. Now denote z ≥ h�1�h and obtain that in the ring of fractions
D the unit element is a commutator

[gz�1, hg�1] ≥ 1.
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