
Chapter 2

Network data across fields

We seek to understand network data in part because networks are everywhere. Whenever
a system has interacting elements, a network may be a useful representation of it. Even
when there is no obvious network structure, often network structure emerges from
the interactions in the system. As a result, most complex systems can be described as
networks. The network framework makes itself useful.

For instance, consider again the problem from Ch. 1 of predicting the 3D structure
of a protein. Structure prediction has been a famous outstanding challenge for biologists
until recently, when DeepMind’s AlphaFold made an incredible breakthrough [226].
AlphaFold has been touted 1 as the most impactful contribution of deep learning because
finding the 3D structure of a protein has been a bottleneck in the investigation of protein
functions and interactions. At first glance, there is no obvious network structure we can
see in this problem—it’s about understanding the complex energy landscape of various
possible 3D molecular structures, right? Indeed, at the basic level it is about finding a
3D configuration of a long chain of amino acids. But at the same time, the problem is
about effectively predicting the long-range connections between amino acids. A pair of
amino acids can be separated by hundreds of other acids in the chain, yet be neighbors
in the folded protein. So, how should we represent this “neighboring” relationship? Yes,
you can represent it as a weighted network between amino acid residues! One of the
key components of AlphaFold’s machinery is exactly predicting this network structure.

Beyond proteins, networks are pervasive throughout biology and in fact all fields
of research. In this chapter we’ll discuss examples of networks and the data used to
measure them through biology, neuroscience, sociology, economics, and more. We’ll
also identify several focal points—network data we will take with us throughout this
book as working examples and use cases. These networks were chosen because they
collectively capture most of the variations that we want to cover and because they are
easy to grasp and understand.

1 AlphaFold’s success surprised many. Scientists have struggled with the structure prediction problem
for nearly 50 years. “I never thought I’d see this in my lifetime,” said John Moult, cofounder of the protein
structure prediction competition that AlphaFold won [258]. In 2022, DeepMind announced that AlphaFold
had solved the structures of over 200 million proteins, nearly every protein known to exist [90]. And as
successful as it has been and promises to be, AlphaFold is not the end of the story, but the beginning [316].
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18 CHAPTER 2. NETWORK DATA ACROSS FIELDS

2.1 Biology
Networks come into play at all levels of biological research. Organismal processes are
fundamentally governed by network processes, and a major research effort of biologists
has been gathering, at scale, the data necessary to describe such networks. Here are
some examples.

Networks in the cell
We can find many networks across a wide range of scales in biological systems, from
interaction networks between microscopic molecules to ecological networks between
living organisms. Let’s talk about some of these networks.

First, consider the essential parts of biology’s central dogma. All of the most critical
molecules in living organisms—DNAs, RNAs, and proteins—interact with each other.
As mentioned earlier, each protein molecule can be thought of as a weighted network
between amino acids, connected by the long-range connections created when folding
the protein. These proteins are translated from RNA molecules, which are the result of
the transcription process from DNA molecules. All of these processes are executed by
tiny protein machines called protein complexes.

Now we already have many choices on how to operationalize the network between
these molecules. We can focus only on the physical interactions between individual
proteins (e.g., will these two proteins stick together or not?), or we can focus on the
underlying genes by considering interactions between genes mediated by the proteins.
The former is called the protein–protein interaction network (PPI) and one example of
the latter is the genetic regulatory network (GRN). A gene can either promote or inhibit
the expression of another gene, depending on what the protein that it generates can do.

Proteins perform many different tasks in living organisms. Some proteins regulate
the production of other proteins. Some act as catalysts for the synthesis or breakdown
of molecules, governing whether a certain metabolic reaction is possible or not. Some
proteins are for the structure of the cells. Some proteins carry messages.

Protein networks capture interactions in a very real sense: molecules fitting together
to make complexes. But networks can be more phenomenological as well. Genetic
interaction networks are one example. In these networks, two genes are connected
based on how the deletion of one or the other (or both) affects the organism. If knocking
out both genes produces a surprisingly devastating impact on the organism, then we can
say that the two genes are interacting, maybe through a process of compensation.

Other molecules synthesized and controlled by the activities of the organism’s
genes and proteins are worth studying as networks. The metabolic network captures how
metabolites are transformed along synthesis pathways. Here nodes represent metabolites
and links represent the transformation of one metabolite into another as part of a
synthesis pathway. Often times diseases manifest as dysfunction of these pathways,
and comparing the networks with and without disease can guide us to understand the
disease’s effects and even inform possible drug targets or other medical treatments.

In all these networks, we are reducing the complex interactions that involve DNA,
RNA, and proteins and other molecules by focusing only on one type of element at a
time because it simplifies the picture a lot. It is also possible to model different types
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of elements together, which may be closest to reality, but this also introduces a lot of
complexity to our data. And of course, with so many possible interactions, the data we
need is vast and, as rich as current data are, we are still just beginning to see the larger
picture of the cell.

Network neuroscience
Going up the scale, we can examine interactions between cells. One of the most obvious
examples would be the neuronal network of the brain. A brain is a dynamic network of
neurons that communicate with each other using chemical and electrical signals.

The brain can be modeled in many different ways. At the base level, there is an actual
network of neurons that are connected by synapses. This is of course very difficult to
measure because the synapses are microscopic. Yet surprisingly, scientists have brain
network data at the level of individual neurons, using methods to collect data about
individual connections between neurons. For instance, the connectome project takes
pictures of extremely thin slices of a brain, which are computationally aligned to map
out connection structure from across the slices. Other methods use multi-electrode
arrays and calcium imaging to show the spiking of neurons over time. And scientists
have developed methods to infer the network structure based on the timing of spikes
across different neurons.

Perhaps the most famous example of a complete neuron-level brain network is
that of C. elegans, a small (about 1 mm) nematode. It does not have many cells and
neurons, and nematodes with identical genes develop the same neuronal network. In
heroic effort, scientists have mapped every cell in the nematode, including the neurons
and the connections between the neurons. They froze the worm and created very thin
slices across the body and painstakingly followed every neuron across slices. This work,
in combination with other mapping of C. elegans genetics, development, and more, led
to the 2002 Nobel Prize for Physiology or Medicine.

Other methods can map the brain network but only at a larger scale. Instead of
working at individual neurons, we can think of brain regions that roughly correspond to
certain brain functions as nodes. Now each node can be millions or billions of neurons.
But what are the edges? Again the edges can be defined in many ways, based on the data
available. One way to define and measure edges is from physical connections between
regions in the brain. Methods like diffusion tensor imaging (DTI) allow us to follow
large bundles of axons that wire different parts of the brain together. By inferring these
axon bundles from measurements, we can “connect” brain regions. This network is
often called the “structural connectome.”

But there is also a completely different way to measure connections, called the
“functional connectome.” Here, instead of examining physical connections, we measure
the activities of brain regions with functional magnetic resonance imaging (fMRI). If
two regions fire together often, it probably means that they are functionally connected.
This is the idea behind the functional brain network.

Network neuroscience continues to expand its data. Gene expression data is now
often incorporated into network studies, and brain networks are often compared to
sociodemographic information using large-population brain imaging studies such as
the massive ABCD (Adolescent Brain Cognitive Development) study [97].
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Networked ecology
Networks enter into ecology in a variety of ways. One example is trophic networks, more
commonly known as food webs. In an ecosystem’s trophic network, nodes represent
species and links represent the “exchange of carbon”—a pleasant euphemism that often
means members of one species eat members of the other. Food webs have an intrigu-
ing hierarchical structure starting from apex predators at the top and flowing down to
organisms that survive on detritus—leftover, usually decaying, organic matter—or on
photosynthesis. Capturing data on these trophic interactions is challenging: ecologists
must often conduct long-running surveys to determine if one species indeed feeds off
another. This labor-intensive research leads to precious data, especially when com-
pounded by the critical need to understand and maintain the health of ecosystems 2 in
the face of ongoing climate change.

Another network commonly studied is one of plants and plant pollinators, for
example flowers and bees. Here nodes represent organisms (species), either plants or
pollinators, and a link exists from a plant to a pollinator if that pollinator is known
to pollinate that plant.3 Such a network is often called a mutualistic network. This is
fundamentally an experimental network: field observations are made tracking how often
different pollinators were caught in flagrante delicto with different plants. Combining
these observations, perhaps with some data cleaning or other processing, and a plant–
pollinator network is made. Studying these networks in different regions and over time
tells us about the health of those ecosystems, including their resilience to shocks such
as climate change.

2.2 Socioeconomic systems
Our society is also a huge network—our social network. Broadly speaking, nodes in the
network are the people in the society and edges are social relationships. But there are
countless ways to think about and define specific social networks, especially the social
ties. Maybe we are interested in whether two people know each other or not; sometimes
we want to map the network of close friends; or perhaps we wish to understand proximity,
the network of individuals who live geographically close to one another. How about
family ties? How about shared social groups such as clubs? There are many ways to
define a network and map social ties to edges. What definition or definitions we choose
should be carefully considered and strongly motivated by the research question at hand.

How are social networks commonly measured? Historically, sociologists relied on
surveys, questionnaires, and interviews. Visiting with individuals, they would ask, “Are
you friends with 𝑋?” or perhaps, “List your 10 closest friends.” Already we can see the
power of the surveyor: the form of the question can strongly dictate the final network.
If they ask, “List the 10 people you spend the most time with” you may get a very
different network than asking about close friends. Likewise, why stop at 10 social ties?
This will truncate the network in many ways, filtering out casual acquaintances or
weak ties. Yet, one of the most famous results in social networks tells us weak ties are

2 For one, much of our food supply is at stake.
3 An example of a bipartite network.
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important to understand: job seekers often find employment opportunities not from their
close, or strong ties, who likely have similar social circles and thus access to the same
information, but weak ties [190]. The manual methods for surveying social networks
were the backbone of social network research, but the scale of social network makes it
difficult to gather sufficient volumes of data.

The rise of both computing and the Internet has changed studies of social networks.
Survey data no longer need to be processed by hand but can be analyzed automatically
with computers. More importantly, many new sources of data that do not require
laborious surveys are available. Mobile phones are very popular devices, and billing
records managed by telecommunications companies, tracking who-calls-whom, are a
valuable source of communication interactions. And the advent in recent decades of
online social networks, platforms where users sign in to share and consume information,
give even richer sources of social network data. 4 The social ties are essentially collected
automatically from building the friends and “followers” lists of users. Massive amounts
of data are now available.

While online social networks are a boon for researchers, they also change the situa-
tion in difficult ways. Online social interactions can be quite different from interactions
in the real world. A close tie online may not be a close tie in real life, and vice versa.
The behaviors people display online may be quite different from real life, and vice
versa. The set of users of an online platform may not be representative of all people,
often favoring wealthier and more tech-adept people. It may not be possible to tell if
one person is using different accounts, or if different accounts actually belong to the
same person. Users of the platform may not even be people at all—bots, automated
accounts, are quite common. Both measuring people, the nodes, and measuring social
interactions, the links, can be fraught. Any inferences about the “real” social network
that a researcher draws from the online data may not hold.

Beyond social networks, many other networks play roles in socioeconomic systems.
Economic and financial systems are driven by networks at all scales. From the social
side, we can study the social relationships between individuals associated with different
companies. One way is to build a network where nodes represent company board
members and people are connected if they serve on at least one board. Many strategic
relationships between companies are associated with shared board members. Most
companies are required to publish the memberships of their boards, making this data
publicly available.

Another example of a socioeconomic network is a labor flow network. Here nodes
consist of job seekers and companies while links exist when a job seeker is employed
by a given company. This network evolves in time, tracking the movements between
companies as people switch jobs, and can reveal interesting structure among different
sectors of the larger labor market [358]. Although not publicly available, data for this
network is now tracked by online employment platforms where companies post job
openings and job seekers submit applications.

Lastly, the stock market and other financial industries are ripe for network analysis.
Using data on worldwide trade, we can build a network between countries based on
what the countries are trading and to whom, giving us network insights into global

4 There can also be some serious privacy concerns with such data (Ch. 3).
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trade. Networks can also be extracted from stock market data, where nodes represent
traded companies and links exist between companies whose trading prices are, in some
manner, heavily associated or correlated over time. (Extracting an underlying network
from time series data is a very common task.) This network can reveal connections
between companies when their stock prices move together. The banking sector provides
even more opportunities for networks. A network between banks, for instance, tracking
who holds assets in what, lets us study the stability or robustness of the banking
sectors [47]. This became important when recovering from the 2008 financial crisis
because it can inform, based on the risk of different asset portfolios, where and how far
economic shocks can propagate.

2.3 Other fun networks
Networks arise in countless other contexts. Here are just a few possibilities.

One example is the flavor network (Fig. 1.4). Here nodes represent the ingredients
that go into foods, and links exist between ingredients that share chemical compounds.
Exploring the structure of this network and how it relates to recipes, sets of foods, may
help us discover novel food pairings, new and under-explored recipes [6].

Another network comes from the design of electronic circuit boards and integrated
circuits. Here nodes represent electrical components such as resistors and capacitors
and links exist between nodes that are electrically connected. Circuit design uses such
networks to calculate current flows, voltages, and such, but the network is also spatial
in that it must be laid out on a circuit board, and laying out the components so that
the electrical connections (the edges) are as short as possible is a challenging design
problem. This design is made even more difficult when you realize that edges cannot
cross, which may be impossible on a planar circuit board. To lay out such a circuit
requires using multiple boards stacked in layers. But using many layers makes the
device more expensive to build, and connections between layers are more costly than
connections within a layer. This points us to designs that minimize the number of layers
and maximize the number of edges within layers.

At the very opposite end of the size range from such microelectronics are infras-
tructure networks such as the power grid. For the power grid, nodes represent power
generators and consumers while links represent electric transmission (load flow) be-
tween nodes, often in the form of high-voltage long-distance transmission lines. The
modern power grid is exceptionally reliable, but blackouts do occur. The advent of
renewable resources such as solar panels and wind farms promises to make controlling
the grid more difficult, as these power sources are not controllable like coal or nuclear
power plants.

In an entirely different domain, language and linguistics provides fertile ground for
networks. Consider networks where the nodes are words. The thesaurus: edges denote
words that are synonyms. Word association: directed edges denote words that people
respond to when prompted by, “what’s the first word you think of when I say the word
𝑋”? Word co-occurrence: edges denote words that appear next to one another in written
documents. This last network has been a major data contributor when constructing large
language models, machine learning models that can respond to and create convincingly
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natural written language.
On the subject of machine learning, neural networks have become the dominant

method of making predictions. The nodes of a neural network represent areas where
data (numbers) are aggregated (summed) and transformed using some type of (nonlin-
ear) activation function, in analogy with the “integrate-and-fire” model of biological
neurons. Links exist when the output of one node serves as an input to another. These
inputs are often modified using a weighted sum, with the weights being parameters that
we learn by “training” the network: passing data with known output through the network
and examining the network’s final output, learning algorithms can adjust the weights
to guide the output to match known results. The overall organization of the network is
called its architecture, and neural networks can be designed to solve many problems by
the right choice of architecture. Neural networks can be studied using network science
tools and neural networks can be used to study other networks, which we’ll explore later
in this book.

Of course, the sky is the limit when it comes to networks. Their ubiquity is yet
another reason why they are such valuable, important objects of study.

2.4 Focal Points: networks used throughout this book
Let’s pick some networks for our journey. They should be interesting, representative
of certain domains and characteristics, and manageable. These focal networks will
be referred to throughout the text, grounding our discussion of real-world issues and
practices.

Data for each network is available online at cambridge.org/network-data. Later
chapters will work through how to use and study these data.

Zachary’s Karate Club
Almost no treatment of networks is complete without some reference to the famous
Karate Club [505]. This small network was gathered through surveys by Wayne Zachary
during the early 1970s. It captures members of a university martial arts club who
interacted heavily outside the club, according to Zachary’s data. What’s interesting
about this network, and what has driven its long-running popularity, is that the members
of this club had a disagreement and split into two groups, one focused on the club
president and the other focused on the club’s karate instructor. These groups are visible
in the network’s structure prior to the split, making the network a test case for group
identification methods.

Plant–pollinator network
Our second focal point is a plant–pollinator network [40]. Here the nodes fall into
two groups: pollen-spreading organisms such as bees, and plants who are pollinated
by those organisms. Links in the network connect only plant to pollinator, capturing
field observations of that pollinator acting to pollinate that plant. This condition, where
nodes fall into two groups and links exist only between—not within—the groups, is the
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definition of a bipartite network. Bipartite networks such as this one are often studied
in ecology. One type of study is to examine differences in the network over time due
to climate change, invasive species, and so forth. This particular network was collected
from field observations conducted in Spain, and the data includes metadata: the species
names associated with each node in the network.

Developer collaboration network
This focal point is a network representing software developers contributing to open
source projects hosted by IBM on the GitHub online development platform [27]. Nodes
represent developers (identified by their GitHub usernames) and links connect devel-
opers who have edited one or more source code files in common, a simple measure of
collaboration. We treat the network as weighted by associating with each link a weight
counting the number of files commonly edited by the two developers. This makes the
network a “projection” 5 of a bipartite network between developers and source code
files. This network is also dynamic, evolving over the years 2013–2017.

Flavor network
Mentioned before, this network is derived from a reference text describing what flavor
molecules are present in different food ingredients [6]. Food chemists use this reference
when devising new flavor additives. But we can use the network to understand better the
quality and nature of different recipes (combinations of food ingredients). While cooking
is a highly multidimensional process, with preparatory steps, cooking temperature,
aroma, and other factors playing important roles in taste, these flavor molecules provide
a quantitative starting point to understanding flavor. Indeed, the pairing hypothesis
states that foods that share many flavor molecules are more likely to taste well together
than foods that share few molecules. Testing this hypothesis using a large set of recipes,
Ahn et al. [6] found that indeed the hypothesis holds, but more for Western cuisine.
East Asian cuisines tend to avoid pairing foods that share compounds. With these data,
network analysis can help drive the study of systems gastronomy.

Human Reference Interactome
Our next focal point is HuRI: the Human Reference Interactome [283]. Here nodes
in the network represent proteins and links exist between proteins that were observed
to interact, according to high-throughout assay experiments. HuRI is the result of
a decades-long effort to map out the human proteome, the interaction network of
human proteins. At the time of this writing, HuRI is the most complete protein–protein
interaction (PPI) network to date. Nodes in the network are represented by standardized
IDs. A researcher interested in these data can enrich their study with node metadata, in

5 A projection of a bipartite network is one where two nodes in the projected network were connected to
the same node in the bipartite graph, that common node being absent in the projection. A bipartite network
can be projected onto either “side,” either set of nodes. For example, a network of film actors where two
actors are connected if they costarred in any movies is the projection of an actor–movie network onto the
actors.
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this case using standard GENCODE gene annotations, a “controlled vocabulary” that
biologists use to describe information about the protein.

Malawi Sociometer Network
This network came from a study that asked individuals in a village in Malawi to
wear small proximity sensors on their chests as they went about their day-to-day busi-
ness [353]. These proximity sensors can detect and record the presence of other sensors
worn by study participants. Tracking what sensors are near one another and when leads
to a contact network between participants that changes over time. Here nodes in the
network are study participants (sensor wearers) and a link is noted when the two corre-
sponding sensors have detected one another in close proximity. We treat this network
both as a static and a dynamic network (Ch. 15), with the static network made by
summing the number of contacts observed between participants over all time. (In other
words, an edge in the static network represents the total number of contacts between
two individuals.) This focal point also illustrates how gathering and studying network
data gives rise to ethical concerns (Ch. 3): the authors of the original study took care
to acquire informed consent from study participants.

We will use a “bolt” symbol ( ) in the margin when discussing a focal network.

2.5 Summary
All fields of science benefit from gathering and analyzing network data. This chapter
has summarized only a small portion of the ways networks are found in research fields
thanks to increasing volumes of data and the computing resources needed to work with
that data. Epidemiology, dynamical systems, materials science, and many more fields
than we can discuss here, use networks and network data. We’ll encounter many more
examples during the rest of this book.

Bibliographic remarks
Networks pervade biology. For a influential review in the context of cell biology, see
Barabási and Oltvai [37]. In the area of neuroscience, readers may be interested in
Bassett and Sporns [44] for a review of network neuroscience, or the more expansive
Networks of the brain [442]. For those interested in ecological studies, consider Pascual
and Dunne [361], Proulx et al. [380], and Bascompte [41].

Networks have been a part of sociology from the very beginning, dating all the
way back to Jacob Moreno’s pioneering work [317]. In many ways, the standard text for
social network analysis remains Wasserman and Faust [485]. With the rise of the Internet
and new data sources, sociology has kept up, with the new field of computational social
science arising [264]. For a exciting general audience overview of social science and
these new data, consider Salganik [412].
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Readers interested in other areas may wish to consult Ahn et al. [6] for the flavor
network study; Baker [31] or the now classic work of Mead and Conway [303] for an
overview of circuit board design, known as VLSI (very large scale integration); Chu
and Iu [105] for a review of the power grid (and the “smart grid”) from a network
perspective; or Cong and Liu [114] for a review of human language as a network.

Exercises
2.1 Collecting data on networks is costly, which was especially limiting before com-

puters and computerized data collection. Suppose you are surveying a group of
100 students to learn about the social network of their school. It costs 𝑋 = $10 to
interview each student, during which you ask them to list their 10 closest friends.
Later, it costs, 𝑌 = $2 to validate each reported social link.

(a) How much will it cost to collect and validate the data? Do interviews or link
validations contribute more to the total survey cost?

(b) One student may list another as a friend but the other student may disagree,
leading to a social link that is not reciprocated. If a link only needs to be
checked once, regardless of whether student 𝑖 listed 𝑗 as a tie or 𝑗 listed
𝑖, how will the survey’s cost change based on how often friendships are
reciprocated?

2.2 (Focal network) The flavor network captures whether food ingredients share
chemical compounds. We could also define a network based on recipes, where
nodes represent recipes and links exist between recipes that have common in-
gredients. While the flavor network itself is not multilayer (Sec. 1.4), if a recipe
network were brought in, we could think of it as such.

(a) How can we connect the layers together, meaning how can we place links
from nodes in one network to nodes in the other?

(b) More generally, would a combined flavor–recipe network be worth studying?
Speculate on some ways the second “layer” of the network may relate to
the first. What scientific questions can we investigate with this combined
network?

2.3 (Focal network) The plant–pollinator network is a bipartite network. The devel-
oper collaboration network comes from a bipartite network. That the two networks
share similarities in how they are defined, despite coming from entirely differ-
ent research areas, is intriguing. Speculate on some similarities and differences
between the two networks, think of ways to compare them directly, and describe
some hypotheses that may come from drawing a kind of “analogy,” broadly
speaking, between one network and the other.
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