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ABSTRACT. The paper considers one-dimensional freezing and thawing of ice-water systems for the 
conditions first examined by Stefan. An order-of-magnitude analysis applied to the governing equations and 
boundary conditions quantifies the error resulting from the neglect of various factors. Principal among these 
are density difference, initial superheat and variable properties. 

Asymptotic solutions for the temperature distribution and interface history a re developed for a wide 
range of boundary conditions: prescribed temperature or heat flux , prescribed convec tion and prescribed 
radiation. Comparison with known results reveals the general adequacy of the asymptotic solutions and an 
estimate of the error incurred. 

REsuME, Sur l'utilisation de solutions asymptotiques pour les problbnes de l'illterface glace-eau . Le present rapport 
considere d es systemes a une dimension de glace- eau soumis a u gel et a la fonte aux conditions examinees 
pour la premiere fois par Stefan. Une analyse d'ordre de grandeur appliquee aux equa tions gouvernant les 
system es et aux conditions limites permet de chiffre r l' erreur resulta nt de differents facteurs negliges. Parmi 
eux sont principalement la difference de densite, le surchauffem ent initial et des proprietes variables . 

Des solutions asymptotiqucs pour la distribution de la temperature et l'histoire de l'in terface sont develop­
pees pour un large intervalle d e conditions limites : temperature imposee ou flux d e chaleur, convection 
imposee et radiation imposee. La comparaison avcc des resulta ts connus revele que cette methode est dans 
l'ensemble adequate et que l'estimation de l'erreur est reelle. 

ZUSAMMENFASSUNG. Uber die Verwendullg asymptotischer Liisungen fur ebene Eis- Wasser-Probleme. Die Arbeit 
befasst sich mit eindimesionalem Gefrieren und Tauen von Eis-Wasser-Systemen unter Bedingungen, wie sie 
erstmals durch Stefan untersuch t wurden. Eine Grossenordnungsanalyse der Bestimmungsgleichungcn und 
der Randbedingungen ermoglicht die Abschatzung des Fehlers, d er durch die Vernachlassigung v~rschie­
dener Fa ktoren entsteht. Die wichtigsten unter ihnen sind die Dichteunterschiede, die anfangliche Uberhit­
zung und unterschiedliche Eigenschaften. 

Asymptotische Losungen fur die T emperaturverteilung und die Entwicklung der Grenzflachen werden 
fur einen grossen Bereich von Randbedingungen en twickelt : vorgegebener T emperatur- und Warmefluss, 
vorgegebene Konvektion und Strahlung. D er V ergleich mit b ekannten Ergebnissen zeigt die allgemeine 
Gleichwertigkeit der asymptotischen Losungen, verbunden mit einer Abschatzung der auftretenden Fehler. 

I . I NTRODUCTION 

Heat conduction problems which incorporate a solidification or melting process define a 
wide range of phenomena in the earth sciences. Typical among these are the solidification of 
molten rock, ablation of glaciers, freezing and thawing of lakes and rivers and the growth and 
decay of sea ice. Permafrost and frost penetration are similar phenomena. In addition to 
their physical similarity the above problems may also be considered, in the majority of circum­
stances, as geometrically similar; that is, each may be treated as a one-dimensional system. 

One of the first theoretical attacks on this type of problem was that of Stefan (189 I) who 
was able to develop approximate solutions for the rate of growth of sea ice. Since then, 
numerous attempts have been made to develop other analytic methods but so far no technique 
capable of handling the vast range of conditions encountered has yet appeared; although 
certain problems have yielded in restrictive circumstances. The purpose of the present paper, 
which stems from the original approach of Stefan, is to study the validity of the approximate 
solutions and examine their accuracy for a much wider range of conditions than have pre­
viously been discussed. Principal among these extensions are the discussion of variable 
properties and the inclusion of arbitrary boundary conditions, the past neglect of which has 
seriously limited the applicability of the solutions. 

2. GENERAL FORMU LATION 

(a) Governing equations 
Thermal diffusion in a single-phase, one-dimensional medium unaffected by distributed 

heat sources is governed by the equation 

de 
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where X is distance in the direction of heat flow, 0 the temperature above an arbitrary datum 
(e.g. the transition temperature), t time, U the medium velocity in the X direction and k, p, Cp 

are the medium thermal conductivity, density, and specific heat capacity respectively. W hen 
X is measured from a point fixed relative to a condensed phase i growing by phase transition 
from another phase j the above equation applied to each phase gives 

and 

° [ 001] rOOl 001] 
oX kl oX = Plcpl _Tt+ Ul oX 

for phases i and j respectively (see Fig. I) . 
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Fig. I. Transition in a one-dimetlsional domain. 

Consider first the growing phase. To convert the variables to quantities of order unity, 
it is necessary to introduce new (normalized) variables x = X /Xe, <p = O/Oc, and T = t/ te, 
where the subscript c denotes a (positive) characteristic or reference quantity: it is not 
essential that the characteristic quantities be known at this point but m erely that they exist. 
The first equation above may then be re-written as 

where Fo = ke te/pcp Xe' is a Fourier number and ke is a reference value of conductivity: the 
subscript i has been omitted for clarity. It is obvious that difficulties arising from variable 
properties in this phase are most closely associated with k because it is under the influence of 
the operator % x. Fortunately, a simple transformation will remove the difficulty, at least 
from that point in the equation, for the important circumstances when k depends upon either 
temperature or position. If k = k(<p ), the transformation with respect to <p. 
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o 

will suffice. On the other hand, if k = k(x), the transformation with respect to x, 

f kc 
XI = k(x) dx, 

o 

is required. In either case Equation (2) will then take the form 

'(P c/> I oc/> 
OX' = Fo OT 

in which it is understood that c/> and X are defined according to the dependency of k, and Fo 
is the corresponding Fourier number: note that the latter mayor may not contain the variables 
c/> or x. Thus the temperature distribution in a growing phase with temperature or spatially 
dependent properties may be determined from a "constant property" form given by Equation 

(3) · 
A similar procedure may now be followed for the diminishing phase, j , the only additional 

complication arising from the inclusion of bulk motion , i.e. advection. The velocity Ui in 
the positive X direction may be determined from the density difference pi - Pi and the rate 
at which the excess (or d eficit ) volume appears. If E (t ) is the location of the interface, then 

(Pi - Pi ) dE 
Ui = - -

Pi dt 

and hence the normalized form of the second of Equations ( I) is 

~[!:... Oc/>] = ~[Oc/> _ (Pi-Pi) dt ac/>] 
OX kc OX Fo OT Pi dT OX 

where t (T) = E (t)/X c. The characteristic quantities inferred in this equation refer to phasej: 
the subscripts have been omitted except on the density. It might be expected that advection 
would be negligible when Pi ~ Pi and Equation (4) confirms this quantitatively. The 
magnitude of the error introduced by neglecting advection is evidently (pi - Pi )/PJ, since this 
term alone gives the relative magnitude of the second a nd first terms on the right-hand side 
of the equation; from the definition of </>, t , X and T , the derivatives may be taken to be of 
unit order . 

(b) Boundary and interface conditions 
A general treatment of the plane phase-change problem requires solutions of the system of 

equations (3) and (4) . Before considering these solutions let us first consider the various 
boundary conditions which they may have to satisfy. Applying the first la w of thermodynamics 
at an i - j interface we obtain 

Pi L dE[I _ p (Pi - Pj )] = ki ( OBi) - ]Q (5) 
dt Pi pj L OX E 

where L is the latent heat withdrawn in forming phase i from phase j , P the system pressure 
(assumed the sam e in each phase) and] Q is the heat transfer rate to phase i, supplied 
externally. Kinetic and potential energy have been ignored. The second term on the left-hand 
side is the work required to introduce (or remove) the excess volume arising from the fact that 
Pi #- Pi· This "p - v" work is evidently negligible if P(Pi - Pj)/Pi pj L ~ I . For an ice- water 
system this requires that p ~ 108 bars and since this pressure is rarely achieved the above 
equation may be simplified accordingly. It is interesting to note that during sublima tion this 
term reduces to p /Pv L , where pv is the vapour d ensity, and may not be negligible. 
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The heat supply rate, ] Q, may take several forms depending upon the nature of phase j 

and the environment. For two condensed phases]Q = ki(o~) E' in which case Equation 

(5), in normalized form, reduces to 

df = FOt Stet [( 010;) 
dT OX; G 

(5a ) 

where FOi = Ki tCi/X Ci and Stei = cp; Bc;fL, will be called the Stefan number. Note the 
presence of characteristic quantities from both phases. From the definitions of 1oi, 1oj, x; and Xj 

the derivatives on the right-hand side may be assumed to be of order unity and therefore the 
importance of the temperature distribution in the diminishing phase is seen to be governed by 
the magnitude of the non-dimensional group kj XCi Bcjfki XCi Bci. This is evidently small when 

(a ) the conductivity of the diminishing phase is much less than that of the forming phase, 
e.g. water freezing, 

(b ) the characteristic (or actual) depth of the forming phase is small compared with that 
of the diminishing phase, 

(c) the departure from the transition temperature in the diminishing phase is small 
compared with the corresponding departure in the forming phase. 

For transition in an ice-water system at the edge of a " semi-infinite" domain in which tem­
peratures in the diminishing phase never greatly depart from the transition temperature it is 
reasonable to expect that k j Xci Bcjfki XCi Bc; ~ 1 is a condition which will frequently hold 
good, thus permitting the reduction of the above equation to the approximate form 

df = Fo Ste (~1o) (6) 
dT ox G 

each quantity referring to the forming phase at the interface. 
At a moving interface, Equation (5) or its reduced form must be satisfied along with the 

fact that the temperature must be the transition temperature, here assumed fixed . (A transi­
tion temperature range may be accommodated by treating the problem as one of variable 
properties without latent heat (Carslaw and ]aeger, 1959, p. 289; Martynov, 1956, English 
translation p. 133).) If the interface is stationary, i.e. phase j is not being transformed to 
phase i at that point, the left-hand side of Equation (5) vanishes and the boundary condition 
assumes the explicit (Neumann) form 

(
OBi) 

ki oX E = ]Q. 

In this case the temperature at the interface need not be the transition temperature and in 
general it will be time-dependent. This dependency provides an alternative (Dirichlet) form 
of the boundary condition. The broadest single form arises when]Q is given by 

]Q = hQ (T oo- Ts)-UET:+F (t ) (8) 

where hQ is the heat transfer coefficient, U the Stefan- Boltzmann constant, E the surface 
emittance and the subscripts sand 00 respectively refer to conditions at the interface and a 
substantial distance away from it: included in this expression are convection, emitted radia­
tion and incident radiation F(t ). Using normalized variables this may be combined with 
Equation (7 ) to give 

± Nu (1 - I1osl) - G<D:+f H (9) 

where <Ds = T s/ T c, Nu is the Nusselt number hQ X ct/ki and G = UEXci T~/kci Bc is a non­
dimensional "radiation number": Bc would now refer to the overall system, e.g . air tempera­
ture minus freezing temperature. If the environment is at a higher temperature than the 
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interface the convective contribution is a heat addition and the positive sign in front of the 
Nusselt number is taken: the reverse situation requires the minus sign. The left-hand side of 
the equation would, of course, change sign if]Q was directed into the interface from the left, 
instead of as shown in Figure I. Equation (9) is a fairly complete statement of the heat 
transfer rate at a surface though it is occasionally extended to accommodate a mass transfer. 
For example, at the water- water vapour interface of a layer of water lying over melting ice, 
Equation (5) applied to the interface gives 

aBw dEw 
kw oX =]Q+ PwLcit 

where w denotes the water phase. The growth term can be re-written as LhM(Gro- Gs), 
where hM is the mass transfer coefficient and Gro, Gs are the water-vapour concentrations at 
infinity and the interface respectively. This is equivalent to adding a term to Equation (7) 
and involving the vapour phase only as a boundary condition in the ice- water system. 
Clearly, this is permissible only if the velocity of the ice- water interface is much greater than 
that of the water-water vapour interface. With this understood, Equation (9) may be written 
in the extended approximate form 

( ~~) s = ±NU ( I -I cf> sl ) +ShQR( I -Cs) - G<I>~ +J(T) (I 0) 

where Sh is the Sherwood number hM Xci/D, D is the mass diffusion coefficient, 
QR = DLGoo/ki Bci is a measure of the relative importance of latent and sensible heat 
effects and Cs = Gs/Gro. 

In using the above equations it is assumed that Nu and Sh are available from a theoretical 
analysis of the convective system or from experimental data: that is, it is assumed that we 
know the relations 

and 

Nu = Y, (Pr, Re) 

Sh = Y 2 (Sc, Re) 

where Re is the Reynolds number, Sc = v/D is the Schmidt number (the ratio of kinematic 
viscosity v to the mass diffusion coefficient D ) and Pr = V/K the Prandtl number (the ratio 
of kinematic viscosity to thermal diffusivity K). It is worth noting that for water vapour 
in air, Pr ::::; 0.7 and Sc ::::; 0.6 and hence for such a system the functions Y" Y, are a lmost 
identical. The resulting simplification will be particularly valuable for complex conditions, 
e.g. when the Reynolds number is time-dependent. 

(c) Asymptotic solutions 
The main advantage of writing the interface conditions in normalized form is to be found 

in the discussion of reasonable approximations and the range of their validity. Following 
Equation (5) it was demonstrated that "p - v" work would normally have a negligible effect 
on a moving interface and that conduction in a diminishing condensed phase could be ignored 

h kj Xci Bci S"l I r . . rh' f h . w en k. X . B . ~ I. Imi ar y, !or a statIOnary Intenace, t e Importance 0 t e convective 
I cJ CJ 

transport of heat and mass is entirely dependent upon the magnitudes of Nu and Sh and QR 
in Equation ( IQ) . Since the dependent and independent variables in this equation are nor­
malized it is reasonable to expect that the significance of convection can be measured by 
comparing Nu and the product Sh QR with unity, neglecting the effects if they are very much 
less than this. The same argument applies to the role ofG andJ(T) in determining the signifi­
cance of radiation. The important feature of ordering terms in this way is that it is quantita­
tive and enables approximations to be justified (or denied) in a simple, explicit manner a 
priori. 
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Another important consequence of ordering the moving interface Equation (s) is to be 
found in its special and reduced forms Equations (sa) and (6). By definition, the order of 
magnitude of the term in square brackets on the right-hand side of Equation (sa) and of its 
reduced form, the partial derivative in Equation (6), is unity. Now from either of these 
equations it is clear that each side of the expression is essential to the description of conditions 
at the interface and therefore both sides must be retained and must be equal in magnitude. 
Consistent with the normalization process, this implies that each term is of unit order and 
therefore 

FoSte = 0 (1) 

or (pX~ L) 
tc=o ~. 

For a constant-property medium, this provides a convenient definition for tc (or Xc ) given by 

te = (:B~) X~ 
from which it follows that Ste = rjFo and therefore the Equation (3), for conduction in the 
forming phase, becomes 

c2</> c</> -::;-:;- = Ste -;;;-. 
u X- U T 

The above equation, and the corresponding form of Equation (4), each reveal the essential 
role of the Stefan number in the determination of the temperature distribution. When sensible 
and latent heat effects are about equal, i.e. Ste = 0(1), the complete conduction equation 
must be solved. However, in many situations common to ice- water systems latent heat 
effects dominate, i.e. Ste ~ r, which suggests solutions for the temperature in the form 

</> = </>O + Ste</>1 + Ste2</>2 + Ste3</>3+ .... 
Substituting this into the conduction equation above leads to the infinite set of equations 

22</>0 
OX2 = 0 

02</>n+1 O</>n, 
---aT = a:;:-and (n = 0, 1,2, .. . ) 

for which the solutions are 

</>o (X, T) = a(T) X+ b(T) 

( r r ) 

etc. 

where the prime denotes differentiation with respect to T. 

In this paper discussion will be limited to the asymptotic situation Ste -+ o. This amounts 
to the neglect of all the terms in the above expansion for temperature except </>o(x, T) given 
by Equation (r 1). Since </>r , </>2 , etc. exhibit the curvature in the temperature profile it 
follows that when Ste = 0 the profile must be linear. Prima facie, a straight-line profile 
appears almost unreasonable, but closer examination shows that it is completely consistent 
with the implication that latent heat effects dominate the sensible heat effects. A very large 
latent heat implies a layer whose growth is so slow that it can be treated as a slab of virtually 
constant thickness. A negligible specific heat, on the other hand, suppresses the transient 
aspects of conduction within a slab. Taken together, these physical characteristics agree 
exactly with the mathematical consequences of Ste = o. The error in the solution when Ste 
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is small but non-zero can be estimated from the expansion for </> (x, r ), which indicates that 
it will be of the order of the largest neglected term, i.e. Ste (since </>' = o( I )) . It will be 
demonstrated later that typical errors confirm this expectation. Strictly, the above discussion 
applies to a constant-property medium only but the arguments for a variable-property medium 
are identical and lead to the same conclusions. The only difference in the solution would be 
in the definitions of </> or x used in developing Equation (3) . 

The use of asymptotic solutions subject to boundary conditions typified by Equations 
(sa) and ( 10) covers a very wide range of problems. Our discussion will be limited to those 
which occur at the edge of a "semi-infinite" domain and in the absence of mass transfer. 
This will remove very little of the generality of the discussion (since the convective heat- and 
mass-transfer systems are analogous) without masking the essential simplicity of the approxi­
mate solutions. For this type of discussion we may adopt the approximate form (Equation 
(6)) for the moving interface and since this implies the neglect of conduction in the diminishing 
phase, Equation (4) may now be disregarded. In short, the problem is reduced to the solution 
of Equation (3) subject to the interface condition, Equation (5), and boundary conditions 
typified by Equation (9). 

The asymptotic solution of Equation (3), given by Equation ( I I), may be substituted into 
the interface condition giving 

d~ 
dr = FoStea (r ), 

or 
df 
dr = a(r ) 

for a constant-property medium. From this it can be seen that arbitrary boundary conditions, 
as they appear though a(r ), may be handled without much difficulty. In general, the right­
hand side of this equation will depend upon ~ and r and hence we may take df/dr = s ( ~, r), 
say, as the most general form of the interface equation for asymptotic conditions. In the most 
general circumstances s(f , r ) will be a non-linear implicit function and therefore the equation 
cannot be integrated directly, in which case a numerical or graphical solution, e.g. the method 
of isoclines, must be sought. In many other circumstances the form of s(f, r ) permits integra­
tion with comparative ease and leads to simple closed-form or series solutions. In this paper 
the latter circumstances will be used to assess the validity of the asymptotic solutions. 

3. PRESCRIBED TEMPERATURE OR HEAT FLUX 

Consider a semi-infinite, constant-property domain of frozen or unfrozen material initially 
close to the fusion temperature and let 8(X, t ) be the departure from the fusion temperature, 
where X is measured from the surface of the domain. If </>s(r ) is the normalized surface 
temperature then the asymptotic solution for the temperature distribution in the forming 
phase is 

The interface condition thus gives 
df 
dr = </>sH /f. 

This may be integrated immediately giving 
T 

e H = eh) + 2 J </>sH dr. 

As an example from frost penetration or lake-icing studies consider the sinusoidal surface 
variation </>s(r ) = sin r. Carrying out the integration gives 

e (r) = e (ro ) + 2[COS ro- COS rJ. 
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Taking t (TO ) = T o = o. we obtain 

t H = [2 ( I - cos T))'/2 

or [ 
2kBe ] 1/ 2 

E (t ) = pwLr ( I - cos wt ) 

where Be is the amplitude of the surface sine wave of angular frequency w = l ite and the 
suffix f refers to the frozen phase. The above relation is shown plotted in Figure 2 along with 
some experimental results (Gunderson , unpublished ) obtained by freezing a layer of un­
prepared tap water. Agreement is seen to be fairly good and confirms the expectation that 
transients, which depend upon a non-zero specific heat, would be suppressed if asymptotic 
conditions are approached. In frost penetration problems this implies that the d epth of 
penetration will be strongly controlled by recent temperature changes, as opposed to remote 
history, if the moisture content of the ground is high. 

° 
0.Q1 

_0.02 
~ 
LL 

I 0.03 
~ 
Q.. 
W 

00.04 

0.05 

0.06 

FROZEN 

Stew = 0.126 Fow = 113 ! 
~ Stej = 0.061 FOj = 452 '. 
':"\ .. ,,,,':L ---0--- EXP. ~ 

Fig. 2 . Periodic free zing and thawing. 

The classical Stefan solution, which is widely used in frost penetration studies, may be 
easi ly obtained from Equation (12) by putting 1>S(T) = I. One of the obvious inadequacies 
of the solution is the neglect of property variations (Brown, 1964) . Consider now the applica­
tion of the "step" boundary condition to a domain in which the properties are spatially 
dependent. For this, the interface equation must be taken in the form 

dt Fo Ste Fo Ste 
dT = -t-1>S(T) = - t-

from which it is evident that the ease with which the integration may be performed depends 
upon the function of position contained in the product Fo Ste . Writing this product as 

(
ke te Be) I 

Fo Ste = X~ pL' 

i t is evident that spatial dependency li es with the product pL and to the greatest extent with 
L. A realistic variation of moisture content which wi ll reveal the effect of this variation in a 
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particular case is suggested from the m easurem ents of Crawford (196 I ) ; these indicate a 
more or less exponential decay. H ence we will take Fo Ste = A e~ as a suitable relation a t 
the interface. Substituting into Equa tion (12) and integrating yields 

T = [I -( I +~) e- ;] /A 

if ~ (TO ) = To = o. T his compares with the consta nt-property solutions 

T A = g[I - e-~] /2A 

based on the average m oisture con tent, and 

TM = e/2A 
using the moisture content a t the surface . The ratios T/T A a nd T/ T M are shown plotted in 
Figure 3 from which it is eviden t that neglect of varia tion in m oisture content can resul t in 
very la rge errors (in this case 20- 100 %) in estima ting the time required to freeze a given 
dep th (~ = I). 

1.0 

0.8 
T 

TA 
0.6 

T 

TM 0.4 

0.2 

Fig. 3. Comparison of constant and spatially-dependent properties. 

T emperature dependence of proper ties appears to be less important (K ersten , 1949), 
except perhaps for the problem resulting from a range of transition tempera tures mentioned 
earlier. Hamill and Bankoff (1964) have studied temperature-dependent properties but as yet 
no one appears to have considered the glaciological situa tion. Other than the transformation 
of the dependent variable, as given previously, there is no essential difference between hand­
ling temperature-dependent proper ties and spatia lly d ependent properties in the asymptotic 
situa tion. 

The S tefan solution for constant properties neglects the effect of conduction in the diminish­
ing phase; this approxima tion is im plicit in the form of Equa tion (12). T he extent of the error 
involved may be determined by comparing the approximate solution for interface dep th 
( ~AP) with the exact solution ( ~ EX) of Neumann (Carslaw and J aeger, 1959, p. 285) for a 
domain initially at a constant temperature er not equal to the fusion tempera ture. T he 
discrepancy will depend upon the Stefan number and the ratio fJ = er/ec, where ec is the step 
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change at the surface. Figure 4 shows the ratio (t AP/ tE x) - I plotted against f3 for various 
values of Ste and reveals the fact that if f3 < 1 and Ste ~ I the approximation implied in 
Equation (12) is quite satisfactory. 

When the temperature gradient at the surface is specified the asymptotic temperature 
distribution is more conveniently written in the form 

so that the interface condition now becomes 

1.0 

0.5 

0.1 0.2 0.3 0.4 0.5 0.6 

f3 
Fig. 4. The effect of initial departure from the transition temperature. 

Ste = 0.1 

Ste = 0.01 

0.7 0.8 0.9 

Again, the form of t (T) will depend upon the time dependency of o<p%x and the form of any 
property variation. For comparative purposes consider the case of a constant heat flux F 
at the surface of a constant-property medium for which we may take Fa Ste* = I, where 

cpFXc 
Ste* = kL is a modified Stefan number. Equation (14) may then be integrated im-

mediately to give 

or, if t (TO) = To = 0 , 

t (T) = T. 

This may be compared with a series solution (Carslaw and Jaeger, 1959, p. 292 ) which, in 
our notation, is, 
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The history of the interface is described in Figure 5 for several values of Ste*. The asymptotic 
solution once more reveals a tolerable error, in this case less than 7% if Ste* ;s 0.8. 

4. PRESCRIBED CONVECTION 

Melting of ice by convection at the boundary x = 0 will require satisfaction of the boun­
dary condition 

0.8 

0.6 

0.4 

0.2 

O,p 
Ox 

0.2 0.4 0.6 0.8 

T 

Fig. 5 . Illterface history f or COllstallt heat flux. 

1.0 1.2 

providing that sublimation or evaporation cause negligible movement of this plane. For 
simplicity, mass transfer will be ignored here, although it should be noted that its inclusion 
presents no special problems. The temperature distribution in the forming phase is given by 
Equation (13) and hence the interface condition is given by 

dg 
d-r = Fa SteNu [I - ,ps] , 

or, since 

https://doi.org/10.3189/S0022143000031269 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000031269


JO URNAL OF GLAC I OLOGY 

dt Fo SteNu 
dT I + Nut' 

Given any property dependency and the variation of N u with time, integration of this equation 
provides the asymptotic solution for interface location. For the case of steady convec tion 
over a constant-property m edium the integration is especially simple, giving 

t[I + Nut/2] = NU T. ( [5 ) 
This agrees with the thermal circuit analysis of London and Seban ( [943) (with 
t (To) = To = 0). Figure 7 shows the interface location plotted against T for various Nusselt 
numbers : when N u -i>- 00, Equation (15) reduces to the Stefan solution as required . It is 
interesting to note that the curves in Figure 7 may be reduced to a single " universal" curve by 
simply multiplying Equation (15) by Nu. The function Nu t versus N u2 T is shown in Figure 6 
along with another approximate expression due to Baxter (1962). Carslaw and J aeger 
( [959, p. 292 ) give the first two terms of a series solution to this problem, i. e. 

Nut = N u2T-H I+ Ste) (N U'Tl'+ .... 

in our notation. This approximates the curves shown in Figure 7 if Nu t ~ I but is not 
complete enough for comparison at higher values. 

5. PRESCRIBED RADIATION 

There are a good many situations in which incident or emitted thermal radiation plays 
an important, if not dominant, role in the history of an interface (Hoinkes, 1955; Schwerdt­
feger and Pounder, 1962; Langleben, 1966) . Yet it appears that this situation has not been 
subjected to a theoretical attack. When heat exchange at the plane x = 0 is by radiation 
alone the boundary condition is conveniently written as 

oc/> 
ox = C<!>~-J( T ) 

where in this special case, <!> = TlTe, C = uEXeT Uk and Te is the transition temperature. 
The asymptotic temperature distribution is therefore given by 

<!>o(x, T) = I + [C<!>~-JH] (x - t ) 
which, at x = 0, yields an algebraic equation for <!> S(T), i.e. 

Ct<!>~ + <!>s- [[ + U (T)] = 0, 

Typically, Ct ~ I , and hence a solution of this equation may be sought by writing 

<!>sH = I+ UH - Ct <!>: ( [6 ) 
and taking 

<!>s = I + U H -(Ct) g, (t,T)-(Ct)2 g, (t, T)- .... 
Substituting in Equation ( ) 6) and grouping coeffici ents of like powers of Ct gives an infinite 
set of algebraic equations for gl, gl , etc. Solving, we obtain 

Hence, 

gl (t , T) = [I + UH ]4, 
g2 (t , T) = - 4[1 + UH]7, 
g3(t, T) = 22 [1 + U (T)]lO, 

etc . 

<!>sH = [I + U (T)] - Ct[1 + U (T)]4 + 

+ 4(gg)2 [I + U HP - 22 (Ct)3 [I + U (T)]lO + .... 

If, for simplicity, we ignore incident radiation this reduces to 

<!>sH = I - Ct + 4(Ct )2_ 22 (Ct )3+ .. . . 
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Nu 2 T 
Fig. 6. Interface history for consiant convection. 

At the interface, Equation (6) (or (12) or ( 14)) becomes 

d~ I 
dT = [[G~_4 (G~) 2 + 22 (G~)3- ... ] 

if incident radiation is neglected and properties are constant. Rearranging, 

[I +4G~-6 (G~)2+ 28 (G~)3- . .. ] d (G~) = G2 dT, 
and integrating 

G~+ 2 (G~)2_ 2 (G~)3+ 7 (G~) 4 - ... = G2T, 

1.0 .----,-----.-.---.-~------,..-...".,---,.-,---." 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 
T 

0.8 

Fig. 7. Parametric history f or cOllsiallt cOllvectioll. 
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if g( TO) = TO = o. This "universal" relation is shown plotted in Figure 8 for each of the first 
four approximations to the left-hand side. Four terms appear to be adequate in describing 
the complete series. Figure 9 illustrates the effect of the "radiation number" on the interface 
history. 

6. DISCUSSION AND CONCLUSIONS 

The asymptotic solutions developed above have been shown, wherever possible, to be close 
approximations to the truth for ice-water systems over a wide range of conditions. Despite 
their simplicity, these solutions reveal the essential characteristics of transition phenomena 
and are capable of generalization. For example, the constant-convection boundary condition 
yielded a relation of the form 

Nu g = 11 (Nu'T) 
which may be generalized immediately to 

Nu g = f2 (Nu2T, Ste) 

0.2000 ..-----,------r------r------".-------.-~"7'7'-_, 

0.1500 

0.1000 

0.0500 

0.050 0.100 0.150 0.200 0.250 0.300 
G2 T 

Fig. 8. Interface history for radiative cooling. 

as confirmed by the complete solution for this case. Similarly, we may expect a general 
relation of the form Gg = jj (G2

T, Sle) for radiation. 
The principal advantage of the asymptotic solution is the capacity to handle arbitrary 

boundary conditions. Typically, this advantage will outweigh the error resulting from the 
neglect of sensible heat effects, which are usually small. The results presented here are merely 
indicative of the procedure and the error involved. In general, the interface equation will be 
a first-order non-linear differential equation not soluble by elementary methods. Neverthe­
less, the equation may always be solved by fairly straight forward graphical or numerical 
methods to yield solutions for any meteorological condition at the surface and including any 
continuous spatial or temperature variation of the medium properties . 
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A representative assessment of the error implicit in the use of asymptotic solutions may be 
obtained from Figures 3 to 6. The error resulting from the neglect of property variations, as 
illustrated by Figure 3, may be considerably greater than those resulting from the use of an 
initial temperature not equal to the transition temperature or the neglect of sensible heat in 
the forming phase, as indicated by Figure 4. This last approximation, which is implicit in all 
asymptotic solutions, introduces an error of order not greater than Ste and typically much less. 

In view of the wide range of situations in which an asymptotic solution may be of value 
it is virtually impossible to present separate results for each individual approximation involved . 
Regardless of the complexity of the situation, the normalization and subsequent order-of­
magnitude procedure should a lways provide an adequate measure of the validity of any 
particular approximation. It is suggested that most of those discussed in the paper would be of 
value within certain branches of the earth sciences and, in particular, within glaciology. 

0.8 - G = 0.1 

0.05 

0.6 

~ 
0.4 

4 8 12 16 20 24 

Fig. 9 . Parametric history for radiatiue cooling. 
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