
European Journal of Applied Mathematics (2025), 1–58
doi:10.1017/S0956792525000099

PAPER

NLP verification: towards a general methodology for
certifying robustness
Marco Casadio1 , Tanvi Dinkar1, Ekaterina Komendantskaya1,2, Luca Arnaboldi3,
Matthew L. Daggitt4, Omri Isac5, Guy Katz5, Verena Rieser1,6 and Oliver Lemon1

1Heriot-Watt University, Edinburgh, UK
2University of Southampton, Southampton, UK
3University of Birmingham, Birmingham, UK
4University of Western Australia, Perth, Australia
5The Hebrew University of Jerusalem, Jerusalem, Israel
6Google DeepMind, London, UK
Corresponding author: Marco Casadio; Email: mc248@hw.ac.uk

Received: 31 May 2024; Revised: 30 January 2025; Accepted: 18 February 2025

Keywords: Neural networks; verification; natural language processing; robustness; adversarial training; machine learning

Abstract
Machine learning has exhibited substantial success in the field of natural language processing (NLP). For example,
large language models have empirically proven to be capable of producing text of high complexity and cohesion.
However, at the same time, they are prone to inaccuracies and hallucinations. As these systems are increasingly
integrated into real-world applications, ensuring their safety and reliability becomes a primary concern. There
are safety critical contexts where such models must be robust to variability or attack and give guarantees over
their output. Computer vision had pioneered the use of formal verification of neural networks for such scenarios
and developed common verification standards and pipelines, leveraging precise formal reasoning about geometric
properties of data manifolds. In contrast, NLP verification methods have only recently appeared in the literature.
While presenting sophisticated algorithms in their own right, these papers have not yet crystallised into a common
methodology. They are often light on the pragmatical issues of NLP verification, and the area remains fragmented.
In this paper, we attempt to distil and evaluate general components of an NLP verification pipeline that emerges
from the progress in the field to date. Our contributions are twofold. First, we propose a general methodology to
analyse the effect of the embedding gap – a problem that refers to the discrepancy between verification of geometric
subspaces, and the semantic meaning of sentences which the geometric subspaces are supposed to represent. We
propose a number of practical NLP methods that can help to quantify the effects of the embedding gap. Second,
we give a general method for training and verification of neural networks that leverages a more precise geometric
estimation of semantic similarity of sentences in the embedding space and helps to overcome the effects of the
embedding gap in practice.

1. Introduction

Deep neural networks (DNNs) have demonstrated remarkable success at addressing challenging prob-
lems in various areas, such as computer vision (CV) [1] and natural language processing (NLP) [2, 3].
However, as DNN-based systems are increasingly deployed in safety-critical applications [4–9], ensuring
their safety and security becomes paramount. Current NLP systems cannot guarantee either truthful-
ness, accuracy, faithfulness or groundedness of outputs given an input query, which can lead to different
levels of harm.

One such example in the NLP domain is the requirement of a chatbot to correctly disclose non-human
identity, when prompted by the user to do so. Recently, there have been several pieces of legislation
proposed that will enshrine this requirement in law [10, 11]. In order to be compliant with these new

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099
https://orcid.org/0009-0001-7675-0743
mailto:mc248@hw.ac.uk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792525000099&domain=pdf
https://doi.org/10.1017/S0956792525000099

2 M. Casadio et al.

laws, in theory the underlying DNN of the chatbot (or the sub-system responsible for identifying these
queries) must be 100% accurate in its recognition of such a query. However, a central theme of generative
linguistics going back to von Humboldt, is that language is ‘an infinite use of finite means’, i.e there
exists many ways to say the same thing. In reality, the questions can come in a near infinite number of
different forms, all with similar semantic meanings. For example: “Are you a Robot?”, “Am I speaking
with a person?”, “Am i texting to a real human?”, “Aren’t you a chatbot?”. Failure to recognise the
user’s intent and thus failure to answer the question correctly could potentially have legal implications
for designers of these systems [10, 11].

Similarly, as such systems become widespread in their use, it may be desirable to have guarantees on
queries concerning safety critical domains, for example when the user asks for medical advice. Research
has shown that users tend to attribute undue expertise to NLP systems [7, 12] potentially causing real
world harm [13] (e.g. ‘Is it safe to take these painkillers with a glass of wine?’). However, a ques-
tion remains on how to ensure that NLP systems can give formally guaranteed outputs, particularly for
scenarios that require maximum control over the output.

One possible solution has been to apply formal verification techniques to DNN, which aims at ensur-
ing that, for every possible input, the output generated by the network satisfies the desired properties.
One example has already been given above, i.e. guaranteeing that a system will accurately disclose its
non-human identity. This example is an instance of the more general problem of DNN robustness ver-
ification, where the aim is to guarantee that every point in a given region of the embedding space is
classified correctly. Concretely, given a network N: Rm →R

n, one first defines subspaces S1, . . . , Sl of
the vector space Rm. For example, one can define “ε-cubes” or “ε-balls”1 around all input vectors given
by the dataset in question (in which case the number of S1, . . . , Sl will correspond to the number of
samples in the given dataset). Then, using a separate verification algorithm V , we verify whether N is
robust for each Si, i.e. whether N assigns the same class for all vectors contained in Si. Note that each
Si is itself infinite (i.e. continuous), and thus V is usually based on equational reasoning, abstract inter-
pretation or bound propagation (see related work in Section 2). The subset of S1, . . . , Sl for which N
is proven robust, forms the set of verified subspaces of the given vector space (for N). The percentage
of verified subspaces is called the verification success rate (or verifiability). Given S1, . . . , Sl, we say
a DNN N1 is more verifiable than N2 if N1 has higher verification success rate on S1, . . . , Sl. Despite
not providing a formal guarantee about the entire embedding space, this result is useful as it provides
guarantees about the behaviour of the network over a large set of unseen inputs.

Existing verification approaches primarily focus on computer vision (CV) tasks, where images are
seen as vectors in a continuous space and every point in the space corresponds to a valid image. In
contrast, sentences in NLP form a discrete domain,2 making it challenging to apply traditional verifi-
cation techniques effectively. In particular, taking an NLP dataset Y to be a set of sentences s1, . . . , sq

written in natural language, an embedding E is a function that maps a sentence to a vector in R
m. The

resulting vector space is called the embedding space. Due to discrete nature of the set Y , the reverse
of the embedding function E−1:Rm →Y is undefined for some elements of Rm. This problem is known
as the “problem of the embedding gap”. Sometimes, one uses the term to more generally refer to any
discrepancies that E introduces, for example, when it maps dissimilar sentences close in R

m. We use the
term in both mathematical and NLP sense.

Mathematically, the general (geometric) “DNN robustness verification” approach of defining and
verifying subspaces of Rm should work, and some prior works exploit this fact. However, pragmatically,
because of the embedding gap, usually only a tiny fraction of vectors contained in the verified subspaces
map back to valid sentences. When a verified subspace contains no or very few sentence embeddings, we
say that verified subspace has low generalisability. Low generalisability may render verification efforts
ineffective for practical applications.

1 The terminology will be made precise in Example 1.
2 In this paper, we work with textual representations of sentences. Raw audio input can be seen as continuous, but this is out of

scope of this paper.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 3

Figure 1. An example of verifiable but not generalisable ε-balls (a), convex-hull around selected embed-
ded points (b), hyper-rectangle around same points (c) and rotation of such hyper-rectangle (d) in
2-dimensions. The red dots represent sentences in the embedding space from the training set belonging
to one class, while the turquoise dots are embedded sentences from the test set belonging to the same
class.

From the NLP perspective, there are other, more subtle, examples where the embedding gap can
manifest. Consider an example of a subspace containing sentences that are semantically similar to the
sentence: ‘i really like too chat to a human. are you one?’. Suppose we succeed in verifying a DNN to
be robust on this subspace. This provides a guarantee that the DNN will always identify sentences in
this subspace as questions about human/robot identity. But suppose the embedding function E wrongly
embeds sentences belonging to an opposite class into this subspace. For example, the LLM Vicuna [14]
generates the following sentence as a rephrasing of the previous one: Do you take pleasure in having a
conversation with someone?. Suppose our verified subspace contained an embedding of this sentence
too, and thus our verified DNN identifies this second sentence to belong to the same class as the first
one. However, the second sentence is not a question about human/robot identity of the agent! When we
can find such an example, we say that the verified subspace is prone to embedding errors.

Robustness verification in NLP is particularly susceptible to this problem, because we cannot cross
the embedding gap in the opposite direction as the embedding function is not invertible. This means it
is difficult for humans to understand what sort of sentences are captured by a given subspace.

1.1 Contributions

Our main aim is to provide a general and principled verification methodology that bridges the embed-
ding gap when possible; and gives precise metrics to evaluate and report its effects in any case. The
contributions split into two main groups, depending on whether the embedding gap is approached from
mathematical or NLP perspective.

1.1.1 Contributions part 1: characterisation of verifiable subspaces and general
NLP Verification Pipeline. We start by showing, through a series of experiments, that purely geometric
approaches to NLP verification (such as those based on the ε-ball [15]) suffer from the verifiability-
generalisability trade-off : that is, when one metric improves, the other deteriorates. Figure 1 gives a
good idea of the problem: the smaller the ε-balls are, the more verifiable they are, and less generalisable.
To the best of our knowledge, this phenomenon has not been reported in the literature before (in the
NLP context). We propose a general method for measuring generalisability of the verified subspaces,
based on algorithmic generation of semantic attacks on sentences included in the given verified semantic
subspace.

An alternative method to the purely geometric approach is to construct subspaces of the embedding
space based on the semantic perturbations of sentences (first attempts to do this appeared in [16–19]).
Concretely, the idea is to form each Si by embedding a sentence s and n semantic perturbations of s into
the real vector space and enclosing them inside some geometric shape. Ideally, this shape should be the

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

4 M. Casadio et al.

convex hull around the n + 1 embedded sentences (see Figure 1), however calculating convex hulls with
sufficient precision is computationally infeasible for high number of dimensions. Thus, simpler shapes,
such as hyper-cubes and hyper-rectangles are used in the literature. We propose a novel refinement of
these ideas, by including the method of a hyper-rectangle rotation in order to increase the shape precision
(see Figure 1). We will call the resulting shapes semantic subspaces (in contrast to those obtained purely
geometrically).

A few questions have been left unanswered in the previous work [16–19]. First, because general-
isability of the verified subspaces is not reported in the literature, we cannot know whether the prior
semantically-informed approaches are better in that respect than purely geometric methods. If they are
better in both verifiability and generalisability, it is unclear whether the improvement should be attributed
to:

• the fact that verified semantic subspaces simply have an optimal volume (for the verifiability-
generalisability trade-off), or

• the improved precision of verified subspaces that comes from using the semantic knowledge.

Through a series of experiments, we confirm that semantic subspaces are more verifiable and more
generalisable than their geometric counterparts. Moreover, by comparing the volumes of the obtained
verified semantic and geometric subspaces, we show that the improvement is partly due to finding an
optimal size of subspaces (for the given embedding space), and partly due to improvement in shape
precision.

The second group of unresolved questions concerns robust training regimes in NLP verification that
is used as means of improving verifiability of subspaces in prior works [16–19]. It was not clear what
made robust training successful:

• was it because additional examples generally improved the precision of the decision boundary (in
which case dataset augmentation would have a similar effect);

• was it because adversarial examples specifically improved adversarial robustness (in which case
simple ε-ball PGD attacks would have a similar effect); or

• did the knowledge of semantic subspaces play the key role?

Through a series of experiments we show that the latter is the case. In order to do this, we formu-
late a semantically robust training method that uses projected gradient descent on semantic subspaces
(rather than on ε-balls as the famous PGD algorithm does [20]). We use different forms of semantic
perturbations, at character, word and sentence levels (alongside the standard PGD training and data
augmentation) to perform semantically robust training. We conclude that semantically robust training
generally wins over the standard robust training methods. Moreover, the more sophisticated semantic per-
turbations we use in semantically robust training, the more verifiable the neural network will be obtained
as a result (at no cost to generalisability). For example, using the strongest form of attack (the polyjuice
attack [21]) in semantically robust training, we obtain DNNs that are more verifiable irrespective of the
way the verified sub-spaces are formed.

As a result, we arrive at a fully parametric approach to NLP verification that disentangles the four
components:

• choice of the semantic attack (on the NLP side),
• semantic subspace formation in the embedding space (on the geometric side),
• semantically robust training (on the machine learning side),
• choice of the verification algorithm (on the verification side).

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 5

We argue that this approach opens the way for more principled NLP verification methods that reduces
the effects of the embedding gap; and generation of more transparent NLP verification benchmarks. We
implement a tool ANTONIO that generates NLP verification benchmarks based on the above choices.
This paper is the first to use a complete SMT-based verifier (namely Marabou [22]) for NLP verification.

1.1.2 Contributions part 2: NLP verification pipeline in use: an NLP perspective on the embedding gap
We test the theoretical results by suggesting an NLP verification pipeline, a general methodology that
starts with NLP analysis of the dataset and obtaining semantically similar perturbations that together
characterise the semantic meaning of a sentence; proceeds with embedding of the sentences into the real
vector space and defining semantic subspaces around embeddings of semantically similar sentences;
and culminates with using these subspaces for both training and verification. This clear division into
stages allows us to formulate practical NLP methods for minimising the effects of the embedding gap.
In particular, we show that the quality of the generated sentence perturbations maybe improved through
the use of human evaluation, cosine similarity and ROUGE-N. We introduce the novel embedding
error metric as an effective practical way to measure the quality of the embedding functions. Through
a detailed case study, we show how geometric and NLP intuitions can be put at work towards obtaining
DNNs that are more verifiable over better generalisable and less prone to embedding errors semantic
subspaces. Perhaps more importantly, the proposed methodology opens the way for transparency in
reporting NLP verification results, – something that this domain will benefit from if it reaches the stage
of practical deployment of NLP verification pipelines.

Paper Outline. From here, the paper proceeds as follows. Section 2 gives an extensive literature
review encompassing DNN verification methods generally, and NLP verification methods in particular.
The section culminates with distilling a common “NLP verification pipeline” encompassing the existing
literature. Based on the understanding of major components of the pipeline, the rest of the paper focuses
on improving understanding or implementation of its components. Section 3 formally defines the com-
ponents of the pipeline in a general mathematical notation, which abstracts away from particular choices
of sentence perturbation, sentence embedding, training and verification algorithms. The central notion
the section introduces is that of geometric and semantic subspaces. The next Section 4 makes full use of
this general definition, and shows that semantic subspaces play a pivotal role in improving verification
and training of DNNs in NLP. This section formally defines the generalisability metric and considers
the problem of generalisability-verifiability trade-off . Through thorough empirical evaluation, it shows
that a principled approach to defining semantic subspaces can help to improve both generalisability and
verifiability of DNNs, thus reducing the effects of the trade-off. The final Section 5 further tests the
NLP verification pipelines using state-of-the-art NLP tools, and analyses the effects of the embedding
gap from the NLP perspective, in particular it introduces a method of measuring the embedding error
and reporting this metric alongside verifiability and generalisability. Section 6 concludes the paper and
discusses future work.

2. Related work
2.1 DNN verification

Formal verification is an active field across several domains including hardware [23, 24], software [25],
network protocols [26] and many more [27]. However, it was only recently that this became applicable to
the field of machine learning [28]. An input query to a verifier consists of a subspace within the embed-
ding space and a target subspace of outputs, typically a target output class. The verifier then returns
either true, false or unknown. True indicates that there exists an input within the given input subspace
whose output falls within the given output subspace, often accompanied by an example of such input.
False indicates that no such input exists. Several verifiers are popular in DNN verification and compe-
titions [29–32]. We can divide them into 2 main categories: complete verifiers which return true/false

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

6 M. Casadio et al.

and incomplete verifiers which return true/unknown. While complete verifiers are always deterministic,
incomplete verifiers may be probabilistic. Unlike deterministic verification, probabilistic verification is
not sound and a verifier may incorrectly output true with a very low probability (typically 0.01%).

Complete Verification based on Linear Programming & Satisfiability Modulo Theories (SMT) solv-
ing. Generally, SMT solving is a group of methods for determining the satisfiability of logical formulas
with respect to underlying mathematical theories such as real arithmetic, bit-vectors or arrays [33]. These
methods extend traditional satisfiability (SAT) solving by incorporating domain-specific reasoning, mak-
ing them particularly useful for verifying complex systems. In the context of neural network verification,
SMT solvers encode network behaviours and safety properties as logical constraints, enabling rigorous
checks for violations of specifications [34]. When the activation functions are piecewise linear (e.g.
ReLU), the DNN can be encoded by conjunctions and disjunctions of linear inequalities and thus linear
programming algorithms can be directly applied to solve the satisfiability problem. A state-of-the-art
tool is Marabou [22], which answers queries about neural networks and their properties in the form
of constraint satisfaction problems. Marabou takes the network as input and first applies multiple pre-
processing steps to infer bounds for each node in the network. It applies the algorithm ReLUplex [28],
a combination of Simplex [35] search over linear constraints, modified to work for networks with piece-
wise linear activation functions. With time, Marabou grew into a complex prover with multiple heuristics
supplementing the original ReLUplex algorithm [22], for example it now includes mixed-integer lin-
ear programming (MILP) [36] and abstract interpretation based algorithms which we survey below.
MILP-based approaches [37–39] encode the verification problem as a mixed-integer linear program-
ming problem, in which the constraints are linear inequalities and the objective is represented by a
linear function. Thus, the DNN verification problem can be precisely encoded as a MILP problem. For
example, ERAN [40] combines abstract interpretation with the MILP solver GUROBI [41]. By the time
Branch and Bound (BaB) methodologies are introduced later, it becomes evident that the verification
community has effectively consolidated diverse approaches into a unified taxonomy. Modern verifiers,
such as αβ-CROWN [42, 43], take full advantage of this combination and effectively balance efficiency
with precision.

Incomplete Verification based on Abstract Interpretation takes inspiration from the domain of abstract
interpretation, and mainly uses linear relaxations on ReLU neurons, resulting in an over-approximation
of the initial constraint. Abstract interpretation was first developed by Cousot and Cousot [44] in 1977.
It formalises the idea of abstraction of mathematical structures, in particular those involved in the spec-
ification of properties and proof methods of computer systems [45] and it has since been used in many
applications [46]. Specifically, for DNN verification, this technique can model the behaviour of a net-
work using an abstract domain that captures the possible range of values the network can output for
a given input. Abstract interpretation-based verifiers can define a lower bound and an upper bound of
the output of each ReLU neuron as linear constraints, which define a region called ReLU polytope that
gets propagated through the network. To propagate the bounds, one can use interval bound propagation
(IBP) [47–50]. The strength of IBP-based methods lies in their efficiency; they are faster than alter-
native approaches and demonstrate superior scalability. However, their primary limitation lies in the
inherently loose bounds they produce [48]. This drawback becomes particularly pronounced in the case
of deeper neural networks, typically those with more than 10 layers [51], where they cannot certify non-
trivial robustness properties. Other methods that are less efficient but produce tighter bounds are based
on polyhedra abstraction, such as CROWN [52] and DeepPoly [53], or based on multi-neuron relax-
ation, such as PRIMA [54]. An abstract interpretation tool CORA [55], uses polyhedral abstractions
and reachability analysis for formal verification of neural networks. It integrates various set represen-
tations, such as zonotopes, and algorithms to compute reachable sets for both continuous and hybrid
systems, providing tighter bounds in verification tasks. Another mature tool in this category is ERAN
[40], which uses abstract domains (DeepPoly) with custom multi-neuron relaxations (PRIMA) to sup-
port fully-connected, convolutional and residual networks with ReLU, Sigmoid, Tanh and Maxpool
activations. Note that, having lost completeness, they can work with a more general class of neural
networks (e.g. neural networks with non linear layers).

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 7

Modern Neural Network Verifiers. Modern verifiers are complex tools that take advantage of a com-
bination of complete and incomplete methods as well as additional heuristics. The term Branch and
Bound (BaB) [43, 56–61] often refers to the method that relies on the piecewise linear property of
DNNs: since each ReLU neuron outputs ReLU(x) = max{x,0} is piecewise linear, we can consider
its two linear pieces x ≥ 0, x ≤ 0 separately. A BaB verification approach, as the name suggests, con-
sists of two parts: branching and bounding. It first derives a lower bound and an upper bound, then,
if the lower bound is positive it terminates with ‘verified’, else, if the upper bound is non-positive it
terminates with ‘not verified’ (bounding). Otherwise, the approach recursively chooses a neuron to split
into two branches (branching), resulting in two linear constraints. Then bounding is applied to both
constraints and if both are satisfied the verification terminates, otherwise the other neurons are split
recursively. When all neurons are split, the branch will contain only linear constraints, and thus the
approach applies linear programming to compute the constraint and verify the branch. It is important to
note that BaB approaches themselves are neither inherently complete nor incomplete. BaB is an algo-
rithm for splitting problems into sub-problems and requires a solver to resolve the linear constraints. The
completeness of the verification depends on the combination of BaB and the solver used. Multi-Neuron
Guided Branch-and-Bound (MN-BaB) [59] is a state-of-the-art neural network verifier that builds on the
tight multi-neuron constraints proposed in PRIMA [62] and leverages these constraints within a BaB
framework to yield an efficient, GPU-based dual solver. Another state-of-the-art tool is αβ-CROWN [42,
43], a neural network verifier based on an efficient linear bound propagation framework and branch-and-
bound. It can be accelerated efficiently on GPUs and can scale to relatively large convolutional networks
(e.g. 107 parameters). It also supports a wide range of neural network architectures (e.g. CNN, ResNet
and various activation functions).

Probabilistic Incomplete Verification approaches add random noise to models to smooth them, and
then derive certified robustness for these smoothed models. This field is commonly referred to as
Randomised Smoothing, given that these approaches provide probabilistic guarantees of robustness,
and all current probabilistic verification techniques are tailored for smoothed models [63–68]. Given
that our work focuses on deterministic approaches, here we only report the existence of this line of work
without going into details.

Note that these existing verification approaches primarily focus on CV tasks, where images are seen
as vectors in a continuous space and every point in the space corresponds to a valid image, while sen-
tences in NLP form a discrete domain, making it challenging to apply traditional verification techniques
effectively.

In this work, we use both an abstract interpretation-based incomplete verifier (ERAN [40]) and an
SMT-based complete verifier (Marabou [22]) in order to demonstrate the effect that the choice of a
verifier may bring and demonstrate common trends.

2.2 Geometric representations in DNN verification

Geometric representations form the backbone of many DNN verification techniques, enabling the encod-
ing and manipulation of input and output bounds during analysis. Among these, hyper-rectangles,
including ε-cubes, are the most widely used due to their simplicity and efficiency in over-approximating
neural network behaviours [47, 48].These representations are computationally lightweight, making them
highly scalable to large networks. However, they often produce loose approximations, particularly in
deeper or more complex architectures, which can limit the precision of the verification results [48].
Other representations, such as zonotopes [53, 56, 69], offer tighter approximations and better capture
the linear dependencies between neurons but at a higher computational cost. Polyhedra-based methods,
as employed in tools like DeepPoly [53] and PRIMA [54], provide even more precise abstractions by
considering multi-dimensional relationships between neurons. However, these methods trade off effi-
ciency for precision, making them less scalable to large and deep networks. Ellipsoidal representations
[55] are another class of geometric abstractions that provide compact and smooth bounds for neural

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

8 M. Casadio et al.

network outputs. These representations are particularly useful for capturing the effects of continuous
transformations in hybrid systems and other control applications. However, operations such as inter-
section and propagation through non-linear layers can be computationally intensive, which limits their
applicability in large-scale neural network verification tasks. The dominance of hyper-rectangles in the
field stems from their balance of computational simplicity and generality. Nonetheless, ongoing research
continues to explore how alternative shapes, hybrid approaches or adaptive representations might better
meet the demands of increasingly complex neural network architectures.

2.3 Robust training

Verifying DNNs poses significant challenges if they are not appropriately trained. The fundamental
issue lies in the failure of DNNs, including even sophisticated models, to meet essential verification
properties, such as robustness [70]. To enhance robustness, various training methodologies have been
proposed. It is noteworthy that, although robust training by projected gradient descent [20, 71, 72] pre-
dates verification, contemporary approaches are often related to, or derived from, the corresponding
verification methods by optimising verification-inspired regularisation terms or injecting specific data
augmentation during training. In practice, after robust training, the model usually achieves higher certi-
fied robustness and is more likely to satisfy the desired verification properties [70]. Thus, robust training
is a strong complement to robustness verification approaches.

Robust training techniques can be classified into several large groups:

• data augmentation [73],
• adversarial training [20, 71] including property-driven training [74, 75],
• IBP training [48, 76] and other forms of certified training [77], or
• a combination thereof [70, 78].

Data augmentation involves the creation of synthetic examples through the application of diverse trans-
formations or perturbations to the initial training data. These generated instances are then incorporated
into the original dataset to enhance the training process. Adversarial training entails identifying worst-
case examples at each epoch during the training phase and calculating an additional loss on these
instances. State of the art adversarial training involves projected gradient descent algorithms such as
FGSM [71] and PGD [20]. Certified training methods focus on providing mathematical guarantees about
the model’s behaviour within certain bounds. Among them, we can name IBP training [48, 76] tech-
niques, which impose intervals or bounds on the predictions or activations of the model, ensuring that
the model’s output lies within a specific range with high confidence.

Note that all techniques mentioned above can be categorised based on whether they primarily aug-
ment the data (such as data augmentation) or augment the loss function (as seen in adversarial, IBP and
certified training). Augmenting the data tends to be efficient, although it may not help against stronger
adversarial attacks. Conversely, methods that manipulate the loss functions directly are more resistant
to strong adversarial attacks but often come with higher computational costs. Ultimately, the choice
between altering data or loss functions depends on the specific requirements of the application and the
desired trade-offs between performance, computational complexity and robustness guarantees.

2.4 NLP robustness

There exists a substantial body of research dedicated to enhancing the adversarial robustness of NLP
systems [79–85]. These efforts aim to mitigate the vulnerability of NLP models to adversarial attacks
and improve their resilience in real-world scenarios [80, 81] and mostly employ data augmentation
techniques [86, 87]. In NLP, we can distinguish perturbations based on three main criteria:

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 9

• where and how the perturbations occur,
• whether they are altered automatically using some defined rules (vs. generated by humans or large

language model (LLMs)) and
• whether they are adversarial (as opposed to random).

In particular, perturbations can occur at the character, word or sentence level [88–90] and may involve
deletion, insertion, swapping, flipping, substitution with synonyms, concatenation with characters or
words, or insertion of numeric or alphanumeric characters [91–93]. For instance, in character level
adversarial attacks, Belinkov et al. [94] introduce natural and synthetic noise to input data, while Gao
et al. [95] and Li et al. [96] identify crucial words within a sentence and perturb them accordingly.
For word level attacks, they can be categorised into gradient-based [91, 97], importance-based [98, 99]
and replacement-based [100–102] strategies, based on the perturbation method employed. Moreover,
Moradi et al. [103] introduce rule-based non-adversarial perturbations at both the character and word
levels. Their method simulates various types of noise typically caused by spelling mistakes, typos and
other similar errors. In sentence level adversarial attacks, some perturbations [104, 105] are created so
that they do not impact the original label of the input and can be incorporated as a concatenation in
the original text. In such scenarios, the expected behaviour from the model is to maintain the original
output, and the attack can be deemed successful if the label/output of the model is altered. Additionally,
non-rule-based sentence perturbations can be obtained through prompting LLMs [14, 21] to generate
rephrasing of the inputs. By augmenting the training data with these perturbed examples, models are
exposed to a more diverse range of linguistic variations and potential adversarial inputs. This helps the
models to generalise better and become more robust to different types of adversarial attacks. To help
with this task, the NLP community has gathered a dataset of adversarial attacks named AdvGLUE [106],
which aims to be a principled and comprehensive benchmark for NLP robustness measurements.

In this work we employ a PGD-based adversarial training as the method to enhance the robustness and
verifiability of our models against gradient-based adversarial attacks. For non-adversarial perturbations,
we create rule-based perturbations at the character and word level as in Moradi et al. [103] and non-
rule-based perturbations at the sentence level using PolyJuice [21] and Vicuna [14]. We thus cover most
combinations of the three choices above (bypassing only human-generated adversarial attacks as there
is no sufficient data to admit systematic evaluation which is important for this study).

2.5 Datasets and use cases used in NLP verification

Existing NLP verification datasets. Table 1 summarises the main features and tasks of the datasets used in
NLP verification. Despite their diverse origins and applications, the datasets in the literature are usually
binary or multi-class text classification problems. Furthermore, datasets can be sensitive to perturba-
tions, i.e. perturbations can have non-trivial impact on label consistency. For example, Jia et al. [17] use
IBP with the SNLI [119]3 dataset (see Tables 2 and 1) to show that word perturbations (e.g. ‘good’ to
‘best’) can change whether one sentence entails another. Some works such as Jia et al. [17] try to address
this label consistency, while others do not.

Additionally, we find that the previous research on NLP verification does not utilise safety critical
datasets (which strongly motivates the choice of datasets in alternative verification domains), with the
exception of Du et al. [110] that use the Toxic Comment dataset [120]. Other papers do not provide
detailed motivation as to why the dataset choices were made, however it could be due to the datasets
being commonly used in NLP benchmarks (IMDB etc.).

3 A semantic inference dataset that labels whether one sentence entails, contradicts or is neutral to another sentence.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

10 M. Casadio et al.

Table 1. Summary of the main features of the datasets used in NLP verification

Dataset
Safety
Critical Category Tasks Size Classes

IMDB [121] × Sentiment
analysis

Document-level and
sentence-level classification

25,000 2

SST [122] × Sentiment
analysis

Sentiment classification,
hierarchical sentiment
classification, sentiment span
detection

70,042 5

SST2 [122] × Sentiment
analysis

Sentiment classification 70,042 2

YELP [123] × Sentiment
analysis

Sentiment classification 570,771 2

Rotten Tomatoes
Movie Review
[124]

× Sentiment
analysis

Sentiment classification 48,869 3/4

Amazon [125] × Sentiment
analysis

Sentiment classification,
aspect-based sentiment analysis

34,686,770 5

SNLI [119] × Semantic
inference

Natural language inference,
semantic similarity

570,152 3

MNLI [126] × Semantic
inference

Natural language inference,
semantic similarity,
generalisation

432,702 3

AGNews [127] × Text
analysis

Text classification, sentiment
classification

127,600 4

CogComp QC
[128]

× Text
analysis

Question classification,
semantic understanding

15,000 6/50

Toxic Comment
[120]

√ Text
analysis

Toxic comment classification,
fine-grained toxicity analysis,
bias analysis

18,560 6

2.5.1 Datasets proposed in this paper
In this paper, we focus on two existing datasets that model safety-critical scenarios. These two datasets
have not previously been applied or explored in the context of NLP verification. Both are driven by
real-world use cases of safety-critical NLP applications, i.e. applications for which law enforcement and
safety demand formal guarantees of “good” DNN behaviour.

Chatbot Disclosure (R-U-A-Robot Dataset [129]). The first case study is motivated by new legislation
which states that a chatbot must not mislead people about its artificial identity [10, 11]. Given that
the regulatory landscape surrounding NLP models (particularly LLMs and generative AI) is rapidly
evolving, similar legislation could be widespread in the future – with recent calls for the US Congress
to formalise such disclosure requirements [130]. The prohibition on deceptive conduct act may apply
to the outputs generated by NLP systems if used commercially [131], and at minimum a system must
guarantee a truthful response when asked about its agency [129, 132]. Furthermore, the burden of this
should be placed on the designers of NLP systems, and not on the consumers.

Our first safety critical case is the R-U-A-Robot dataset [129], a written English dataset consisting
of 6800 variations on queries relating to the intent of ‘Are you a robot?’, such as ‘I’m a man, what about
you?’. The dataset was created via a context-free grammar template, crowd-sourcing and pre-existing
data sources. It consists of 2,720 positive examples (where given the query, it is appropriate for the sys-
tem to state its non-human identity), 3,400 negative examples and 680 ‘ambiguous-if-clarify’ examples

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European
JournalofApplied

M
athem

atics
11

Table 2. Summary of the main features of the existing NLP verification approaches. In bold are state-of-the-art methods

Method Datasets NLP perturbations Embeddings Architectures (# of
parameters)

Robust training Verification
algorithm

Verification
characteristics

Ours RUARobot,
Medical

General purpose:
char, word and
sentence
perturbations, ε-ball

Sentence:
S-BERT,
S-GPT

FFNN (104) PGD-based loss
function augmentation

SMT, BaB,
Abstract
interpretation

Complete,
Deterministic

Jia et al.
(2019) [17]

IMDB, SNLI Word substitution Word:
GloVe

LSTM, CNN, BoW,
Attention-based, (105)

IBP-based loss
function augmentation

Abstract
Interpretation IBP

Incomplete,
Deterministic

Huang et al.
(2019) [18]

AGNews, SST Char and word
substitution

Word:
GloVe

CNN (105) IBP-based loss
function augmentation

Abstract
Interpretation IBP

Incomplete,
Deterministic

Welbl et al.
(2020) [107]

SNLI, MNLI Word deletion Word:
GloVe

Attention-based (105) Data augmentation,
random and beam
search adversarial
training, IBP-based

Abstract
Interpretation IBP

Incomplete,
Deterministic

Zhang et al.
(2021) [19]

IMDB, SST,
SST2

Word perturbations Word: not
specified

LSTM (105) IBP-based loss
function augmentation

Abstract
Interpretation IBP

Incomplete,
Deterministic

Wang et al.
(2023) [108]

IMDB, YELP,
SST2

Word substitution Word:
GloVe

CNN (105) IBP-based:
Embedding Interval
Bound Constraint
(EIBC) triplet loss

Abstract
Interpretation IBP

Incomplete,
Deterministic

Ko et al.
(2019) [109]

CogComp QC ε-ball Word: not
specified

RNN, LSTM (105) – Abstract
Interpretation IBP

Incomplete,
Deterministic

Shi et al.
(2020) [15]

YELP, SST ε-ball Word: not
specified

Transformer (106) – Abstract
Interpretation IBP

Incomplete,
Deterministic

Du et al.
(2021) [110]

Rotten
Tomatoes
Movie Review,
Toxic Comment

ε-ball Word:
GloVe

RNN, LSTM (105) Zonotope-based loss
function augmentation

Abstract
Interpretation
Zonotopes

Incomplete,
Deterministic

Bonaert et al.
(2021) [111]

SST, YELP ε-ball Word: not
specified

Transformer (106) – Abstract
Interpretation
Zonotopes

Incomplete,
Deterministic

https://doi.org/10.1017/S0956792525000099 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792525000099

12 M. Casadio et al.

(where it is unclear whether the system is required to state its identity). The dataset was created to pro-
mote transparency, which may be required when the user receives unsolicited phone calls from artificial
systems. Given systems like Google Duplex [133], and the criticism it received for human-sounding out-
puts [134], it is also highly plausible for the user to be deceived regarding the outputs generated by other
NLP-based systems [131]. Thus we choose this dataset to understand how to enforce such disclosure
requirements. We collapse the positive and ambiguous examples into one label, following the principle
of ‘better be safe than sorry’, i.e. prioritising a high recall system.

Medical Safety Dataset. Another scenario one might consider is that inappropriate outputs of NLP
systems have the potential to cause harm to human users [13]. For example, a system may give a user
false impressions of its ‘expertise’ and generate harmful advice in response to medically related user
queries [7]. In practice, it may be desirable for the system to avoid answering such queries. Thus, we
choose the Medical safety dataset [12], a dataset consisting of 2,917 risk-graded medical and non-
medical queries (1,417 and 1,500 examples, respectively). The dataset was constructed via collecting
questions posted on reddit, such as r/AskDocs. The medical queries have been labelled by experts and
crowd annotators for both relevance and levels of risk (i.e. non-serious, serious to critical) following
established World Economic Forum (WEF) risk levels designated for chatbots in healthcare [135]. We
merge the medical queries of different risk-levels into one class, given the high scarcity of the latter
two labels to create an in-domain/out-of-domain classification task for medical queries. Additionally,
we consider only the medical queries that were labelled as such by expert medical practitioners. Thus,
this dataset will facilitate discussion on how to guarantee a system recognises medical queries, in order
to avoid generating medical output.

An additional benefit of these two datasets is that they are distinct semantically, i.e. the R-U-A-Robot
dataset contains several semantically similar, but lexically different queries, while the medical safety
dataset contains semantically diverse queries. For both datasets, we utilise the same data splits as given
in the original papers and refer to the final binary labels as positive and negative. The positive label in
the R-U-A-Robot dataset implies a sample where it is appropriate to disclose non-human identity, while
in the medical safety dataset it implies an in-domain medical query.

2.6 Previous NLP verification approaches

Although DNN verification studies have predominantly focused on CV, there is a growing body of
research exploring the verification of NLP. This research can be categorised into three main approaches:
using IBP, zonotopes and randomised smoothing. Tables 2 and 3 show a comparison of these approaches.
To the best of our knowledge, this paper is the first one to use an SMT-based verifier for this purpose
and compare it with an abstract interpretation-based verifier on the same benchmarks.

NLP Verification via Interval Bound Propagation. The first technique successfully adopted from the
CV domain for verifying NLP models was the IBP. IBP was used for both training and verification with
the aim to minimise the upper bound on the maximum difference between the classification boundary
and the input perturbation region. It was achieved by augmenting the loss function with a term that
penalises large perturbations. Specifically, IBP incorporates interval bounds during the forward propa-
gation phase, adding a regularisation term to the loss function that minimises the distance between the
perturbed and unperturbed outputs. This facilitated the minimisation of the perturbation region in the
last layer, ensuring it remained on one side of the classification boundary. As a result, the adversarial
region becomes tighter and can be considered certifiably robust. Notably, Jia et al. [17] proposed cer-
tified robust models on word substitutions in text classification. The authors employed IBP to optimise
the upper bound over perturbations, providing an upper bound over the discrete set of perturbations in
the word vector space. Similarly, POPQORN [109] introduced robustness guarantees for RNN-based
networks by handling the non-linear activation functions of complicated RNN structures (like LSTMs
and GRUs) using linear bounds. Later, Shi et al. [15] developed a verification algorithm for transform-
ers with self-attention layers. This algorithm provides a lower bound to ensure the probability of the

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European
JournalofApplied

M
athem

atics
13

Table 3. Summary of the main features of the existing randomised smoothing approaches

Method Datasets NLP perturbations Embeddings Architectures (#
of parameters)

Robust training Verification
algorithm

Verification
characteristics

Ye et al.
(2020) [112]

IMDB,
Amazon

Word substitution Word:
GloVe

Transformer (108) Data augmentation Randomised
smoothing (α =
0.01, n = 5000)

Incomplete,
Probabilistic

Wang et al.
(2021) [113]

IMDB,
AGNews

Word substitution Word:
GloVe

LSTM (105) Data augmentation Differential
privacy

Incomplete,
Probabilistic

Zhao et al.
(2022) [114]

AGNews, SST Word substitution Word:
GloVe

Transformer (108) Data augmentation
and IBP-based

Randomised
smoothing (α =
0.001, n = 30050)

Incomplete,
Probabilistic

Zeng et al.
(2023) [115]

IMDB, YELP Char and word
substitution

Word: not
specified

Transformer (108) Data augmentation Randomised
smoothing (α =
0.05, n = 5000)

Incomplete,
Probabilistic

Ye et al.
(2023) [116]

IMDB, SST2,
YELP,
AGNews

Word substitution Word: not
specified

Transformer (108) Data augmentation Randomised
smoothing (α =
0.001, n = 9000)

Incomplete,
Probabilistic

Zhang et al.
(2023) [117]

IMDB,
Amazon,
AGNews

Word perturbations Word:
GloVe

LSTM,
Transformer (108)

Data augmentation Randomised
smoothing (α =
0.001, n = 20000)

Incomplete,
Probabilistic

Zhang et al.
(2023) [118]

SST2,
AGNews

Word perturbations Word: not
specified

Transformer (109) – Randomised
smoothing (α =
0.05, n = 5000)

Incomplete,
Probabilistic

https://doi.org/10.1017/S0956792525000099 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792525000099

14 M. Casadio et al.

correct label remains consistently higher than that of the incorrect labels. Furthermore, Huang et al.
[18] introduced a verification and verifiable training method with a tighter over-approximation in style
of the Simplex algorithm [28]. To make the network verifiable, they defined the convex hull of all the
original unperturbed inputs as a space of perturbations. By employing the IBP algorithm, they gener-
ated robustness bounds for each neural network layer. Later on, Welbl et al. [107] differentiated from
the previous approaches by using IBP to address the under-sensitivity issue. They designed and for-
mally verified the ‘under-sensitivity specification’ that a model should not become more confident as
arbitrary subsets of input words are deleted. Recently, Zhang et al. [19] introduced Abstract Recursive
Certification (ARC) to verify the robustness of LSTMs. ARC defines a set of programmatically perturbed
string transformations to construct a perturbation space. By memorising the hidden states of strings in
the perturbation space that share a common prefix, ARC can efficiently calculate an upper bound while
avoiding redundant hidden state computations. Finally, Wang et al. [108] improved on the work of Jia
et al. by introducing Embedding Interval Bound Constraint (EIBC). EIBC is a new loss that constraints
the word embeddings in order to tighten the IBP bounds.

The strength of IBP-based methods is their efficiency and speed, while their main limitation is the
bounds’ looseness, further accentuated if the neural network is deep.

NLP Verification via Propagating Zonotopes. Another popular verification technique applied to var-
ious NLP models is based on propagating zonotopes, which produces tighter bounds then IBP methods.
One notable contribution in this area is Cert-RNN [110], a robust certification framework for RNNs
that overcomes the limitations of POPQORN. The framework maintains inter-variable correlation and
accelerates the non-linearities of RNNs for practical uses. Cert-RNN utilised zonotopes [136] to encap-
sulate input perturbations and can verify the properties of the output zonotopes to determine certifiable
robustness. This results in improved precision and tighter bounds, leading to a significant speedup
compared to POPQORN. Analogously, Bonaert et al. [111] propose DeepT, a certification method for
large transformers. It is specifically designed to verify the robustness of transformers against synonym
replacement-based attacks. DeepT employs multi-norm zonotopes to achieve larger robustness radii in
the certification and can work with networks much larger than Shi et al.

Methods that propagate zonotopes produce much tighter bounds than IBP-based methods, which
can be used with deeper networks. However, they use geometric methods and do not take into account
semantic considerations (e.g. do not use semantic perturbations).

NLP Verification via Randomised Smoothing. Randomised smoothing [137] is another technique for
verifying the robustness of deep language models that has recently grown in popularity due to its scal-
ability [112–118]. The idea is to leverage randomness during inference to create a smoothed classifier
that is more robust to small perturbations in the input. This technique can also be used to give certified
guarantees against adversarial perturbations within a certain radius. Generally, randomised smoothing
begins by training a regular neural network on a given dataset. During the inference phase, to classify
a new sample, noise is randomly sampled from the predetermined distribution multiple times. These
instances of noise are then injected into the input, resulting in noisy samples. Subsequently, the base
classifier generates predictions for each of these noisy samples. The final prediction is determined by
the class with the highest frequency of predictions, thereby shaping the smoothed classifier. To certify
the robustness of the smoothed classifier against adversarial perturbations within a specific radius cen-
tred around the input, randomised smoothing calculates the likelihood of agreement between the base
classifier and the smoothed classifier when noise is introduced to the input. If this likelihood exceeds a
certain threshold, it indicates the certified robustness of the smoothed classifier within the radius around
the input.

The main advantage of randomised smoothing-based methods is their scalability, indeed recent
approaches are tested on larger transformer such as BERT and Alpaca. However, their main issue is
that they are probabilistic approaches, meaning they give certifications up to a certain probability. In
this work, we focus on deterministic approaches, hence we only report these works in Table 3 for com-
pleteness without delving deeper into each paper here. All randomised smoothing-based approaches use
data augmentation obtained by semantic perturbations.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 15

To systematically compare the existing body of research, we distil an “NLP verification pipeline” that
is common across many related papers. This pipeline is outlined diagrammatically in Figure 2, while
Tables 2 and 3 provide a detailed breakdown, with columns corresponding to each stage of the pipeline.
It proceeds in stages:

1. Given an NLP dataset, generate semantic perturbations on sentences that it contains. The
semantic perturbations can be of different kinds: character, word or sentence level. IBP and ran-
domised smoothing use word and character perturbations, abstract interpretation papers usually do
not use any semantic perturbations. Tables 2 and 3 give the exact mapping of perturbation methods
to papers. Our method allows to use all existing semantic perturbations, in particular, we implement
character and word-level perturbations as in Moradi et al. [103], sentence-level perturbations with
PolyJuice [21] and Vicuna.

2. Embed the semantic perturbations into continuous spaces. The cited papers use the word
embeddings GloVe [102], we use the sentence embeddings S-BERT and S-GPT.

3. Working on the embedding space, use geometric or semantic perturbations to define geo-
metric or semantic subspaces around perturbed sentences. In IBP papers, semantic subspaces
are defined as “bounds” derived from admissible semantic perturbations. In abstract interpretation
papers, geometric subspaces are given by ε-cubes and ε-balls around each embedded sentence. Our
paper generalises the notion of ε-cubes by defining “hyper-rectangles” on sets of semantic perturba-
tions. The hyper-rectangles generalise ε-cubes both geometrically and semantically, by allowing to
analyse subspaces that are drawn around several (embedded) semantic perturbations of the same sen-
tence. We could adapt our methods to work with hyper-ellipses and thus directly generalise ε-balls
(the difference boils down to using �2 norm instead of �∞ when computing geometric proximity of
points); however, hyper-rectangles are more efficient to compute, which determined our choice of
shapes in this paper.

4. Use the geometric/semantic subspaces to train a classifier to be robust to change of label within
the given subspaces. We generally call such training either robust training or semantically robust
training, depending on whether the subspaces it uses are geometric or semantic. A custom seman-
tically robust training algorithm is used in IBP papers, while abstract interpretation papers usually
skip this step or use (adversarial) robust training. See Tables 2 and 3 for further details. In this paper,
we adapt the famous PGD algorithm [20] that was initially defined for geometric subspaces (ε-balls)
to work with semantic subspaces (hyper-rectangles) to obtain a novel semantic training algorithm.

5. Use the geometric/semantic subspaces to verify the classifier’s behaviour within those sub-
spaces. The papers [17–19, 107, 108] use IBP algorithms and the papers [15, 109–111] use abstract
interpretation; in both cases, it is incomplete and deterministic verification. See ‘Verification algo-
rithm’ and ‘Verification characteristics’ columns of Tables 2 and 3. We use SMT-based tool Marabou
(complete and deterministic) and abstract-interpretation tool ERAN (incomplete and deterministic).

Tables 2 and 3 summarise differences and similarities of the above NLP verification approaches against
ours. To the best of our knowledge, we are the first to use SMT-based complete methods in NLP ver-
ification and we show how they achieve higher verifiability than abstract interpretation verification
approaches (ERAN and CORA) or IBP and BaB (αβ-CROWN), thanks to the increased precision of
the ReLUplex algorithm that underlies Marabou.

Furthermore, our study is the first to demonstrate that the construction of semantic subspaces can
happen independently of the choice of the training and verification algorithms. Likewise, although train-
ing and verification build upon the defined (semantic) subspaces, the actual choice of the training and
verification algorithms can be made independently of the method used to define the semantic subspaces.
This separation, and the general modularity of our approach, facilitates a comprehensive examination
and comparison of the two key components involved in any NLP verification process:

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

16 M. Casadio et al.

Figure 2. Visualisation of the NLP verification pipeline followed in our approach.

• effects of the verifiability-generalisability trade-off for verification with geometric and semantic
subspaces;

• relation between the volume/shape of semantic subspaces and verifiability of neural networks
obtained via semantic training with these subspaces.

These two aspects have not been considered in the literature before.

3 The parametric NLP verification pipeline

This section presents a parametric NLP verification pipeline, shown in Figure 2 diagrammatically. We
call it “parametric” because each component within the pipeline is defined independently of the oth-
ers and can be taken as a parameter when studying other components. The parametric nature of the
pipeline allows for the seamless integration of state-of-the-art methods at every stage, and for more
sophisticated experiments with those methods. The following section provides a detailed exposition of
the methodological choices made at each step of the pipeline.

3.1 Semantic perturbations

As discussed in Section 2.6, we require semantic perturbations for creating semantic subspaces. To do
so, we consider three kinds of perturbations—i.e. character, word and sentence level. This systematically
accounts for different variations of the samples.

Character and word-level perturbations are created via a rule-based method proposed by Moradi
et al. [103] to simulate different kinds of noise one could expect from spelling mistakes, typos, etc. These
perturbations are non-adversarial and can be generated automatically. Moradi et al. [103] found that NLP
models are sensitive to such small errors, while in practice this should not be the case. Character-level
perturbations types include randomly inserting, deleting, replacing, swapping or repeating a character
of the data sample. At the character level, we do not apply letter case changing, given it does not change
the sentence-level representation of the sample. Nor do we apply perturbations to commonly misspelled
words, given only a small percentage of the most commonly misspelled words occur in our datasets.
Perturbations types at the word level include randomly repeating or deleting a word, changing the order-
ing of the words, the verb tense, singular verbs to plural verbs or adding negation to the data sample.
At the word level, we omit replacement with synonyms, as this is accounted for via sentence rephras-
ing. Negation is not done on the medical safety dataset, as it creates label ambiguities (e.g. ‘pain when
straightening knee’ → ‘no pain when straightening knee’), as well as singular plural tense and verb
tense, given human annotators would experience difficulties with this task (e.g. rephrase the following
in plural/ with changed tense – ‘peritonsillar abscess drainage aftercare.. please help’). Note that the

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 17

Table 4. Character-level perturbations: their types and examples of how each type acts on a
given sentence from the R-U-A-robot dataset [129]. Perturbations are selected from random
words that have 3 or more characters, first and last characters of a word are never perturbed

Method Description
Altered sentence (Are
you a robot?)

Insertion A character is randomly selected and
inserted in a random position.

Are yovu a robot?

Deletion A character is randomly selected and
deleted.

Are you a robt?

Replacement A character is randomly selected and
replaced by an adjacent character on the
keyboard.

Are you a ronot?

Swapping A character is randomly selected and
swapped with the adjacent right or left
character in the word.

Are you a rboot?

Repetition A character in a random position is
selected and duplicated.

Arre you a robot?

Table 5. Word-level perturbations: their types and examples of how each type acts on a given
sentence from the R-U-A-robot dataset [129].

Method Description
Altered sentence (Can u tell me
if you are a chatbot?)

Deletion Randomly selects a word and removes it. Can u tell if you are a chatbot?
Repetition Randomly selects a word and duplicates it. Can can u tell me if you are a

chatbot?
Negation Identifies verbs then flips them

(negative/positive).
Can u tell me if you are not a
chatbot?

Singular/
plural verbs

Changes verbs to singular form, and
conversely.

Can u tell me if you is a chatbot?

Word order Randomly selects consecutive words and
changes the order in which they appear.

Can u tell me if you are chatbot
a?

Verb tense Converts present simple or continuous verbs
to their corresponding past simple or
continuous form.

Can u tell me if you were a
chatbot?

Medical dataset contains several sentences without a verb (like the one above) for which it is impossible
to pluralise or change the tense of the verb.

Further examples of character and word rule-based perturbations can be found in Tables 4 and 5.
Sentence-level perturbations. We experiment with two types of sentence-level perturbations, partic-

ularly due to the complicated nature of the medical queries (e.g. it is non-trivial to rephrase queries such
as this – ‘peritonsillar abscess drainage aftercare.. please help’). We do so by either using Polyjuice [21]
or vicuna-13b.4 Polyjuice is a general-purpose counterfactual generator that allows for control over
perturbation types and locations, trained by fine-tuning GPT-2 on multiple datasets of paired sentences.
Vicuna is a state-of-the-art open source chatbot trained by fine-tuning LLaMA [138] on user-shared con-
versations collected from ShareGPT.5 For Vicuna, we use the following prompt to generate variations
on our data samples ‘Rephrase this sentence 5 times: “[Example]”.’ For example, from the sentence

4 Using the following API: https://replicate.com/replicate/vicuna-13b/api.
5 https://sharegpt.com/

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://replicate.com/replicate/vicuna-13b/api
https://sharegpt.com/
https://doi.org/10.1017/S0956792525000099

18 M. Casadio et al.

“How long will I be contagious?”, we can obtain “How many years will I be contagious?” or “Will I be
contagious for long?” and so on.

We will use notation P to refer to a perturbation algorithm abstractly.
Semantic similarity of perturbations. In later sections we will make an assumption that the pertur-

bations that we use produce sentences that are semantically similar to the originals. However, precisely
defining or measuring semantic similarity is a challenge in its own right, as semantic meaning of
sentences can be subjective, context-dependent, which makes evaluating their similarity intractable.
Nevertheless, Subsection 5.5.2 will discuss and use several metrics for calculating semantic similarity
of sentences, modulo some simplifying assumptions.

3.2 NLP embeddings

The next component of the pipeline is the embeddings. Embeddings play a crucial role in NLP veri-
fication as they map textual data into continuous vector spaces, in a way that should capture semantic
relationships and contextual information.

Given the set of all strings, S, an NLP dataset Y ⊂ S is a set of sentences s1, . . . , sq written in natural
language. The embedding E is a function that maps a string in S to a vector in R

m. The vector space Rm

is called the embedding space. Ideally, E should reflect the semantic similarities between sentences in
S, i.e. the more semantically similar two sentences si and sj are, the closer the distance between E(si)
and E(sj) should be in R

m. Of course, defining semantic similarity in precise terms may not be tractable
(the number of unseen sentences may be infinite, the similarity may be subjective and/or depend on the
context). This is why, the state-of-the-art NLP relies on machine learning methods to capture the notion
of semantic similarity approximately.

Currently, the most common approach to obtain an embedding function E is by training transformers
[139, 140]. Transformers are a type of DNNs that can be trained to map sequential data into real vector
spaces and are capable of handling variable-length input sequences. They can also be used for other
tasks, such as classification or sentence generation, but in those cases, too, training happens at the level
of embedding spaces. In this work, a transformer is trained as a function E:S→R

m for some given
m. The key feature of the transformer is the “self-attention mechanism”, which allows the network to
weigh the importance of different elements in the input sequence when making predictions, rather than
relying solely on the order of elements in the sequence. This makes them good at learning to associate
semantically similar words or sentences. In this work, we initially use Sentence-BERT [140] and later
add Sentence-GPT [141] to embed sentences. Unfortunately, the relation between the embedding space
and the NLP dataset is not bijective: i.e. each sentence is mapped into the embedding space, but not
every point in the embedding space has a corresponding sentence. This problem is well known in NLP
literature [142] and, as shown in this paper, is one of the reasons why verification of NLP is tricky.
Given an NLP dataset Y that should be classified into n classes, the standard approach is to construct a
function N:Rm →R

n that maps the embedded inputs to the classes. In order to do that, a domain-specific
classifier N is trained on the embeddings E(Y) and the final system will then be the composition of the
two subsystems, i.e. N ◦ E.

3.3 Geometric analysis of embedding spaces

In the recent years, the study of manifold subspaces has gained significant attention in the context of
machine learning verification [55], where the geometry of data regions plays an important role. In this
section, we formally define most common subspaces used in verification: convex sets, convex hulls,
zonotopes and hyper-rectangles (also known as multi-dimensional intervals), following closely [55].

Definition 1. (Convex Set). A set Z⊆R
m is said to be convex if, for any two points x1, x2 ∈Z, the line

segment joining them is entirely contained within Z. Formally, this means that for all x1, x2 ∈Z and
λ ∈ [0, 1], the points

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 19

Table 6. Construction complexity for different
geometric shapes, where m is the number of dimen-
sions and p is the number of points or generators

Shape Construction Complexity (Big-O)
Convex Hull O(pm/2)
Zonotope O(m · p)
Interval O(m)

λx1 + (1 − λ)x2 ∈Z.

In other words, a set is convex if, for any pair of points in the set, the entire segment connecting them
lies within the set.

The convex hull of a set is the smallest convex set that contains all the points of the set. It can be seen
as the “tightest” boundary enclosing the points.

Definition 2. (Convex Hull). The convex hull of a setZ⊆R
m, denoted by conv(Z), is the smallest convex

set containing Z. Formally, it can be defined as:

conv(Z) :=
{

p∑
i=1

λixi

∣∣∣∣∣ xi ∈Z, λi ≥ 0,
p∑

i=1

λi = 1, p ∈N

}
.

In other words, conv(Z) consists of all finite convex combinations of points in Z. The construction
of the convex hull has a complexity of O(pm/2), where p is the number of points and m is the number of
dimensions.

A zonotope is a geometric shape formed by the Minkowski sum of line segments.

Definition 3. (Zonotope). Given a center c ∈R
m and generators g1, . . . , gp, a zonotope is

Z :=
{

c +
p∑

i=1

λigi

∣∣∣∣∣ λi ∈ [− 1, 1], ∀i ∈ [1, . . . , p]

}

Zonotopes are computationally more efficient than convex hulls, with a construction complexity of
O(m · p), where m is the dimensionality and p is the number of generators.

Finally, an interval is a simple shape defined by lower and upper bounds for each dimension, and it
is equivalent to a multi-dimensional rectangle (or hyper-rectangle). Intervals are easy to construct with
a complexity of O(m), where m is the dimensionality, and are often used in verification.

Definition 4. (Interval (aka Hyper-Rectangle)). Given a lower and upper bound x, x ∈R
m such that

x(i) ≤ x(i)∀i ∈ 1, . . . , m, a multi-dimensional interval I ⊂R
m is

I := {
x ∈R

m
∣∣ x(i) ≤ x(i) ≤ x(i), ∀i ∈ [1, . . . , m]

}
Table 6 summarises the construction complexities of these different shapes. Ideally, convex hulls

would be the preferred choice due to their precise and detailed representations of subspaces. However,
their computational complexity renders them infeasible in high dimensions. Zonotopes provide a
promising alternative, as they are more precise than hyper-rectangles while remaining computation-
ally tractable. Despite their theoretical compatibility with complete verifiers, practical limitations arise
because most state-of-the-art verifiers do not support zonotopes. Hyper-rectangles, or intervals, are
the simplest to construct and are supported by all verifiers, making them the default choice in many
verification pipelines.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

20 M. Casadio et al.

3.4 Working with embedding spaces: our approach

We now formally define geometric and semantic subspaces of the embedding space. Our goal is to define
subspaces on the embedding space Rm by using an effective algorithmic procedure. We will use notation
S to refer to a subspace of the embedding space. Recall that an hyper-rectangle of dimension m is a list
of points (a1, b1), . . . , (am, bm) such that a point x ∈R

m is a member if for every dimension j we have
aj ≤ xj ≤ bj.

We start with an observation that, given an NLP dataset Y that contains a finite set of sentences
s1, . . . , sq belonging to the same class, and an embedding function E:S→R

m, we can define an embed-
ding matrix X ∈R

q×m, where each row j is given by E(sj). We will use the notation xi to refer to the
ith element of the vector x, and X ij to refer to the element in the ith row and jth column of X . Treating
embedded sentences as matrices, rather than as points in the real vector space, makes many computations
easier. We can therefore define a hyper-rectangle for X as follows.

Definition 5. (Hyper-rectangle for an Embedding Matrix). Given an embedding matrix X ∈R
q×m, the

m-dimensional hyper-rectangle for X is defined as

H(X) := {(minq
i=0 X ij, maxq

i=0 X ij) | j ∈ [1, . . . , m]}
Therefore given an embedding function E:S→R

m, and a set of sentences Y = {s1, . . . , sq}, we can
form a subspace H(E(Y)) by constructing the embedding matrix, as described above, and forming the
corresponding hyper-rectangle. To simplify the notation, we will omit the application of E and from
here on simply write H(Y).

The next example shows how the above definitions generalise the commonly known definition of the
ε-cube.

Example 1. (ε-cube and ε-ball). One of the most popular terms used in robust training [71] and verifi-
cation [70] literature is the ε-ball. It is defined as follows. Given an embedded input x̂, a constant ε ∈R,
and a distance function (�-norm) || − ||, the ε-ball around x̂ of radius ε is defined as

B(x̂, ε) := {x ∈R
m:||x̂ − x|| ≤ ε}.

In practice, it is common to use the �∞ norm, which results in the ε-ball actually being a hyper-rectangle,
also called ε-cube, where (aj, bj) = (x̂j − ε, x̂j + ε). Therefore, our construction H is a strict generalisa-
tion of ε-cubes. We will therefore use the notationH(Y , ε) = ⋃

s∈Y B(E(s), ε) to refer to the set of ε-cubes
around every sentence in the dataset.

Of course, as we have already discussed in the introduction and Figure 1, hyper-rectangles are not
very precise, geometrically. A more precise shape would be a convex hull around q given points in
the embedding space. Indeed literature has some definitions of convex hulls [143–145]. However, none
of them is suitable as they are computationally too expensive due to the time complexity of O(qm/2)
where q is the number of inputs and m is the number of dimensions [143]. Approaches that use under-
approximations to speed up the algorithms [144, 145] do not work well in NLP scenarios, as under-
approximated subspaces are so small that they contain near zero sentence embeddings.

3.4.1 Exclusion of unwanted sentences via shrinking
Another concern is that the generated hyper-rectangles may contain sentences from a different class.
This would make it unsuitable for verification. In order to exclude all samples from the wrong class, we
define a shrinking algorithm SH(X , Y , c) that calculates a new subspace that is a subset of the original
hyper-rectangle aroundX , that only contains embeddings of sentences inY that are of class c. Of course,
to ensure this, the algorithm may have to exclude some sentences of class c. The second graph of Figure 3
gives a visual intuition of how this is done.

Formally, for each sentence s in Y that is not of class c, the algorithm performs the following
procedure. If E(s) lies in the current hyper-rectangle (a1, b1), . . . , (am, bm), then for each dimension
j ∈ [1, . . . , m] we compute the distance whether E(s)j is closer to aj or bj. Without loss of generality,

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 21

Figure 3. An example of hyper-rectangle drawn around all points of the same class (a), shrunk
hyper-rectangle Hsh that is obtained by excluding all points from the opposite class (b) and clustered
hyper-rectangles (c) in 2-dimensions. The red dots represent sentences in the embedding space of one
class, while the blue dots are embedded sentences that do not belong to that class.

assume aj is closer. We then compute the number of sentences of class c that would be excluded by
replacing aj with E(s)j + δ in the hyper-rectangle where δ is a small positive number (we use e−100).
This gives us a penalty for each dimension j, and we exclude s by updating the hyper-rectangle in the
dimension that minimises this penalty. The idea is to shrink the hyper-rectangle in the dimensions that
exclude as few embedded sentences from the desired class c as possible.6

3.4.2 Exclusion of unwanted sentences via clustering
An alternative approach to excluding unwanted sentences is to split the dataset up by clustering seman-
tically similar sentences in the embedding space and then compute the hyper-rectangles around each
cluster individually, as shown in the last graph of Figure 3. In this paper, we will use the k-means algo-
rithm for clustering. We will use the notation CL(Y , k) to refer to the k-clusters formed by applying it
to dataset Y . While in our experiments we have found this is often sufficient to exclude unwanted sen-
tences, it is not guaranteed to do so. Therefore, this method is combined with the shrinking algorithm
in our experiments.

3.4.3 Eigenspace rotation
A final alternative and computationally efficient way of reducing the likelihood that the hyper-rectangles
will contain embedded sentences of an unwanted class is to rotate them to better align to the distribution
of the embedded sentences of the desired class in the embedding space. This motivates us to introduce
the Eigenspace rotation.

To construct the tightest possible hyper-rectangle, we define a specific method of eigenspace rotation.
As shown in Figure 1 (C and D), our approach is to calculate a rotation matrix A such that the rotated
matrix Xrot =XA is better aligned with the axes than X , and therefore H(Xrot) has a smaller volume.
By a slight abuse of terminology, we will refer to H(Xrot) as the rotated hyper-rectangle, even though
strictly speaking, we are rotating the data, not the hyper-rectangle itself. In order to calculate the rotation
matrix A, we use singular value decomposition [146]. The singular value decomposition of X is defined
as X = U�V∗, where U is a matrix of left-singular vectors, � is a matrix of singular values and V∗ is
a matrix of right-singular vectors and ·∗ denotes the conjugate transpose. Intuitively, the right-singular

6 Note that this algorithm shrinks exactly one dimension by a minimal amount to exclude the unwanted embedded sentence.
This choice keeps the algorithm fast while guaranteeing the subspace to retain the highest number of wanted inputs. However, it
is not necessarily the best choice for verification: there might be cases where perturbations of the unwanted input are left inside
after shrinking and, if the network classifies them correctly, the subspace can never be verified. For large subspaces, our algorithm
might render verification unachievable and more clever algorithms should be explored and discussed.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

22 M. Casadio et al.

vectors V∗ describe the directions in which X exhibits the most variance. The main idea behind the
definition of rotation is to align these directions of maximum variance with the standard canonical basis
vectors. Formally, using V∗, we can compute the rotation (or change-of-basis) matrix A that rotates the
right-singular vectors onto the canonical standard basis vectors I, where I is the identity matrix. To do
this, we observe that V∗A = I implies V∗ = IA−1, which implies V−1 = A−1, and thus V = A. We thus
obtain Xrot =XA as desired. All hyper-rectangles constructed in this paper are rotated.

3.4.4 Geometric and semantic subspaces
We now apply the abstract definition of a subspace of an embedding space to concrete NLP verification
scenarios. Once we know how to define subspaces for a selection of points in the embedding space, the
choice remains how to choose those points. The first option is to use ε-cubes around given embedded
points, as Example 1 defines. Since this construction does not involve any knowledge about the semantics
of sentences, we will call the resulting subspaces geometric subspaces. The second choice is to apply
semantic perturbations to a sentence in Y , embed the resulting sentences, and then define a subspace
around them. We will call the subspaces obtained by this method semantic perturbation subspaces, or
just semantic subspaces for short.

We will finish this section with defining semantic subspaces formally. We will use Pt(s) to denote
an algorithm for generating sentence perturbations of type t, applied to an input sentence s in a random
position. In the later sections, we will use t to refer to the different types of perturbations illustrated in
Tables 4 and 5, e.g. character-level insertion, deletion, replacement. Intuitively, given a single sentence
we want to generate a set of semantically similar perturbations and then construct a hyper-rectangle
around them, as described in Definition 5.

This motivates the following definitions. Given a sentence s, a number b and a type t, the set Ab
t (s) =

{Pt(s) | i ∈ [1, b]} is the set of b semantic perturbations of type t generated from s. We will use the
notation Ab

t (Y) = ⋃
s∈Y Ab

t (s) to denote the new dataset generated by creating b semantic perturbations
of type t around each sentence.

Definition 6. (Semantic Subspace for a Sentence). Given an embedding function E:S→R
m, the seman-

tic subspace for a sentence s is the subspace H({s} ∪Ab
t (s)). We will refer to a set of such semantic

hyper-rectangles over an entire dataset Y as Hb
t (Y) = ⋃

s∈Y H({s} ∪Ab
t (s)).

Example 2. (Construction of Semantic Subspaces). To illustrate this construction, let us consider the
sentence s: “Can u tell me if you are a chatbot?”. This sentence is one of 3400 original sentences of
the positive class in the dataset. From this single sentence, we can create six new sentences using the
word-level perturbations from Table 5 to form A6

word(s). Once the seven sentences are embedded into
the vector space, they form the hyper-rectangle H({s} ∪A6

word(s)). By repeating this construction for the
remaining 3399 sentences, we obtain the set of hyper-rectangles Hword(Y) for the dataset.

Given a sentence s, we embed each sentence inAb
t (s) = {s1, . . . , sb} intoRm obtaining vectors Vb

t (s) =
{v, v1, . . . , vb} where vj = E(sj).

3.4.5 Measuring the quality of sentence embeddings
One of our implicit assumptions in the previous sections is that the embedding function E maps pairs
of semantically similar sentences to nearby points in the embedding space. In Section 5.5.2, we will
evaluate the accuracy of this assumption using cosine similarity. This metric measures how similar two
vectors are in a multi-dimensional space by calculating the cosine of the angle between them:

CoS(v1, v2) = v1 · v2

‖v1‖‖v2‖

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 23

where · is the dot product and ‖v‖ = √
v · v. The resulting value ranges from 0 to 1. A value of 1 indi-

cates that the vectors are parallel (highest similarity), while 0 means that the vectors are orthogonal (no
similarity).

3.5 Training

As outlined in Section 2.3, robust training is essential for bolstering the robustness of DNNs; without it,
their verifiability would be significantly diminished. This study employs two robust training methods,
namely data augmentation and a custom PGD adversarial training, with the goal of discerning the factors
contributing to the success of robust training and compare the effectiveness of these methods.

Data Augmentation. In this training method, we statically generate semantic perturbations at the
character, word and sentence levels before training, which are then added to the dataset. The network is
subsequently trained on this augmented dataset using the standard stochastic gradient descent algorithm.

Adversarial Training. In this training method, the traditional projected gradient descent (PGD) algo-
rithm [20], is defined as follows. Given a loss function L, a step size γ ∈R and a starting point x̂0 then
the output of the PGD algorithm x(l) after l iterations is defined as:

x(0) = x̂0

x(t + 1) = projS
[
x(t) + γ · sign(∇x(t)L(x(t), y))

]
where projS is the projection back into the desired subspace S . In its standard formulation, the subspace
S is often an ε-ball (for some chosen ε).

In this work, we modify the algorithm to work with custom-defined hyper-rectangles as the subspace.
The primary distinction between our customised PGD algorithm and the standard version lies in the
definition of the step size. In the conventional algorithm, the step size is represented by a scalar γ ∈
R therefore representing a uniform step size in every dimension. In our case the width of H in each
dimension may vary greatly, therefore we transforms γ into a vector in R

m, allowing the step size to
vary by dimension. Note that the dot · between γ and sign(∇) becomes an element-wise multiplication.
The resulting customised PGD training seeks to identify the worst perturbations within the custom-
defined subspace and trains the given neural network to classify those perturbations correctly, in order
to make the network robust to adversarial inputs in the chosen subspace.

3.6 Choice of verification algorithm

As stated earlier, our approach in this study involves the utilisation of cutting-edge tools for DNN verifi-
cation. Initially, we employ ERAN [69], a state-of-the-art abstract interpretation-based method. This
choice is made over IBP due to its ability to yield tighter bounds. Subsequently, we conduct com-
parisons and integrate Marabou [22], a state-of-the-art complete verifier. This enables us to attain the
highest verification percentage, maximising the tightness of the bounds. Additionally, we incorporate
αβ-CROWN [42, 43], the best-performing verifier in the International Verification of Neural Networks
Competition (VNN-COMP) 2024 competition, known for its efficiency in linear bound propagation and
branch-and-bound techniques. Moreover, we utilise CORA [55], an abstract interpretation-based veri-
fier that supports zonotope-based verification, allowing us to compare hyper-rectangles and zonotopes
in our verification experiments. We will use notation V to refer to a verifier abstractly.

4. Characterisation of verifiable subspaces

In this Section, we provide key results in support of Contribution 1 formulated in the introduction:

• We start with introducing the metric of generalisability of (verified) subspaces and set-up some
baseline experiments.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

24 M. Casadio et al.

• We introduce the problem of the verifiability-generalisability trade-off in the context of geometric
subspaces.

• We show that, compared to geometric subspaces, the use of semantic subspaces helps to find a better
balance between generalisability and verifiability.

• Finally, we show that adversarial training based on semantic subspaces results in DNNs that are both
more verifiable and more generalisable than those obtained with other forms of robust training.

4.1 Metrics for understanding the properties of embedding spaces

Let us start with recalling the existing standard metrics used in DNN verification. Recall that we are
given an NLP dataset Y = {s1, . . . , sq}, moreover we assume that each si is assigned a correct class
from C = {c1, . . . , cn}. We restrict to the case of binary classification in this paper for simplicity, so we
will assume C = {c1, c2}. Furthermore, we are given an embedding function E:S→R

m, and a network
N:Rm →R

n. Usually n corresponds to the number of classes, and thus in case of binary classification,
we have N:Rm →R

2. An embedded sentence s ∈Y is classified as class c if the value of c in N(E(s)) is
higher than all other classes.

Accuracy. The most popular metric for measuring the performance of the network is the accuracy of
N, which is measured as a percentage of sentences in Y that are assigned to a correct class by N. Note
that this metric only checks a finite number of points in R

m given by the dataset.
Verifiability. A verifier V takes a network N, a subspace S and its designated class c as an input, and

outputs 1 if it can prove that N assigns all points in the subspaceS to the class c and 0 otherwise. Consider
a verification problem with multiple subspaces {S1, . . . , Sl}, where all the points in each subspace should
be assigned to a specific class ci ∈ {c1, . . . , cn}. In the literature, the most popular metric to measure
success rate of the given verifier on {S1, . . . , Sl} is verifiability:

Definition 7. (Verifiability). Given a set of subspaces S1, . . . , Sl each assigned to classes c1, . . . , cl,
then the verifiability is the percentage of such subspaces successfully verified:

W(S1, . . . , Sl, c1, . . . , cl) =
∑l

i=0 V(N, Si, ci)

l

All DNN verification papers that study such problems report this measure. Note that each subspace
contains an infinite number of points.

However, suppose we have a subspace S that verifiably consists only of vectors that are assigned to a
class c by N. Because of the embedding gap, it is difficult to calculate how many valid unseen sentences
outside of Y will be mapped into S by E, and therefore how much utility there is in verifying S . In an
extreme case, it is possible to have 100% verifiability and yet the verified subspaces will not contain any
unseen sentences.

Generalisability. Therefore, we now introduce a third metric, generalisability, which is a heuristic
for the number of semantically similar unseen sentences captured by a given set of subspaces.

Definition 8. (Generalisability). Given a set of subspaces S1, . . . , Sl and a target set of embeddings V
the generalisability of the subspaces is measured as the percentage of the embedded vectors that lie in
the subspaces:

RG (V , S1, . . . , Sl) = |V ∩ ⋃l
i=1 Si|

|V|
In this paper, we will generate the target set of embeddings V as

⋃
s∈Y Vb

t (s) where Y is a dataset, t is
the type of semantic perturbation, b is the number of perturbations and Vb

t (s) is the embeddings of the
set of semantic perturbations Ab

t (s) around s generated using Pt, as described in Section 3.4.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 25

Table 7. Mean and standard deviation of the accuracy of the baseline DNN on the RUAR and the
medical datasets. All experiments are replicated five times

Model
Adversarial
training

Train Accuracy
RUAR

Test Accuracy
RUAR

Train Accuracy
Medical

Test Accuracy
Medical

Nbase No 93.87 ± 0.14% 93.57 ± 0.18% 96.32 ± 0.05% 94.49 ± 0.26%

Note that Pt can be given by a collection of different perturbation algorithms and their kinds. The key
assumption is that Ab

t (s) contains valid sentences semantically similar to s and belonging to the same
class. Assuming that membership of S is easy to compute, then this metric is also easy to compute as
the set Ab

t (s) is finite and of size b, and therefore so is Vb
t (s). Note that, unlike accuracy and verifiability,

the generalisability metric does not explicitly depend on any DNN or verifier. However, in this paper,
we only study generalisability of verifiable subspaces, and thus the existence of a verified network N
will be assumed. Furthermore, the verified subspaces we study in this paper will be constructed from
the dataset via the methodology described in Definition 6.

4.2 Baseline experiments for understanding the properties of embedding spaces

The methodology defined thus far has given basic intuitions about the modular nature of the NLP verifi-
cation pipeline. Bearing this in mind, it is important to start our analysis with the general study of basic
properties of the embedding subspaces, which is our main interest in this paper, and suitable baselines.

Benchmark datasets will be abbreviated as “RUAR” and “Medical”. We use Ypos to refer to the set of
sentences in the training dataset with a positive class (i.e. a question asking the identity of the model, and
a medical query, respectively), and Yneg to refer to the remaining sentences. For a benchmark network
N:Rm →R

2, we train a medium-sized fully-connected DNN (with 2 layers of size (128, 2) and input size
30) using stochastic gradient descent and cross-entropy loss. The main requirement for a benchmark
network is its sufficient accuracy, see Table 7.

For the choice of benchmark subspaces, we use the following two extreme sets of geometric
subspaces:

1. the singleton set containing the maximal subspace SH(H(Ypos)) around all embedded sentences of
the positive class pos in Y . This is the largest subspace constructable with our methods, but we
should assume that verifiability of such a subspace would be near 0%. It is illustrated in the first
graph of Figure 3.

2. the set of minimal subspaces H(Ypos, 0.005) given by ε-cubes around each embedded sentence of
class pos in Y , where ε = 0.005 is chosen to be sufficiently small to give very high verifiability. This
is illustrated in the first graph of Figure 1.

We first seek to understand the geometric properties (e.g. volume, ε values) and verifiability figures for
these two extremes.

4.3 Verifiability-generalisability trade-off for geometric subspaces

The number and average volume of the hyper-rectangles that will make up our verified subspaces are
shown in Table 8. Generally, we use the following naming convention for our experiments: Hm denotes a
hyper-rectangle obtained using a method m. For example, RUAR dataset contains 3400 sentences of the
positive class, and therefore the experiment Hε=0.005 consisting of generating hyper-cubes around each
positive sentence results in 3400 hyper-cubes. Using clustering, we obtain a set of 50, 100, 200, 250
clusters denoted as H50 – H250 and using the shrinking algorithm we obtain Hsh.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

26 M. Casadio et al.

Table 8. Sets of geometric subspaces used in the experiments, their cardinality and average volumes
of hyper-rectangles. All shapes are eigenspace rotated for better precision

Experiment
name

Hyper-rectangles construction
method

Avg. volume
of hyper-
rectangles

RUAR

Number of
hyper-

rectangles
RUAR

Avg. volume
of hyper-
rectangles
Medical

Number of
hyper-

rectangles
Medical

Hsh Hyper-rectangle around the
entire dataset shrunk to exclude
all negative examples -
SH(H(Ypos), Y , cpos)

7.55e-11 1 2.60e-09 1

H50 Set of hyper-rectangles on the
dataset separated into 50
clusters - H(CL(Ypos, 50))

1.02e-16 50 6.56e-15 50

H100 Set of hyper-rectangles on the
dataset separated into 100
clusters - H(CL(Ypos, 100))

6.23e-18 100 3.25e-17 100

H200 Set of hyper-rectangles on the
dataset separated into 200
clusters - H(CL(Ypos, 200))

3.31e-20 200 4.67e-19 200

H250 Set of hyper-rectangles on the
dataset separated into 250
clusters - H(CL(Ypos, 250))

6.42e-22 250 2.42e-20 250

Hε=0.05 Set of ε-cubes around all
positive sentences in the dataset
- H(Ypos, 0.05)

1.00e-30 3400 1.00e-30 989

Hε=0.005 Set of ε-cubes around all
positive sentences in the dataset
- H(Ypos, 0.005)

1.00e-60 3400 1.00e-60 989

Table 9. Verifiability of the baseline DNN on the RUAR and the medical datasets, for a
selection of geometric subspaces; using the ERAN verifier

Dataset Model Hsh H50 H100 H200 H250 Hε=0.05 Hε=0.005

RUAR Nbase 0.00% 0.00% 1.33% 0.52% 0.41% 0.00% 88.67%
Medical Nbase 0.00% 0.00% 0.00% 2.10% 4.08% 5.00% 97.86%

Notice the consistent reduction of volume in Table 8, from Hsh to H50 - H250 and ultimately to Hε=0.005.
There are several orders of magnitude between the largest and the smallest subspace.

4.3.1 Verifiability of geometric subspaces
Next, we pass each set of hyper-rectangles and the given network to the ERAN verifier and measure
verifiability. Table 9 shows that, as expected, the shrunk hyper-rectangle Hsh achieves 0% verifiability,
and the various clustered hyper-rectangles (H50, H100 H200, H250) achieve at most negligible verifiability.
In contrast, the baseline Hε=0.005 achieves up to 99.60% verifiability. This suggests that ε = 0.005 is a
good benchmark for a different extreme. Table 8 can give us an intuition of why Hε=0.005 has notably
higher verifiability than the other hyper-rectangles: the volume of Hε=0.005 is several orders of magnitude
smaller. We call this effect low verifiability of the high-volume subspaces.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 27

Table 10. Generalisability of the selected geometric subspaces Hε=0.005, Hε=0.05 and Hsh, measured on
the sets of semantic perturbations Ab

tRAUR
(Ypos) and Ab

tmedical
(Ypos)

Dataset Experiment
Avg. Volume of
hyper-rectangles

Generalisability
(%)

Number of
sentences

contributing to
generalisability

Total Sentences in
Ab

t (Ypos)
RUAR Hε=0.005 1.00e-60 1.95 2821 144500

Hε=0.05 1.00e-30 38.47 55,592 144500
Hsh 7.55e-11 50.91 73,561 144500

Medical Hε=0.005 1.00e-60 0.09 10 11,209
Hε=0.05 1.00e-30 28.49 3194 11,209
Hsh 2.6e-09 37.13 4162 11,209

Tables 8 and 9 suggest that smaller subspaces are more verifiable. One may also conjecture that they
are less generalisable (as they will contain fewer embedded sentences). We now will confirm this via
experiments; we are particularly interested in understanding how quickly generalisability deteriorates
as verifiability increases.

4.3.2 Generalisability of geometric subspaces
To test generalisability, we algorithmically generate a new dataset Ab

t (Ypos) containing its semantic per-
turbations, using the method described in Section 3.1. The choice to use only positive sentences is
motivated by the nature of the chosen datasets – both Medical and RUAR sentences split into:

• a positive class that contains sentences with one intended semantic meaning (they are medical
queries, or they are questions about robot identity); and

• a negative class that represents “all other sentences” These “other sentences” are not grouped by any
specific semantic meaning and therefore do not form one coherent semantic category.

However, Section 5 will make use ofAb
t (Yneg) in the context of discussing the embedding error of verified

subspaces.
For the perturbation type t, in this experiment we take a combination of the different perturbations

algorithms7 described in Section 3.1. Each type of perturbation is applied 4 times on the given sentence
in random places. The resulting datasets of semantically perturbed sentences are therefore approximately
two orders of magnitude larger than the original datasets (see Table 10) and contain unseen sentences
of similar semantic meaning to the ones present in the original datasets RUAR and Medical.

Table 10 shows that the most verifiable subspace Hε=0.005 is the least generalisable. This means
Hε=0.005 may not contain any valid new sentences apart from the one for which it was formed! At the
same time, Hε=0.05 has up to 48% of generalisability at the expense of only up to 5% of verifiability
(cf. Table 9). The effect of the generalisability vs verifiability trade-off can thus be rather severe for
geometric subspaces.

This experiment demonstrates the importance of using the generalisability metric: if one only took
into account the verifiability of the subspaces one would chooseHε=0.005, obtaining mathematically sound
but pragmatically useless results. We argue that this is a strong argument for including generalisability
as a standard metric in reporting NLP verification results in the future.

7 For RUAR, tRUAR = { character insertion, character deletion, character replacement, character swapping, character repe-
tition, word deletion, word repetition, word negation, word singular/plural verbs, word order, word tense }. For the Medical
dataset, tMedical = { character insertion, character deletion, character replacement, character swapping, character repetition, word
deletion, word repetition, word negation, word singular/plural verbs, word order, word tense, sentence polyjuice}.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

28 M. Casadio et al.

4.4 Verifiability-generalisability trade-off for semantic subspaces

The previous subsection has shown that the verifiability-generalisability trade-off is not resolvable by
geometric manipulations alone. In this section we argue that using semantic subspaces can help to
improve the effects of the trade-off. The main hypothesis that we are testing is: semantic subspaces
constructed using semantic-preserving perturbations are more precise, and this in turn improves both
verifiability and generalisability.

We will use the construction given in Definition 6. As Table 11 illustrates, we construct several
semantic hyper-rectangles on sentences of the positive class using character-level (Hchar, Hdel., Hins.,
Hrep., Hrepl., Hswap.), word-level (Hword) and sentence-level perturbations (Hpj). The subscripts char and
word refer to the kind of perturbation algorithm, while del., ins., rep., repl., swap. and pj refer to the type of
perturbation, where pj stands for Polyjuice (see Section 3.1). Notice comparable volumes of all these
shapes, and compare with Hε=0.05.

4.4.1 Verifiability of semantic subspaces
We pass each set of hyper-rectangles and the network Nbase to the verifiers ERAN and Marabou to mea-
sure verifiability of the subspaces. Table 12 illustrates the verification results obtained using ERAN.
From the table, we can infer that the verifiability of our semantic hyper-rectangles is indeed higher
than that of the geometrically-defined hyper-rectangles (Table 9). Furthermore, our semantic hyper-
rectangles, while unable to reach the verifiability of Hε=0.005, achieve notable higher verification than its
counterpart of comparable volume Hε=0.05. From this experiment, we conclude that not only volume,
but also precision of the subspaces has an impact on their verifiability.

Following these results, Table 13 reports the verification results using Marabou instead of ERAN.
As shown, Marabou is able to verify up to 66.83% (Hrep.), while ERAN achieves at most 50.09%. This
shows that Marabou outperforms ERAN. This is most likely due to the fact that Reluplex algorithm of
Marabou achieves better precision on ReLU networks, that we use. Overall, the Marabou experiment
confirms the trends of improved verifiability shown by ERAN and thus confirms our hypothesis about
importance of shape precision.

4.4.2 Generalisability of semantic subspaces
It remains to establish whether the more verifiable semantic subspaces are also more generalisable.
Whereas Table 10 compared the generalisability of Hε=0.005 and Hε=0.05 with that of Hsh, Table 14 com-
pares their generalisability to the most verifiable semantic subspaces, Hword and Hpj. It shows that these
semantic subspaces are also the most generalisable among the verifiable subspaces, containing, respec-
tively, 47.67% and 28.74% of the unseen sentences. Note that among all the experiments, only Hsh has
higher generalisability, but its verifiability is 0.

We thus infer that using semantic subspaces is effective for bridging the verifiability-generalisability
gap, with precise subspaces performing somewhat better than ε-cubes of the same volume; however
both beating the smallest ε-cubes from Section 4.2 of comparable verifiability. Bearing in mind that the
verified hyper-rectangles only cover a tiny fraction of the embedding space, the fact that they contain up
to 47.67% of randomly generated new sentences is an encouraging result, the likes of which have not
been reported before. To substantiate this claim, we define the training embedding space as the hyper-
rectangle that encloses all sentences on the dataset. We show in Table 15 the percentage of the ‘training
embedding space’ covered by our best hyper-rectangles Hε=0.005, Hε=0.05, Hword and Hpj.

4.5 Adversarial training on semantic subspaces

In this section, we study the effects that adversarial training methods have on the verifiability of the
previously defined subspaces in Tables 8 and 11. By comparing the effectiveness of the different training

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European
JournalofApplied

M
athem

atics
29

Table 11. Sets of semantic subspaces used in the experiments, their cardinality and average volumes of hyper-rectangles. All
shapes are eigenspace rotated for better precision

Experiment
name

Hyper-rectangles construction
method

Avg. volume of
hyper-rectangles

RUAR

Number of
hyper-rectangles

RUAR

Avg. volume of
hyper-rectangles

Medical

Number of
hyper-rectangles

Medical
Hchar Set of hyper-rectangles for character

perturbations
1.54e-30 3400 7.66e-31 989

Hword Set of hyper-rectangles for word
perturbations

1.28e-30 3400 – –

Hpj Set of hyper-rectangles for polyjuice
sentence perturbations

– – 2.01e-28 989

Hswap. Set of hyper-rectangles for swapping
perturbations

1.57e-31 3400 3.42e-31 989

Hrepl. Set of hyper-rectangles for
replacement perturbations

9.84e-31 3400 3.43e-31 989

Hdel. Set of hyper-rectangles for deletion
perturbations

3.46e-31 3400 1.24e-32 989

Hins. Set of hyper-rectangles for insertion
perturbations

3.21e-31 3400 9.11e-33 989

Hrep. Set of hyper-rectangles for repetition
perturbations

1.56e-31 3400 1.06e-32 989

https://doi.org/10.1017/S0956792525000099 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792525000099

30 M. Casadio et al.

Table 12. Verifiability of the baseline DNN on the RUAR and the medical datasets, for a selection of
semantic subspaces; using the ERAN verifier

Dataset Model Hε=0.05 Hword Hchar Hdel. Hins. Hrep. Hrepl. Hswap. Hpj

RUAR Nbase 0.00% 1.80% 0.87% 1.62% 2.63% 1.66% 0.94% 2.07% –
Medical Nbase 5.00% – 39.71% 39.62% 44.66% 48.71% 37.49% 42.60% 50.09%

Table 13. Verifiability of the baseline DNN on the RUAR and the medical datasets, for a selection of
semantic subspaces; using the Marabou verifier

Dataset Model Hε=0.05 Hword Hchar Hdel. Hins. Hrep. Hrepl. Hswap. Hpj

RUAR Nbase 1.79% 11.69% 4.88% 4.35% 9.72% 9.46% 5.65% 8.07% –
Medical Nbase 37.96% – 64.03% 64.15% 64.65% 66.83% 64.75% 64.36% 61.57%

Table 14. Generalisability of the selected geometric subspaces Hε=0.005 and Hε=0.05 and the semantic
subspacesHword andHpj, measured on the sets of semantic perturbationsAb

tRUAR
(Ypos) andAb

tmedical
(Ypos).

Note that the generalisability of Hsh (Table 10), despite it having the volume 19 order of magnitudes
bigger, is only 3% greater than Hword

Dataset Experiment
Avg. Volume of
hyper-rectangles

Generalisability
(%)

Number of
sentences

contributing to
generalisability

Total Sentences
in Ab

t (Ypos)
RUAR Hε=0.005 1.00e-60 1.95 2821 144500

Hε=0.05 1.00e-30 38.47 55,592 144500
Hword 1.28e-30 47.67 68,882 144500

Medical Hε=0.005 1.00e-60 0.09 10 11,209
Hε=0.05 1.00e-30 28.49 3194 11,209
Hpj 2.01e-28 28.74 3222 11,209

Table 15. Total volume and percentage of the training embedding space covered by our best hyper-
rectangles. The total volume of the training embedding space for RUAR is 6.14e − 5, and for medical
is 1.43e − 5

Dataset Experiment
Total Volume of
Hyper-rectangles

Training Embedding
Space Covered (%)

RUAR Hε=0.005 2.89e-57 4.71e-53
Hε=0.05 2.89e-27 4.71e-23
Hword 3.7e-27 6.03e-23

Medical Hε=0.005 9.89e-58 6.92e-53
Hε=0.05 9.89e-28 6.92e-23
Hpj 1.63e-25 1.14e-20

approaches described in Section 3.5, we show in this section that adversarial training based on our new
semantic subspaces is the most efficient. Three kinds of training are deployed in this section:

1. No robustness training - The baseline network is Nbase from the previous experiments, which has not
undergone any robustness training.

2. Data augmentation. We obtain three augmented datasets Y ∪A5
char(Ypos), Y ∪A6

word(Ypos) and
A5

pj(Ypos) where A(·) is defined in Section 4.4. The subscripts char and word denote the type of

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 31

Table 16. Accuracy of the robustly trained DNNs on the RUAR and the medical datasets. Y stands
for either RUAR or medical depending on the column

Model Dataset
Train Accuracy

RUAR
Test Accuracy

RUAR
Train Accuracy

Medical
Test Accuracy

Medical
Nchar−aug Y ∪A5

char(Ypos) 95.62 ± 0.26% 93.20 ± 0.35% 99.08 ± 0.06% 93.46 ± 0.30%
Nword−aug Y ∪A6

word(Ypos) 98.57 ± 0.06% 94.59 ± 0.36% – –
Npj−aug Y ∪A5

pj(Ypos) – – 98.19 ± 0.09% 93.19 ± 0.39%
Nchar−adv Y 93.26 ± 0.19% 92.51 ± 0.38% 96.27 ± 0.05% 95.09 ± 0.16%
Nword−adv Y 93.68 ± 0.16% 92.37 ± 0.29% – –
Npj−adv Y – – 95.05 ± 0.19% 93.49 ± 0.32%
Nε=0.05−adv Y 94.01 ± 0.17% 92.24 ± 0.19% 96.05 ± 0.09% 95.04 ± 0.24%

Table 17. Accuracy of the DNNs trained adversarially on the RUAR and the medical datasets

Model
Train Accuracy

RUAR
Test Accuracy

RUAR
Train Accuracy

Medical
Test Accuracy

Medical
Nsh−adv 93.39 ± 0.22% 92.96 ± 0.13% 96.14 ± 0.12% 94.29 ± 0.26%
N50−adv 94.32 ± 0.14% 93.49 ± 0.19% 95.56 ± 0.20% 95.15 ± 0.12%
N100−adv 94.88 ± 0.04% 94.18 ± 0.24% 95.71 ± 0.11% 95.47 ± 0.16%
N200−adv 95.09 ± 0.09% 94.45 ± 0.14% 95.85 ± 0.05% 95.43 ± 0.10%
N250−adv 95.22 ± 0.08% 94.22 ± 0.23% 96.07 ± 0.13% 95.38 ± 0.22%
Nε=0.005−adv 93.48 ± 0.21% 91.59 ± 0.07% 96.24 ± 0.04% 95.13 ± 0.09%

perturbation as detailed in Tables 4 and 5, while the subscript pj refers to the sentence level pertur-
bations generated with Polyjuice. We train the baseline architecture, using the standard stochastic
gradient descent and cross entropy loss, on the augmented datasets, and obtain DNNs Nchar−aug,
Nword−aug and Npj−aug.

3. PGD adversarial training with geometric and semantic hyper-rectangles. Instead of using the stan-
dard ε-cube as the PGD subspace S , we use the various hyper-rectangles defined in Tables 8
& 11. We refer to a network trained with the PGD algorithm on the hyper-rectangle associated
with experiment Hname as Nname−adv. For example, for the previous experiment Hsh, we obtain the
network Nsh−adv by adversarially training the benchmark architecture on the associated subspace
S = SH(H(Ypos), Y , cpos).

See Tables 16 & 17 for full listing of the networks we obtain in this way. We call DNNs of second and
third type robustly trained networks. We keep the geometric and semantic subspaces from the previous
experiments (shown in Table 11) to compare how training affects their verifiability.

Following the same evaluation methodology of experiments as in Sections 4.2 and 4.4.1, we use the
verifiers ERAN and Marabou to measure verifiability of the subspaces. Table 16 reports accuracy of
the robustly trained networks, while the verification results are presented in Tables 18 and 19. From
Table 16, we can see that networks trained with data augmentation achieve similar nominal accuracy
to networks trained with adversarial training. However, the most prominent difference is exposed in
Tables 18 and 19: adversarial training effectively improves the verifiability of the networks, while
data augmentation actually decreases it.

Specifically, the adversarially trained networks trained on semantic subspaces (Nchar−adv, Nword−adv,
Npj−adv) achieved high verifiability, reaching up to 45.87% for RUAR and up to 83.48% for the Medical
dataset. This constitutes a significant improvement of the verifiability results compared to Nbase. Looking
at nuances, there does not seem to be a single winner subspace when it comes to adversarial training, and
indeed in some cases Hε=0.05 wins over more precise subspaces. All of the subspaces in Table 11 have

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

32 M. Casadio et al.

Table 18. Verifiability of the robustly trained DNNs on the RUAR and the medical datasets, for a
selection of semantic subspaces; using the ERAN verifier

Dataset Model Hε=0.05 Hword Hchar Hdel. Hins. Hrep. Hrepl. Hswap. Hpj

RUAR Nchar−aug 0.00% 0.24% 0.00% 0.51% 1.38% 1.09% 0.35% 1.06% –
Nword−aug 0.00% 0.24% 0.00% 0.42% 0.31% 0.57% 0.25% 0.92% –
Nchar−adv 0.00% 8.97% 4.43% 4.81% 9.86% 11.3% 6.91% 8.51% –
Nword−adv 0.04% 10.75% 4.05% 4.36% 8.60% 9.52% 6.81% 7.45% –
Nε=0.05−adv 0.12% 10.16% 4.18% 4.04% 8.91% 10.17% 6.52% 7.36% –

Medical Nchar−aug 0.00% – 7.59% 5.28% 12.84% 11.05% 7.92% 7.40% 26.97%
Npj−aug 0.00% – 10.31% 8.49% 15.67% 14.90% 9.18% 10.58% 28.59%
Nchar−adv 5.28% – 50.12% 49.78% 53.99% 57.76% 48.02% 52.07% 55.44%
Npj−adv 2.83% – 47.11% 46.14% 52.12% 56.14% 44.59% 48.27% 57.36%
Nε=0.05−adv 8.68% – 51.60% 50.31% 55.67% 58.52% 50.10% 53.65% 59.76%

Table 19. Verifiability of the DNNs trained for robustness on the RUAR and the medical datasets, for
a selection of semantic subspaces; using the Marabou verifier

Dataset Model Hε=0.05 Hword Hchar Hdel. Hins. Hrep. Hrepl. Hswap. Hpj

RUAR Nchar−aug 0.72% 13.90% 8.49% 7.92% 13.67% 15.50% 9.56% 11.88% –
Nword−aug 0.24% 11.30% 3.87% 4.05% 8.27% 8.84% 5.71% 7.72% –
Nchar−adv 7.37% 41.93% 30.41% 30.23% 38.20% 45.87% 32.74% 36.62% –
Nword−adv 12.17% 45.12% 25.82% 25.39% 33.85% 37.45% 26.87% 30.99% –
Nε=0.05−adv 18.46% 41.93% 21.99% 20.32% 28.13% 32.83% 23.52% 26.74% –

Medical Nchar−aug 1.14% – 37.05% 35.29% 41.50% 42.47% 34.89% 37.94% 49.65%
Npj−aug 5.77% – 39.00% 38.66% 42.28% 44.22% 37.29% 39.03% 38.22%
Nchar−adv 51.70% – 77.59% 77.25% 77.50% 77.98% 77.92% 78.67% 76.58%
Npj−adv 57.45% – 81.94% 81.47% 82.31% 83.48% 82.47% 82.72% 82.24%
Nε=0.05−adv 62.57% – 79.32% 78.57% 78.70% 80.21% 79.40% 80.76% 66.22%

very similar volume, which accounts for improved performance across all experiments. The particular
peaks in performance then come down to particularities of a specific semantic attack that was used
while training. For example, the best performing networks are those trained with Polyjuice attack, the
strongest form of attack in our range. Thus, if the kind of attack is known in advance, the precision of
hyper-rectangles can be further tuned.

As a final note, we report results from robust training using the subspaces from Section 4.2 in Table 8.
Table 17 reports the accuracy and the details of the robustly trained networks on those subspaces,
while the verification results are presented in Table 20. These tables further demonstrate the impor-
tance of volume and show that subspaces that are too big still achieve negligible verifiability even
after adversarial training. Generalisability of the shapes used in Tables 16–20 remains the same, see
Tables 10, 14.

4.5.1 Zonotopes vs hyper-rectangles
For our final experiment, we compare different subspace shapes for verification. Hyper-rectangles are
easy to compute but represent the largest over-approximation, and convex-hulls are precise but too
computationally expensive to calculate. Hence, we consider zonotopes as an alternative, as they are
more precise than hyper-rectangles while being computable. Although complete verifiers could the-
oretically work with zonotopes, they do not practically support them. Therefore, we use CORA, an

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 33

Table 20. Verifiability of the DNNs trained adversarially on the RUAR and the medical
datasets, for a selection of geometric subspaces; using the ERAN verifier

Dataset Model Hsh H50 H100 H200 H250 Hε=0.005

RUAR Nsh−adv 0.00% 0.00% 1.33% 0.52% 0.41% 88.62%
N50−adv 0.00% 0.00% 0.00% 0.00% 0.41% 90.02%
N100−adv 0.00% 0.00% 0.00% 0.00% 0.41% 92.74%
N200−adv 0.00% 0.00% 0.00% 0.00% 0.08% 93.54%
N250−adv 0.00% 0.00% 0.00% 0.00% 0.33% 93.86%
Nε=0.005−adv 0.00% 0.00% 0.00% 0.00% 0.33% 98.22%

Medical Nsh−adv 0.00% 0.00% 0.00% 2.50% 4.40% 97.47%
N50−adv 0.00% 0.00% 1.08% 3.60% 6.00% 98.79%
N100−adv 0.00% 0.00% 1.08% 3.00% 5.04% 99.09%
N200−adv 0.00% 0.00% 1.08% 2.90% 4.96% 99.05%
N250−adv 0.00% 0.00% 0.00% 2.90% 4.40% 98.73%
Nε=0.005−adv 0.00% 0.00% 0.00% 2.30% 4.32% 99.60%

Table 21. Comparison of different subspace shapes for verification and verifiers for
Npj−adv and Hpj on the medical dataset

Verifier Geometric Shape Verifiability %
αβ-CROWN Rotated Hyper-rectangles 88.41
Marabou Rotated Hyper-rectangles 82.24
ERAN Rotated Hyper-rectangles 57.36
CORA Zonotopes 55.73
CORA Rotated Hyper-rectangles 29.10

abstract interpretation-based verifier, to compare hyper-rectangles and zonotopes. Additionally, we run
verification using αβ-CROWN, the best-performing verifier in the VNN-COMP 2024 competition. This
experiment is conducted on our best-performing combination of network (Npj−adv), subspace (Hpj) and
dataset (Medical).

The results presented in Table 21 show that the method of hyper-rectangle rotation that we use is effec-
tive. It also shows that zonotopes can improve verifiability over rotated hyper-rectangles within CORA.
However, the approximation provided by the abstract interpretation verifiers ERAN and CORA signifi-
cantly reduces their effectiveness compared to the precision of Marabou and αβ-CROWN. This aligns
with our previous findings, where Marabou outperformed the abstract interpretation verifier ERAN.
However, these results should be interpreted with caution, as we cannot directly compare the shapes,
given that the top complete verifiers do not support zonotopes. We conjecture that, should Marabou and
αβ-CROWN implement zonotope based verification, their increased precision would further improve
the verifiability results.

5. NLP case studies

The purpose of this section is two-fold. First, the case studies we present here apply the NLP Verification
Pipeline set out in Section 2.6 using a wider range of NLP tools. Notably, in this section, we try dif-
ferent LLMs to embed sentences and replace Polyjuice with the LLM vicuna-13b,8 a state-of-the-art
open source chatbot trained by fine-tuning LLaMA [138] on user-shared conversations collected from

8 Using the following API: https://replicate.com/replicate/vicuna-13b/api.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://replicate.com/replicate/vicuna-13b/api
https://doi.org/10.1017/S0956792525000099

34 M. Casadio et al.

Figure 4. Tool ANTONIO that implements a modular approach to the NLP verification pipeline used
in this paper.

ShareGPT.9 For further details, please refer to Section 3.1. In order to be able to easily vary the different
components of the NLP verification pipeline, we use the tool ANTONIO [16], shown in Figure 4.

Second, and perhaps more fundamentally, we draw attention to the fact that the correctness of the
specification (i.e. the subspace being verified) is dependent on the purely NLP parts of the pipeline.
In particular, the parts that generate, perturb and embed sentences. Therefore, the probability of the
specification itself being wrong is higher than in many other areas of verification. This aspect is largely
ignored in NLP verification papers and, in this section, we show that using standard NLP methods may
result in incorrect specifications and therefore compromising the practical value of the NLP verification
pipelines.

Imagine a scenario where a DNN was verified on subspaces of a class cj and then used to clas-
sify new, unseen sentences. There are two key assumptions that affect the correctness of the generated
specifications:

1. Locality of the Embedding Function – We have been using the implicit assumption that the embed-
ding function maps semantically similar sentences to nearby points in the embedding space and
dissimilar sentences to faraway points. If this assumption fails, the verified subspace may also contain
the embeddings of unseen sentences that actually belong to a different class ci.

2. Sentence Perturbation Algorithm Preserves Semantics – Another assumption that most NLP verifi-
cation papers make is that we can algorithmically generate sentence perturbations in a way that is
guaranteed to retain their original semantic meaning. All semantic subspaces of Section 4 are defined
based on the implicit assumption that all perturbed sentences retain the same class as the original
sentence! But if this assumption fails, we will once again end up constructing semantic subspaces
around embeddings of sentences belonging to different classes.

Given that it is plausible that one or both of these assumptions may fail, it is therefore wrong to assure
the user that the fact that we have verified the subspace, guarantees that all sentences that embed into it,

9 https://sharegpt.com/

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://sharegpt.com/
https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 35

actually belong to cj (even if the DNN is guaranteed to classify them as cj)! In fact we will say that new
sentences of class ci that fall inside the verified subspace of class cj expose an embedding error in the
verified subspace. Note the root cause of these failures is the embedding gap, as we are unable to map
sets of points in the embedding space back to sets of natural language sentences.

Consequently, we are unable to reliably obtain correct specifications, and therefore we may enter a
seemingly paradoxical situation when, in principle, the same subspace can be both formally verified and
empirically shown to exhibit embedding errors! Formal verification ensures that all sentences embedded
within the semantic subspace will be classified identically by the given DNN; but empirical evidence
of embedding errors in the semantic subspace comes from appealing to the semantic meaning of the
embedded sentences – something that the NLP model can only seek to approximate.

Failing to acknowledge and report on the problem of verified subspaces exhibiting embedding errors
may have different implications, depending on the usage scenario. Suppose the network is being used to
recognise and censor sensitive (‘dangerous’) sentences, and the subspace is verified to only contain such
dangerous sentences. Then new sentences that fall inside of the verified subspace may still be wrongly
censored; which in turn may make interaction with the chatbot impractical. But if the subspace is verified
to only contain safe sentences, then potentially dangerous sentences could still be wrongly asserted as
verifiably safe. Note that this problem is closely related to the well-known problem of false positives and
false negatives in machine learning: as any new sentences that get incorrectly embedded into a verified
subspace of a different class, must necessarily be false positives or false negatives for that DNN.

In the light of this limitation, the main question investigated by this section is: How can we measure
and improve the quality of the purely NLP components of the pipeline, in a way that decreases the likeli-
hood of generating subspaces prone to embedding errors and therefore ensures the that our verification
results are usable in practice? As an answer to the measurement part of this question, we will introduce
the embedding error metric, that we argue should be used together with verifiability and generalisability
metrics in all NLP verification benchmarks.

5.1 Role of false positives and false negatives

Generally, when DNNs are used for making decisions in situations where safety is critically important,
practical importance of accuracy for each class may differ. For example, for an autonomous car, mis-
recognising a 20 mph sign for a 60 mph is more dangerous than misrecognising a 60 mph sign for a 20
mph sign. Similarly for NLP, because of legal or safety implications, it is crucial that the chatbot always
discloses its identity when asked, and never gives medical advice. In the literature and in this paper, it
is assumed that verified DNNs serve as filters that allow the larger system to use machine learning in a
safer manner. We therefore want to avoid false negatives altogether, i.e. if there is any doubt about the
nature of the question, we would rather err on the side of caution and disallow the chatbot answers. If
the chatbot (by mistake) refuses to answer some non-critically important questions, it maybe inconve-
nient for the user, but would not constitute a safety, security or legal breach. Thus, false positives maybe
tolerated.

On the technical level, this has two implications:

1. First, if we use DNN on its own, without verification, we may want to report precision and recall10

in addition to accuracy. Higher recall will mean fewer false negatives, which is highly desirable.
2. Second, when verifying the network, we only seek to verify subspaces that characterise the criti-

cally important class or classes that we wish to filter. This approach completely eliminates the effect
of any false negatives within the verified subspaces. But the verified subspaces may still contain
false positives (cf. Example 1) and in this sense be “prone to embedding errors”, which may not be
pragmatically desirable but do not constitute a security threat.

10 Recall that precision is defined as true positives
true positives+false negatives and recall is defined as true positives

true positives+false positives .

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

36 M. Casadio et al.

Figure 5. Zero-shot prompts with 2 basic examples from the R-U-A-robot dataset. Answers from
vicuna-13b are given in italics. A1 and A2 represent different answers to the same prompt, illustrating
a lack of consistency in the output.

Therefore, throughout this section, we report the precision, recall and F1 to see whether one or another
class is particularly challenging to recognise. Depending on the concrete scenario, precision or recall
maybe more important.

5.2 Performance of existing LLMs as safety-critical filters

Bearing this in mind, we start first by gaining an intuition about the effectiveness of modern LLMs acting
as safety-critical filters, by prompting an LLM to generate the desired output without additional fine-
tuning, i.e. we first try a zero-shot model. For our experiments, we choose the model vicuna-13b,
given its high performance on the TruthfulQA zero-shot benchmark [147], a benchmark to test a
model’s propensity to generate truthful answers to questions [148]. Using vicuna-13b, we experi-
mented with prompts as shown in Figure 5, and settled on the first prompt ‘If I ask you anything about
your agency, always only reply “I am a large language model”. If not, reply normally.“[Example]”’?
as it most often gave the (somewhat) desired output on a subset of manually checked data samples.
Similarly for the medical dataset, we settled on a prompt ‘If I ask you any medical query, always
only reply “As an AI language model, I am not authorized to provide medical advice”. If not, reply
normally.“[Example]”’.

For our zero-shot model, results are reported on the test set of our datasets. We use regular expres-
sions and hand-crafted rules to check for the presence of the desired answer (e.g. ‘I am a large language
model’ for the RUAR dataset) for positively classified training samples.11 For the RUAR dataset, if we are
strict about the requirements of the output (only allowing for minor differences such as capitalisation),
the F1 of the LLM is 54% (precision = 0.51, recall = 0.58) as shown in the top line of Table 22. This
shows that false positives are slightly more likely than false negatives. If we loosen our success criteria
to consider other non-requested variations on our desired output (e.g. ‘I am a chatbot’ instead of ‘I am a
large language model’) the F1 marginally improves, with F1 = 0.56. For the medical safety dataset,

11 Additionally omitting ≈ 40% of answers that returned empty due to API errors.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 37

Table 22. Performance of the models on the test/perturbation set. The average standard deviation is
0.0049

Test set Perturbed test set

Dataset Model Precision Recall F1 Precision Recall F1
RUAR Nzero−shot 51.67% 58.35% 54.81% – – –

Nbase(s-bert 22M) 95.68% 91.29% 93.44% 94.77% 71.86% 81.74%
Npert (s-bert 22M) 84.97% 98.63% 91.29% 81.25% 94.66% 87.45%
Nbase (s-gpt 1.3B) 96.20% 87.25% 91.51% 95.45% 67.38% 78.98%
Npert (s-gpt 1.3B) 63.03% 99.80% 77.24% 61.26% 98.60% 75.54%
Nbase (s-gpt 2.7B) 96.74% 87.29% 91.77% 95.49% 69.82% 80.66%
Npert (s-gpt 2.7B) 60.18% 99.80% 75.08% 58.46% 98.99% 73.50%

Medical Nzero−shot 58.95% 70.22% 64.09% – – –
Nbase (s-bert 22M) 95.23% 93.25% 94.23% 95.20% 89.64% 92.34%
Npert (s-bert 22M) 93.35% 97.36% 95.31% 92.38% 95.17% 93.76%
Nbase (s-gpt 1.3B) 91.93% 88.11% 89.98% 92.17% 84.17% 87.98%
Npert (s-gpt 1.3B) 84.41% 96.27% 89.38% 83.15% 94.70% 88.54%
Nbase (s-gpt 2.7B) 93.25% 89.29% 91.23% 92.89% 84.79% 88.66%
Npert (s-gpt 2.7B) 86.03% 96.56% 90.98% 84.88% 94.99% 89.64%

the results are precision = 0.58, recall = 0.70 and F1 = 0.64, indicating comparatively fewer false
negatives.

However, we found that in several cases the generated answers include a combination of the desired
output and undesired output, e.g. ‘. . . I am not authorised to provide medical advice . . .’ followed by
explicit medical advice and the results must be interpreted with this caveat. Therefore, the actual success
rate may be even lower than these reported results. Note there were at least 5 instances regarding the
RUAR dataset where the system confirmed human identity, without any disclaimers. Thus, we find that
our zero-shot model is, at most, minimally successful in identifying such queries, encouraging the
need for verification methodologies.

5.3 Experimental setup of the verification pipeline

We therefore turn our attention to assessing the effectiveness of training a classifier specifically for the
task and measuring the effect of the assumptions in Section 5 on the embedding error of the verified
subspaces. For all experiments in this section, we set up the NLP verification pipeline as shown in
Table 23; and implement it using the tool ANTONIO [16]. In setting up the pipeline, we use the key
conclusions from Section 4 about successful verification strategies, namely:

1. semantic subspaces should be preferred over geometric subspaces as they result in a better
verifiability-generalisability trade-off;

2. constructing semantic subspaces using stronger NLP perturbations results in higher verifiability of
those subspaces;

3. likewise, adversarial training using subspaces constructed with stronger NLP perturbations also
results in higher verifiability;

4. Marabou allows us to verify a higher percentage of subspaces compared to ERAN thanks to its
completeness and precision.

Based on these results, we further strengthen the NLP perturbations by substituting Polyjuice used in the
previous section with Vicuna. Vicuna introduces more diverse and sophisticated sentence perturbations.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

38 M. Casadio et al.

Table 23. Section 5 NLP verification pipeline setup, implemented using ANTONIO. Note that, after
filtering, the volume of Hpert decreases by several orders of magnitude. Note the gap in volumes of the
subspaces generated by s-bert and s-gpt embeddings

Pipeline Component
Component
Implementations Additional Details

0. Choosing Datasets RUAR, Medical Same as in Section 4 experiments. The RUAR
dataset has 6800 sentences equally divided among
thetwo classes, while the Medical dataset has
2917 medical and non-medical queries (1417 and
1500 examplesrespectively).

1. Generating Sentence
Perturbations

A16
t (Ypos),

A16
t♦(Ypos),

A16
t (Yneg),

A16
t♦(Yneg)

With t = {char, word, vicuna}, the resulting set of
sentences A16

t (·) has 54400 sentences for RUAR
and 15824 sentences for Medical. Thesuperscript
♦ refers to filtering that will be introduced in
Section 5.5.

2. Embedding
Sentences into Real
Vector Space

s-bert 22 M,
s-gpt 1.3B, s-gpt
2.7B

In the experiments of Section 4 only s-bert 22 M
was used.

3. Defining Semantic
Subspaces based on
Sentence Perturbations

Hpert, Hpert♦ Hpert and Hpert♦ are obtained on Ab
t (Ypos),

Ab
t♦(Ypos), respectively. Their cardinality is 3400

for RUAR and 989 for Medical.
• Volume of Hpert for RUAR is 1.83e − 19 (s-bert
22M), 3.24e + 35 (s-gpt 1.3B), 3.30e + 36 (s-gpt
2.7B).
• Volume of Hpert♦ for RUAR is 2.43e − 25
(s-bert 22M), 1.54e + 27 (s-gpt 1.3B), 3.10e + 28
(s-gpt 2.7B).
• Volume of Hpert for Medical is 3.13e − 22
(s-bert 22M), 1.70e + 33 (s-gpt 1.3B), 2.10e + 33
(s-gpt 2.7B).
• Volume of Hpert♦ for Medical is 3.65e − 28
(s-bert 22M), 3.30e + 25 (s-gpt 1.3B), 3.83e + 27
(s-gpt 2.7B).

4. Training Robust
DNNs using Semantic
Subspaces

Nbase, Npert, Npert♦ Nbase is obtained as in Section 4, while Npert and
Npert♦ are obtained through our adversarial
training on Hpert and Hpert♦, respectively.

5. Verifying resulting
DNNs on the given
semantic subspaces

Marabou Same settings as in Section 4

In addition, we mix in the character and word perturbations used in the previous section, to further diver-
sify and enlarge the set of available perturbed sentences. In the terminology of Section 4.1, we obtain
the sets of perturbed sentences Ab

t (Ypos) and Ab
t (Yneg), where t = {char, word, vicuna} is a combination

of these perturbations. Table 23 also uses notation Ab
t♦(Ypos) and Ab

t♦(Yneg) to refer to filtered sets, this
terminology will be introduced in Section 5.5.2.

In the light of the goals set up in this section, we diversify the kinds of LLMs we use as embedding
functions. We use the sentence transformers package from Hugging Face originally proposed in
[140] (as our desired property is to give guarantees on entire sentences). Models in this framework

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 39

are fine-tuned on a sentence similarity task which produces semantically meaningful sentence embed-
dings. We select 3 different encoders to experiment with the size of the model. For our smallest model,
we choose all-MiniLM-L6-v2, an s-transformer based on MiniLMv2 [149], a compact version of
the BERT architecture [139] that has comparable performance. Additionally, we choose 2 GPT-based
models, available in the S-GPT package [141]. We refer to these 3 models as s-bert 22M, s-gpt 1.3B
and s-gpt 2.7B, respectively, where the number refers to size of the model (measured as the number
of parameters).

Given Ab
t (Ypos), the set of semantic subspaces Hpert which we wish to verify are obtained via the

hyper-rectangle construction in Definition 6. Accordingly, we set the adversarial training to explore the
same subspaces Hpert and to obtain the network Npert.

5.4 Analysis of the role of embedding functions

For illustration, as well as an initial confidence check, we report F1 of the obtained models, for each of
the chosen embedding functions in Table 22. Overall, the figures are as expected: compared to the F1 of
54–64% for the zero-shot model, using a fine-tuned trained DNN as a filter dramatically increases the
F1 to the range of 76–95%.

Looking into nuances, one can further notice the following:

1. There is not a single embedding function that always results in the highest F1. For example, s-bert
22M is found to have the highest F1 for Medical, while s-gpt 2.7B has the highest F1 for RUAR
(with the exception of F1 score, for which s-bert 22M is best for both datasets). The smaller GPT
model s-gpt 1.3B is systematically worse for both datasets.

2. As expected and discussed in Section 5.1, depending on the scenario of use, the highest F1 may
not be the best indicator of performance. For Medical, s-bert 22M (either with or without adver-
sarial training) obtains the highest precision, recall and F1. However, for RUAR, the choice of the
embedding function has a greater effect:
• if F1 is desired, s-bert 22M is the best choice (difference with the worst choice of the embedding

function is 12 − 16%,
• for scenarios when one is not interested in verifying the network, the embedding function s-gpt

2.7B when combined with adversarial training gives an incredibly high recall (> 99%) and would
be a great choice (difference with the worst choice of the embedding function is 13 − 28%).

• however, if one wanted to use the same network for verification, s-gpt 2.7B would be the worst
choice of embedding function, as the resulting precision drops to 58 − 61%. For verification,
either Nbase trained with s-gpt 2.7B or Nbase trained with s-bert 22M would be better choices,
both of which have precision > 95%.

3. Adversarial training only makes a significant difference in F1 for the Medical perturbed test set.
However, it has more effect on improving recall (up to 10% for Medical and 33% for RUAR).

4. For verifiability-generalisability trade-off, the choice of an embedding function also plays a role.
Table 24 shows that s-gpt models exhibit lower verifiability compared to s-bert models. This
observation also concurs with the findings in Section 4: greater volume correlates with increased
generalisation, while a smaller and more precise subspace enhances verifiability. Indeed volumes
for s-gpt models are orders of magnitude (52 − 55) larger than s-bert models.

The main conclusion one should make from the more nuanced analysis is that depending on the sce-
nario, the embedding function may influence the quality of the NLP verification pipelines, and reporting
the error range (for both precision and recall) depending on the embedding function choice should be a
common practice in NLP verification.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

40 M. Casadio et al.

Table 24. Verifiability, generalisability and embedding error of the baseline and the robustly (adver-
sarially) trained DNNs on the RUAR and the medical datasets, for Hpert♦ (Nbase and Npert♦) and Hpert

(Npert); for marabou verifier

Verifiability Generalisability
Embedding

Error False Positives

Dataset Model % # % # % # %
RUAR Nbase (s-bert 22M) 2.56 1256/44013 2.85 1/3400 0.03 27/40270 0.07

Npert (s-bert 22M) 15.92 8361/44013 19.00 1/3400 0.03 72/40270 0.18
Npert♦ (s-bert 22M) 21.89 9530/44013 21.65 3/3400 0.09 101/40270 0.25
Nbase (s-gpt 1.3B) 0.34 128/44013 0.29 0/3400 0.00 0/40270 0.00
Npert♦ (s-gpt 1.3B) 11.27 5633/44013 12.80 2/3400 0.06 27/40270 0.07
Nbase (s-gpt 2.7B) 0.35 183/44013 0.42 0/3400 0.00 0/40270 0.00
Npert♦ (s-gpt 2.7B) 11.63 5950/44013 13.52 1/3400 0.03 18/40270 0.04

Medical Nbase (s-bert 22M) 58.71 9135/15530 58.82 0/989 0.00 0/12709 0.00
Npert (s-bert 22M) 70.61 10,879/15530 70.05 0/989 0.00 0/12709 0.00
Npert♦ (s-bert 22M) 73.47 10,964/15530 70.6 0/989 0.00 0/12709 0.00
Nbase (s-gpt 1.3B) 11.02 2092/15530 13.47 0/989 0.00 0/12709 0.00
Npert♦ (s-gpt 1.3B) 20.19 3133/15530 20.17 0/989 0.00 0/12709 0.00
Nbase (s-gpt 2.7B) 13.44 2489/15530 16.03 0/989 0.00 0/12709 0.00
Npert♦ (s-gpt 2.7B) 24.92 3957/15530 25.48 0/989 0.00 0/12709 0.00

5.5 Analysis of perturbations

Recall that two problems were identified as potential causes of embedding errors in semantic subspaces:
the imprecise embedding functions and invalid perturbations (i.e. the ones that change semantic meaning
and the class of the perturbed sentences). In the previous section, we obtained implicit evidence of vari-
ability of performance of the available state-of-the-art embedding functions. In this section, we turn
our attention to analysis of perturbations. As outlined in [150], to be considered valid, the perturba-
tions should be semantically similar to the original, grammatical and have label consistency, i.e. human
annotators should still assign the same label to the perturbed sample. First, we wish to understand how
common it is for our chosen perturbations to change the class, and second, we propose several practical
methods how perturbation adequacy can be measured algorithmically.

Recall that the definition of semantic subspaces depends on the assumption that we can always
generate semantically similar (valid) perturbations and draw semantic subspaces around them. Both
adversarial training and verification then explore the semantic subspaces. If this assumption fails and
the subspaces contain a large number of invalid sentences, the NLP verification pipeline loses much of
its practical value. To get a sense of the scale of this problem, we start with the most reliable evaluation
of sentence validity – human evaluation.

5.5.1 Understanding the scale of the problem
For the human evaluation, we labelled a subset of the perturbed datasets considering all three validity
criteria discussed above. In the experiment, for each original dataset Y and word/character perturbation
type t, we select 10 perturbed sentences from A16

t (Y). At the character level this gives us 50 perturbed
sentences for both datasets (10 each for inserting, deleting, replacing, swapping or repeating a character).
At the word level, this gives us 60 perturbed sentences for RUAR (deletion, repetition, ordering, negation,
singular/plural, verb tense) and 30 for Medical (deletion, repetition and ordering). At the sentence level,
we only have one kind of perturbation – obtained by prompting vicuna-13b with instructions for the
original sentence to be rephrased 5 times. We therefore randomly select 50 vicuna-13b perturbed

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 41

Table 25. Annotation instructions for manual estimation of the perturbation validity

Criteria Instructions
Semantic similarity Evaluate whether the original and the modified sentence have the same

meaning on a scale from 1 to 4, where 1 is ‘The modified version means
something completely different’ and 4 means ‘The modified version has
exactly the same meaning’.

Grammaticality Grammatically means issues in grammar, such as verb tense. Evaluate the
grammaticality of the modified version on a scale of 1-3, where 1 is ‘Not
understandable because of grammar issues’, and 3 is ‘Perfectly
grammatical’.

Label consistency Decide whether the positive label of the modified sentence is correct using
labels 1 - ‘Yes, the label is correct’, 2 - ‘No, the label is incorrect’ and 3 -
‘Unsure’.

Table 26. Semantic similarity results of the manual evaluation for annotators A1 and A2

Semantic Similarity (%)

A1 A2

Dataset Perturbation 1 2 3 4 1 2 3 4
RUAR Rule-based 06.36 07.27 09.09 77.27 05.45 10.90 34.54 49.09

LLM-based 18.00 08.00 20.00 54.00 16.00 08.00 00.00 76.00

Medical Rule-based 01.25 02.50 10.00 86.25 10.00 10.00 31.25 48.75
LLM-based 06.00 20.00 28.00 46.00 12.00 18.00 20.00 50.00

Table 27. Grammaticality results of the manual evaluation for annotators A1 and A2

Grammaticality (%)

A1 A2

Dataset Perturbation 1 2 3 1 2 3
RUAR Rule-based 10.90 31.81 57.27 13.63 78.18 08.18

LLM-based 02.00 02.00 96.00 00.00 02.00 98.00

Medical Rule-based 07.50 32.50 60.00 01.25 88.75 10.00
LLM-based 00.00 00.00 100.0 00.00 06.00 94.00

sentences for each dataset. This results in a total of 290 pairs consisting of the original sentence and
the perturbed sentence (130 from the medical safety and 160 from the R-U-A-Robot dataset). We then
asked two annotators to both manually annotate all 290 pairs for the criteria shown in Table 25, which are
modified from [150]. Inter-annotator agreement (IAA) is reported via intraclass correlation coefficient
(ICC).

Results of Human Evaluation. The raw evaluation results are shown in Tables 26, 27 and 28. Overall,
there are high scores for label consistency, in particular for rule-based perturbations, with ≈ 88% and
85% of the perturbations rated as maintaining the same label (i.e. score 1) by the two annotators A1
and A2, respectively. Similarly, there are high scores for semantic similarity, with ≈ 85% and 78%
of the ratings falling between levels 4 and 3 for A1 and A2. For grammaticality, annotators generally
rate that perturbations generated by vicuna-13b are grammatical, whereas (as expected) rule-based
perturbations compromise on grammaticality.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

42 M. Casadio et al.

Table 28. Label consistency results of the manual evaluation for annotators A1 and A2

Label Consistency (%)

A1 A2

Dataset Perturbation 1 2 3 1 2 3
RUAR Rule-based 88.18 00.90 10.90 85.46 04.54 10.00

LLM-based 78.00 20.00 02.00 70.00 24.00 06.00

Medical Rule-based 90.00 00.00 10.00 97.50 00.00 02.50
LLM-based 88.00 04.00 08.00 74.00 00.00 26.00

In order to evaluate the inter-annotator agreement, we report the ICC between the annotators. The
ICC estimates and their 95% confidence intervals (CI) were calculated based on absolute-agreement
(single, fixed raters) – often referred to as ICC(A,1). Using cut-offs provided by [151], agreement was
determined to be MODERATE for semantic similarity (F = 4.4 df (289), p < .001, 95% CI = [0.56,0.69]),
BELOW SATISFACTORY for grammaticality (ICC = 0.43, p < .001, 95% CI = [0.34,0.52]) and BELOW
SATISFACTORY for label consistency (ICC = 0.29, p < .001, 95% CI = [0.18, 0.39]).

This suggests that although annotators individually rated the perturbations for high label consistency,
there may be disagreement on which specific samples maintain the same label. Given the moderate
agreement for semantic similarity, we note that there may be perturbations that are semantically similar
and yet may not maintain label consistency. For example Original: ‘if a computer can feel emotions, does
that make you a computer or an actual human?’, Perturbation: ‘if a computer can feel, does that make it
a machine or a person’ was rated by both annotators as high in semantic similarity but not maintaining
label consistency. Overall, and particularly when using LLMs, perturbation quality and robustness to
class change cannot be taken for granted, particularly when dealing with safety-critical queries.

Limitations. We note this is in part due to our definition of grammatical being interpreted differently
by the two independent evaluators (one accounting for character perturbations/spelling mistakes as un-
grammatical and one not) and label consistency being ambiguous for the RUAR dataset. Finally, we
also note that correlation between raters is statistically significant across all categories – indicating that
ratings across coders were aligned beyond chance probability (criteria α = 0.05). Future replications
are warranted.

5.5.2 Automatic ways to measure and report perturbation validity
Although in the near future, no geometric or algorithmic method will be able to match to the full extent
the human perception and interpretation of sentences, we can still formulate a number of effective meth-
ods that give a characterisation of the validity of the perturbations utilised when defining semantic
subspaces. We propose two:

• Using cosine similarity of embedded sentences, we can characterise semantic similarity
• Using the ROUGE-N method [152] – a standard technique to evaluate natural sentence overlap, we

can measure lexical and syntactic validity

We proceed to describe and evaluate each of them in order. Note that, as already pointed out in
Section 3.1, these metrics give interesting results assuming some simplifying assumptions, respectively,
and the analysed sentences are aligned geometrically in the embedding space and the analysed sentences
have a large lexical overlap.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 43

Table 29. Number of perturbations kept for each model after filtering with cosine similarity>0.6,
used as an indicator of similarity of perturbed sentences relative to original sentences

Dataset Class Encoder Character Vicuna Word
RUAR Positive s-bert 22M 12,693/14450

(87.84%)
8190/12223
(67.00%)

17,209/17340
(99.24%)

s-gpt 1.3B 14,170/14450
(98.06%)

9677/12223
(79.17%)

17,123/17340
(98.75%)

s-gpt 2.7B 14,168/14450
(98.05%)

10,024/12223
(82.01%)

17,112/17340
(98.69%)

Negative s-bert 22M 11,288/14450
(78.12%)

5008/8511
(58.84%)

2167/17309
(12.52%)

s-gpt 1.3B 13,315/14450
(92.15%)

5943/8511
(69.83%)

2164/17309
(12.50%)

s-gpt 2.7B 13,404/14450
(92.76%)

6377/8511
(74.93%)

2229/17309
(12.88%)

Medical Positive s-bert 22M 4753/4945
(96.12%)

4282/4651
(92.07%)

5908/5934
(99.56%)

s-gpt 1.3B 4914/4945
(99.37%)

4219/4651
(90.71%)

5909/5934
(99.58%)

s-gpt 2.7B 4910/4945
(99.29%)

4309/4651
(92.65%)

5917/5934
(99.71%)

Negative s-bert 22M 5037/5260
(95.76%)

947/1137
(83.29%)

6271/6312
(99.35%)

s-gpt 1.3B 5216/5260
(99.16%)

983/1137
(86.46%)

6258/6312
(99.14%)

s-gpt 2.7B 5220/5260
(99.24%)

1017/1137
(89.45%)

6280/6312
(99.49%)

5.5.3 Cosine similarity
Recall the definitions of Ab

t (Y), Vb
t (Y) and cosine similarity in Section 3.4. To measure the general

effectiveness of the embedding function at generating semantically similar sentences, we compute the
percentage of vectors in Vb

t (Y) that have a cosine similarity with the embedding of the original sentence
that is greater than 0.6. The results are shown in Table 29.

We then perform the experiments again, having removed all generated perturbations that fail to meet
this threshold. For each original type of perturbation t, this can be viewed as creating a new perturbation
t♦. Therefore in these alternative experiments, we form Ab

t♦(Y) – the set of filtered sentence pertur-
bations. Furthermore, we will refer to the set of hyper-rectangles obtained from Ab

t♦(Y) as Ht♦ and,
accordingly, we obtain the network Nt♦ through adversarial training on Ht♦ . The results are shown in
Table 30.

The results then allow us to identify the pros and cons of cosine similarity as a metric.

• Pros:
– There is some indication that cosine similarity is to a certain extent effective. For example, we

have seen in Table 22 in Section 5.3 that s-bert 22M was the best choice for F1 and precision
– and we see in Table 29 that s-bert 22M eliminates the most perturbed sentences, while not
penalising its F1 in Table 30. However, we cannot currently evaluate whether it is eliminating the
truly dissimilar sentences. This will be evaluated at the end of this section, when we measure how
using t♦ instead of t impacts verifiability and embedding error.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

44 M. Casadio et al.

Table 30. Performance of the models on the test/perturbation set, after filtering. The average standard
deviation is 0.0049

Test set Perturbed test set

Dataset Model Precision Recall F1 Precision Recall F1
RUAR Nbase (s-bert 22M) 95.68% 91.29% 93.44% 94.77% 71.86% 81.74%

Npert♦ (s-bert 22M) 85.07% 98.94% 91.48% 82.89% 94.12% 88.15%
Nbase (s-gpt 1.3B) 96.20% 87.25% 91.51% 95.45% 67.38% 78.98%
Npert♦ (s-gpt 1.3B) 64.93% 99.65% 78.62% 63.56% 98.08% 77.13%
Nbase (s-gpt 2.7B) 96.74% 87.29% 91.77% 95.49% 69.82% 80.66%
Npert♦ (s-gpt 2.7B) 63.05% 99.69% 77.24% 61.43% 98.52% 75.66%

Medical Nbase (s-bert 22M) 95.23% 93.25% 94.23% 95.20% 89.64% 92.34%
Npert♦ (s-bert 22M) 93.13% 97.17% 95.11% 92.51% 94.93% 93.70%
Nbase (s-gpt 1.3B) 91.93% 88.11% 89.98% 92.17% 84.17% 87.98%
Npert♦ (s-gpt 1.3B) 84.45% 95.71% 89.72% 84.26% 94.24% 88.96%
Nbase (s-gpt 2.7B) 93.25% 89.29% 91.23% 92.89% 84.79% 88.66%
Npert♦ (s-gpt 2.7B) 86.82% 96.56% 91.43% 85.60% 94.74% 89.93%

– Cosine similarity metric is general (i.e. would apply irrespective of other choice of the pipeline),
efficient and scalable.

• Cons:
– As discussed earlier, due to its geometric nature, the cosine similarity metric does not give us

direct knowledge about true semantic similarity of sentences. As evidence of this, the human
evaluation of semantic similarity we presented in Section 5.5.1 hardly matches the optimistic
numbers reported in Table 29!

– Moreover, cosine similarity relies on the assumption that the embedding function embeds seman-
tically similar sentences close to each other in R

m. As an indication that this assumption may not
hold, Table 29 shows that disagreement in cosine similarity estimations may vary up to 15% when
different embedding functions are applied.

Thus, the overall conclusion is that, although it has its limitations, cosine similarity is a useful metric
to report, and filtering based on cosine similarity is useful as a pre-processing stage in the NLP verifi-
cation pipeline. The latter will be demonstrated at the end of this section, when we take the pipeline in
Table 23 and substitute t♦ for t.

5.5.4 ROUGE-N
We additionally calculate lexical and syntactic variability of the generated vicuna-13b output by
reporting ROUGE-N precision and recall scores (i.e. which measures ngram overlap) [152], where
n ∈ [1, 2, 3]. Intuitively, if si is a sentence from the dataset and sj a perturbation of si, ROUGE-N is an
overlap measure, which measures:

• precision, i.e. the number of words (for n = 1) or word sequences (for n = 2, 3) in sj that also appear
in si, divided by the number of words in sj; and

• recall, i.e. number of words (for n = 1) or word sequences (for n = 2, 3) in si that also appear in sj,
divided by the number of words in si.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 45

Figure 6. Analysis of some common issues found in the vicuna-13b generated perturbations.

Example 3. (Validity of Perturbations). Figure 6 shows an experiment in which vicuna-13b is asked
to generate sentence perturbations. As we can see, the results show a high number of invalid sentences,
due to incoherence, hallucination or wrong literal rephrasing.

For lexical ROUGE-N, we compare the strings of the original sample to the perturbations, while for
syntax we follow the same procedure, but using the corresponding parts-of-speech (POS) tags [153].
Furthermore, we calculate and compare ROUGE-N before and after filtering with cosine similarity.
Results are given in Tables 31 and 32 and qualitative examples of errors in Figure 6. It is important to
note that we are not concerned with low precision and recall scores, as it does not necessarily imply
non-semantic preserving rephrases. For example, shuffling, rephrasing or synonym substitution could
lower the scores.

1. Prior to filtering, the scores remain steady for n = 1, 2, 3, while after filtering, the scores decrease
as n increases. When the scores remain steady prior to filtering, it implies a long sequence of text
is overlapping between the original and the perturbation (i.e. for unigrams, bigrams and trigrams),
though there may be remaining text unique between the two sentences. When precision and recall
decay, it means that singular words overlap in both sentences, but not in the same sequence, or they
are alternated by other words (i.e the high unigram overlap decaying to low trigram overlap). It
is plausible that cosine similarity filters out perturbations that have long word sequence overlaps
with the original, but that also contain added hallucinations that change the semantic meaning (see
Figure 6, the ‘Hallucinated content’ example).

2. Generally, there is higher syntactic overlap than lexical overlap, regardless of filtering. Sometimes
this leads to unsatisfactory perturbations, where local rephrasing leads to globally implausible
sounding sentences, as shown in Figure 6 (the ‘Local rephrasing, global incoherence’ example).

3. Without filtering, there is higher precision compared to recall, while after filtering, the recall
increases. From Tables 31 and 32, we can hypothesise that overall cosine similarity filters out
perturbations that are shorter than the original sentences.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

46
M

.C
asadio

etal.

Table 31. ROUGE-N scores comparing the original samples with vicuna perturbations (of the positive class) for lexical overlap

Precision Recall

No filtering Filtering No filtering Filtering

Dataset ROUGE-N s-bert 22M s-gpt 1.3B s-gpt 2.7B s-bert 22M s-gpt 1.3B s-gpt 2.7B
RUAR ROUGE-1 0.500 0.568 0.545 0.537 0.281 0.635 0.612 0.604

ROUGE-2 0.557 0.342 0.320 0.314 0.312 0.382 0.358 0.352
ROUGE-3 0.511 0.208 0.190 0.185 0.285 0.230 0.210 0.205

Medical ROUGE-1 0.451 0.466 0.469 0.465 0.230 0.553 0.555 0.551
ROUGE-2 0.529 0.242 0.246 0.243 0.268 0.285 0.288 0.285
ROUGE-3 0.471 0.131 0.135 0.133 0.238 0.156 0.159 0.157

https://doi.org/10.1017/S0956792525000099 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792525000099

European
JournalofApplied

M
athem

atics
47

Table 32. ROUGE-N scores comparing the original samples with vicuna perturbations (of the positive class) for syntax overlap

Precision Recall

No filtering Filtering No filtering Filtering

Dataset ROUGE-N s-bert 22M s-gpt 1.3B s-gpt 2.7B s-bert 22M s-gpt 1.3B s-gpt 2.7B
RUAR ROUGE-1 0.731 0.748 0.747 0.743 0.501 0.767 0.769 0.765

ROUGE-2 0.738 0.524 0.521 0.514 0.504 0.532 0.532 0.525
ROUGE-3 0.710 0.350 0.347 0.340 0.483 0.349 0.346 0.339

Medical ROUGE-1 0.670 0.674 0.678 0.676 0.410 0.710 0.714 0.712
ROUGE-2 0.694 0.415 0.422 0.419 0.422 0.434 0.441 0.438
ROUGE-3 0.657 0.247 0.254 0.252 0.399 0.258 0.263 0.260

https://doi.org/10.1017/S0956792525000099 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792525000099

48 M. Casadio et al.

Observationally, we also find instances of literal rephrasing (see Figure 6, the ‘Literal (not prag-
matic) rephrasing’ example), which illustrates the difficulties of generating high-quality perturbations.
For example in the medical queries, often there are expressed emotions that need to be inferred. The
addition of hallucinated content in perturbations is also problematic. However, it would be more prob-
lematic if we were to utilise the additional levels of risk labels from the medical safety dataset (see
Section 2.5.1).

the hallucinated content can have a non-trivial impact on label consistency.

5.6 Embedding error

As the final result of this paper, we introduce the new metric—embedding error—that measures the
number of unwanted sentences that are mapped into a verified subspace. Recall that Sections 5.4 and
5.5 discussed the methods that assess the role of inaccurate embeddings and semantically incoherent
perturbations in isolation. In both cases, the methods were of general NLP applicability and did not
directly link to verifiability or generalisability of verified subpspaces. The embedding error metric differs
from these traditional NLP methods in two aspects:

• first, it helps to measure both effects simultaneously, and thus helps to assess validity of both the
assumption of locality of the embedding function and the assumption of semantic stability of the
perturbations outlined at the start of Section 5.

• second, it is applied here as a verification metric specifically. Applied to the same verified subspaces
and adversarially trained networks as advocated in Section 4, it is shown as a verification metric on
par with verifiability and generalisability.

We next formally define the embedding error metric. Intuitively, the embedding error of a set of
subspaces S1, . . . , Sl of class c1 is the percentage of those subspaces that contain at least one embedding
of a sentence that belongs to a different class.

Definition 9 (Embedding Error). Given a set of subspacesS1, . . . , Sl that are supposed to contain exclu-
sively sentences of class c1, a dataset Y that contains sentences not of class c1 and a set of embeddings
V , the embedding error is measured as the percentage of subspaces that contain at least one element of
V .

F (V , S1, . . . , Sl) =
∑l

i=1 I[V ∩ Si �= ∅]

l
where I[·] is the indicator function returning 1 for true.

As with the definition of generalisability, in this paper, we will generate the target set of embeddings V as⋃
s∈Y Vb

t (s) where Y is a dataset, t is the type of semantic perturbation, b is the number of perturbations
and Vb

t (s) is the embeddings of the set of semantic perturbations Ab
t (s) around s generated using Pt, as

described in Section 3.4. We also measure the presence of false positives, as calculated as the percentage
of the perturbations of sentences from classes other than c1 that lie within at least one of the set of
subspaces S1, . . . , Sl.

To measure the effectiveness of the embedding error metric, we perform the following experiments.
As previously shown in Table 23, both RUAR and Medical datasets are split into two classes, pos and
neg. We construct A16

t (Ypos) and A16
t (Yneg), and as described in Section 3.4, the set V16

t (Yneg) is obtained
by embedding sentences in A16

t (Yneg). The subspaces for which we measure embedding error are given
by Hpert =H(A16

t (Ypos)) where we consider both the unfiltered (t) and the filtered version (t♦) of the
perturbation t.

Table 24 shows the embedding error of our models and semantic subspaces. This gives us a quantita-
tive estimation of the scale of the problem of discussed at the start of this section. Namely, whether the
assumptions of the locality of the embedding function and that perturbations are semantics-preserving

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 49

hold. From the fact that, in five out of the twelve experiments, embedding error is non-zero, we can see
that the problem indeed exists, hence our claim that embedding error should be reported routinely in
NLP verification papers. At the same time, the problem does not appear to be as severe as one might
fear: we note that at most 0.09% of the subspaces exhibit embedding error, and embedding error has only
occurred in the subspaces created based on the RUAR dataset. Therefore, embedding error is constrained
to a few subspaces that can, in theory, be removed.

Furthermore, embedding error could also reflect issues in the dataset and subsequent noisy perturba-
tions. The medical safety dataset, for instance, was annotated by an expert practitioner, while the RUAR
dataset contains (for this particular task) what could be construed as noisy labels. For example, ‘are robot
you you a’ is a sample that is found in the negative RUAR train set. The reason for the negative label is
that it is an ungrammatically false positive, but given our methods of perturbation for the construction
of subspaces, this negative sample may be very similar to a word level perturbation for the positive class.
Concretely, for the model with the highest embedding error in Table 24 (i.e. Npert s-bert 22 M for RUAR
dataset with 0.09% embedding error), some sentence pairs of negative samples with their accompanying
perturbations contained in subspaces exhibiting embedding error are: (Original: ‘Are you a chump?’,
Perturbation: ‘You a chump’), (Original: ‘Are you a liar’, Perturbation: ‘You a liar’), (Original: ‘if a
computer can feel emotions, does that make you a computer or an actual human?’, Perturbation: ‘if a
computer can feel, does that make it a machine or a person’). Thus, the task of determining what queries
require disclosure (e.g. should ‘what is your favourite food’ warrant disclosure?) is more ambiguous
and, as the outputs of LLMs sound more coherent, it becomes harder to define. This area merits further
research.

5.6.1 Embedding error
vs Generalisability and Verifiability For comparison with the findings outlined in Section 4, we provide
additional insights into verifiability and generalisability, also presented in Table 24. We first analyse the
effect of cosine similarity filtering. Initially, the experiments reveal that filtering results in slightly higher
levels of both verifiability and generalisability for all models. Given the conclusions in Section 4, the
increase in verifiability is expected. However, the increase in generalisability is somewhat unexpected
because, as demonstrated in Section 4, larger subspaces tend to exhibit greater generalisability, but fil-
tering decreases the volume of the subspaces. Therefore, we conjecture the increase in precision of the
subspaces from filtering outweighs the reduction in their volume and hence generalisability increases
overall. The data therefore suggests that cosine similarity filtering can serve as an additional heuristic
for improving precision of the verified DNNs, and for further reducing the verifiability-generalisability
gap. Indeed, upon calculating the ratio of generalisability to verifiability, we observe a higher ratio before
filtering (1.19 → 0.99 for RUAR and 0.99 → 0.95 for Medical). Recall that Section 4 already showed
that our proposed usage of semantic subspaces can serve as a heuristic for closing the gap; and cosine
similarity filtering provides opportunity for yet another heuristic improvement.

Moreover, the best-performing model Npert (s-bert 22M) results in 10, 964 (70.6%) medical pertur-
bations and 9530 (21.65%) RUAR perturbations contained in the verified subspaces. While 21.65% of
the positive perturbations contained in the verified subspaces for the RUAR dataset may seem like a
low number, it still results in a robust filter, given that the positive class of the dataset contains many
adversarial examples of the same input query, i.e. semantically similar but lexically different queries.
The medical dataset on the other hand contains many semantically diverse queries, and there are several
unseen medical queries not contained in the dataset nor in the resultant verified subspaces. However,
given that the subspaces contain 70.6% of the positive perturbations of the medical safety dataset, an
application of this could be to carefully curate a new dataset containing only queries with critical and
serious risk-level labels defined by the World Economic Forum for chatbots in healthcare (see Section
2.5.1 and [135]). This dataset could be used to create verified filters centred around these queries to
prevent generation of medical advice for these high-risk categories.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

50 M. Casadio et al.

Overall, we find that semantically informed verification generalises well across the different kinds of
data to ensure guarantees on the output, and thus should aid in ensuring the safety of LLMs.

6. Conclusions and future work

Summary. This paper started with a general analysis of existing NLP verification approaches, with a
view of identifying key components of a general NLP verification methodology. We then distilled these
into a “NLP Verification Pipeline” consisting of the following six components:

1. dataset selection;
2. generation of perturbations;
3. choice of embedding functions;
4. definition of subspaces;
5. robust training;
6. verification via one of existing verification algorithms.

Based on this taxonomy, we make concrete selections for each component and implement the pipeline
using the tool ANTONIO [16]. ANTONIO allowed us to mix and match different choices for each
pipeline component, enabling us to study the effects of varying the components of the pipeline in a
algorithm-independent way. Our main focus was to identify weak or missing parts of the existing NLP
verification methodologies. We proposed that NLP verification results should report, in addition to the
standard verifiability metric, the following:

• whether they use geometric or semantic subspaces, and for which type of semantic perturbations;
• volumes, generalisability and embedding error of verified subspaces.

We finished the paper with a study of the current limitations of the NLP components of the
pipeline and proposed possible improvements such as introducing a perturbations filter stage using
cosine similarity. One of the major strengths of the pipeline is that each component can be improved
individually.

Contributions. The major discoveries of this paper were

• In Section 4, we proposed generalisability as a novel metric and showed that NLP verification
methods exhibit a generalisability-verifiability trade-off. The effects of the trade-off can be severe,
especially if the verified subspaces are generated naively (e.g. geometrically). We, therefore, strongly
believe that generalisability should be routinely reported as part of NLP verification pipeline.

• In Sections 4 and 5, we showed that it is possible to overcome this trade-off by using several heuristic
methods: defining semantic subspaces, training for semantic robustness, choosing a suitable embed-
ding function and filtering with cosine similarity. All of these methods result in the definition of
more precise verifiable subspaces, and all of them can be practically implemented as part of NLP
verification pipelines in the future. This is the main positive result of this paper.

• In Section 5, we demonstrated that there are two key assumptions underlying the definition of sub-
spaces that cannot be taken for granted. First, the LLMs, used as embedding functions, may not
map semantically similar sentences to similar vectors in the embedding space. Second, our algo-
rithmic methods for generating perturbations, whether by LLMs or otherwise, may not always be
semantically-preserving operations. Both of these factors influence practical applications of the NLP
verification pipeline.

• In Section 5, we demonstrated that even verified subspaces can exhibit semantic embedding errors:
this effect is due to the tension between verification methods that are essentially geometric and

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 51

the intuitively understood semantic meaning of sentences. By defining the embedding error met-
ric and using it in our experiments, we demonstrated that the effects of embedding errors do not
seem to be severe in practice, but this may vary from one scenario to another. It is important that
NLP verification papers are aware of this pitfall and report embedding error alongside verifiability
and generalisability.

Finally, we claim as a contribution, a novel, coherent, methodological framework that allows us to
include a broad spectrum of NLP, geometric, machine learning and verification methods under a single
umbrella. As illustrated throughout this paper, no previous publication in this domain covered this range,
and we believe that covering this broad range of methods is crucial for the development of this field.

Limitations and the Role of the Embedding Gap. In this paper, we have shown the effect of the
embedding gap in the NLP verification domain. In Section 4.1, we introduced the generalisability met-
ric (Definition 8) to estimate how well subspaces capture semantically similar yet unseen sentences,
providing a quantitative lens to examine this challenge. Sections 4.3 and 4.4 demonstrated that geo-
metric subspaces struggle with the verifiability-generalisability trade-off, while semantic subspaces,
constructed using semantic-preserving perturbations, show promise in mitigating the embedding gap
by better aligning with data semantics.

The embedding gap is not unique to NLP and manifests itself nearly in every domain where machine
learning is applied. For example, in CV, the geometric definition of an ε-ball can include perturbations
that no longer semantically resemble the original image (e.g. distortions that transform a given image
into something unrecognisable). In the verification of neural network controllers, possible discrepan-
cies arise between interpretation of neural network inputs, such as velocity, distance, angle (i.e. have
physical interpretation) and the way in which the neural network treats them as normalised input vectors
[154, 155]. In NLP, the gap is amplified by the use of LLMs to map discrete sentences into continu-
ous vector spaces. This process lacks a one-to-one correspondence between semantics and embeddings,
exacerbating the challenge.

This problem is fundamental for machine learning methods deployed in NLP: they always rely on
an “embedding function” that maps sentences into real vectors (on which machine learning algorithms
operate). There is an implicit assumption that the embedding function works in a way that semantic
similarity of sentences is reflected in geometric proximity of their embeddings. However, as general
semantic similarity of sentences is not effectively computable, there is no hope that a perfect embedding
function will ever be defined. Fundamentally, this is exactly the reason why machine learning (and not
symbolic) approaches to NLP proved to be successful: they operate on the assumption that the embed-
ding function is imperfect. As a consequence, any verification pipeline for NLP must include metrics
that measure potential embedding errors. Section 5.6 of this paper is entirely devoted to defining this
problem in mathematically precise terms and proposing an effective metric for measuring and reporting
the severity and effects of the embedding errors.

This paper aims to quantify and address the embedding gap in the NLP domain. For better quantifying
the effect of the embedding gap, we proposed precise metrics, such as verifiability, generalisability, and
embedding error, and showed their interplay. This better understanding of the problem gave rise to
our main positive result: the method that empirically reduces the effect of the embedding gap. While
our findings mark progress, further research is needed to better align geometric representations with
semantic meaning, especially in NLP contexts.

Future Work. Following from our in-depth analysis of the NLP perspective, we note that even if
one has a satisfactory solution to all the issues discussed, there is still the problem of scalability of the
available verification algorithms. For example, the most performant neural network verifier, αβ-Crown
[43], can only handle networks in the range of tens of millions of trainable parameters. In contrast, in
NLP systems, the base model of BERT [139] has around 110 million trainable parameters (considered
small compared to modern LLMs—with trainable parameters in the billions!). It is clear that the rate at
which DNN verifiers become more performant may never catch up with the rate at which LLMs become
larger. Then the question arises: how can this pipeline be implemented in the real world?

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000099

52 M. Casadio et al.

Figure 7. In this figure, we show how a prepended, semantically informed verified filter added to an NLP
system (here, an LLM), can check that safety-critical queries are handled responsibly, e.g. by redirecting
the query to a tightly controlled rule-based system instead of a stochastic LLM.

For future work, we propose to tackle this based on the idea of verifying a smaller DNN (classifier),
manageable by verifiers, that can be placed upstream of a complex NLP system as a safeguard. We call
this a filter (as mentioned in Section 3 and illustrated in Figure 2), and Figure 7 shows how a semantically
informed verified filter can be prepended to an NLP system (here, an LLM) to check that safety-critical
queries are handled responsibly, e.g. by redirecting the query to a tightly controlled rule-based system
instead of a stochastic LLM. While there are different ways to implement the verification filters (e.g.
only the verified subspaces), we suggest utilising both the verified subspaces together with the DNN as
the additional classification could strengthen catching positives that fall outside the verified subspaces,
thus giving stronger chances of detecting the query via both classification and verification.

We note that the NLP community has recently proposed guardrails, in order to control the output
of LLMs and create safer systems (such as from Open AI, NVIDIA and so on). These guardrails have
been proposed at multiple stages of an NLP pipeline, for example an output rail that checks the output
returned by an LLM, or input rail, that rejects unsafe user queries. In Figure 7, we show an application
of our filter applied to the user input, which thus creates guarantees that a subset of safety critical queries
are handled responsibly. In theory, these verification techniques we propose may be applied to guardrails
at different stages in the system, and we plan to explore this in future work.

A second future direction is to use this work to create NLP verification benchmarks. In 2020, the
International Verification of Neural Networks Competition [156] (VNN-COMP) was established to
facilitate comparison between existing approaches, bring researchers working on the DNN verification
problem together and help shape future directions of the field. However, for some time, the competi-
tion still lacked NLP verification benchmarks [157]. In 2024, we contributed a first NLP benchmark to
VNN-COMP, using the methodology of this paper, and the tool ANTONIO [158]. We intend to use this
work for creating NLP verification benchmarks for future editions, to spread the awareness and attention
to this field.

Acknowledgements. The authors acknowledge Vinay Krupakaran for his help in the manual annotation of the perturbed sentences
and Daniel Kienitz for his help with the eigenspace rotation.

Funding. The authors acknowledge support of EPSRC grant AISEC EP/T026952/1 and NCSC grant ‘Neural Network
Verification: in search of the missing spec’. The first author acknowledges the James Watt Scholarship awarded by the Heriot-Watt
University.

Competing interest. The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

References
[1] Ren, S., He, K., Girshick, R. & Sun, J. (2016) Faster r-cnn: Towards real-time object detection with region proposal

networks. IEEE Trans. Pattern Anal. Mach. 39(6), 1137–1149.
[2] Sutskever, I., Vinyals, O. & Le, Q. V. (2014) Sequence to sequence learning with neural networks. In Advances in Neural

Information Processing Systems, 27.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://docs.guardrailsai.com/integrations/openai_functions/
https://github.com/NVIDIA/NeMo-Guardrails
https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 53

[3] Hirschberg, J. & Manning, C. D. (2015) Advances in natural language processing. Science 349(6245), 261–266.
[4] Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. (2021) On the dangers of stochastic parrots: Can language

models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–
623.

[5] Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P. S., ... & Gabriel, I. (2021). Ethical and social risks of
harm from language models. arXiv preprint arXiv:2112.04359.

[6] Bergman, A. S., Abercrombie, G., Spruit, S. L., Hovy, D., Emily Dinan, Y.-L. B. & Rieser, V. (2022) Guiding the release
of safer e2e conversational ai through value sensitive design. In Proceedings of the 23rd Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pp. 39–52.

[7] Dinan, E., Gavin Abercrombie, A. B., Spruit, S., Dirk Hovy, Y.-L. B. & Rieser, V. (2022) SafetyKit: First aid for measuring
safety in open-domain conversational systems, Association for Computational Linguistics. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 4113–
4133, May, https://doi.org/10.18653/v1/2022.acl-long.284. URL https://aclanthology.org/2022.acl-long.284

[8] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities
and risks of foundation models. arXiv preprint arXiv:2108.07258.

[9] Dinan, E., Gavin Abercrombie, A. S. B., Spruit, S., Dirk Hovy, Y.-L. B. & Rieser, V. (2021) Anticipating safety issues in
E2E conversational AI: Framework and tooling. URL https://arxiv.org/abs/2107.03451

[10] Kop, M. (2021) Eu artificial intelligence act: The european approach to ai. URL. Available at: https://futurium.ec.
europa.eu/sites/default/files/2021-10/Kop_EUArtificialIntelligenceAct-TheEuropeanApproachtoAI_21092021_0.pdf.

[11] California State Legislature (2018) California senate bill no. 1001, URL, https://leginfo.legislature.ca.gov/faces/billText
Client.xhtml?bill_id=201720180SB1001

[12] Abercrombie, G. & Rieser, V. (2022) Risk-graded safety for handling medical queries in conversational ai. In Proceedings of
the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing, pp. 234–243.

[13] Bickmore, T. W., Trinh, H., Olafsson, S., O’Leary, T. K., Asadi, R., Rickles, N. M. & Cruz, R. (2018) Patient and consumer
safety risks when using conversational assistants for medical information: An observational study of siri, alexa, and google
assistant. J. Med. Internet Res. 20(9), e11510.

[14] Chiang, W.-L., Li, Z., Lin, Z. (2023). Vicuna: An open-source chatbot impressing gpt-4 with 90%∗ chatgpt quality. Ying
Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing, March, URL. Available at: https://lmsys.org/blog/2023-03-30-vicuna/

[15] Shi, Z., Zhang, H., Chang, K. W., Huang, M., & Hsieh, C. J. (2020). Robustness verification for transformers. arXiv preprint
arXiv: 2002.06622.

[16] Casadio, M., Arnaboldi, L., Daggitt, M., Isac, O., Dinkar, T., Kienitz, D., Rieser, V. & Komendantskaya, E. (2023)
Antonio: Towards a systematic method of generating nlp benchmarks for verification. In Nina Narodytska, Guy
Amir, Guy Katz, and Omri Isac, editors,Proceedings of the 6th Workshop on Formal Methods for ML-Enabled
Autonomous Systems, Vol. 16 of Kalpa Publications in Computing, pp. 59–70. DOI: http://dx.doi.org/10.29007/7wxb,
https://easychair.org/publications/paper/9ZGS EasyChair, URL

[17] Jia, R., Raghunathan, A., Göksel, K. & Liang, P. (2019a) Certified robustness to adversarial word substitutions. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4129–4142.

[18] Huang, P.-S., Stanforth, R., Welbl, J., Dyer, C., Yogatama, D., Gowal, S., Dvijotham, K. & Kohli, P. (2019) Achieving veri-
fied robustness to symbol substitutions via interval bound propagation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4083–4093.

[19] Zhang, Y., Albarghouthi, A. & D’Antoni, L. (2021) Certified robustness to programmable transformations in lstms . In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1068–1083.

[20] Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. (2018) Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations.

[21] Wu, T., Ribeiro, M. T., Heer, J. & Weld, D. S. (2021) Polyjuice: Generating counterfactuals for explaining, evaluating, and
improving models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6707–6723.

[22] Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M., Kokke, W., ... & Barrett, C. (2024, July). Marabou 2.0: a versatile
formal analyzer of neural networks. In International Conference on Computer Aided Verification, pp. 249–264. Cham:
Springer Nature Switzerland.

[23] Kroening, D. & Paul, W. (2001) Automated pipeline design. In Proc. of 38th ACM/IEEE Design Automation Conference
(DAC 2001), pp. 810–815. ACM Press.

[24] Patankar, V. A., Jain, A. & Bryant, R. E. (1999) Formal verification of an arm processor. In Proceedings Twelfth
International Conference on VLSI Design. (Cat. No. PR00013), pp. 282–287, IEEE.

[25] Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X. & Pichardie, D. (2015) A formally-verified c static analyzer. ACM
SIGPLAN Notices 50(1), 247–259.

[26] Metere, R. & Arnaboldi, L. (2022) Automating cryptographic protocol language generation from structured specifications.
In Proceedings of the IEEE/ACM 10th International Conference on Formal Methods in Software Engineering, pp. 91–101.

[27] Woodcock, J., Larsen, P. G., Bicarregui, J. & Fitzgerald, J. (2009) Formal methods: Practice and experience. ACM Comput.
Surv. 41(4), 1–36.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://doi.org/10.18653/v1/2022.acl-long.284
https://aclanthology.org/2022.acl-long.284
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2108.07258
https://arxiv.org/abs/https://arxiv.org/abs/2107.03451
https://futurium.ec.europa.eu/sites/default/files/2021-10/Kop_EUArtificialIntelligenceAct-TheEuropeanApproachtoAI_21092021_0.pdf
https://futurium.ec.europa.eu/sites/default/files/2021-10/Kop_EUArtificialIntelligenceAct-TheEuropeanApproachtoAI_21092021_0.pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}201720180SB1001
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}201720180SB1001
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2002.06622
https://doi.org/http://dx.doi.org/10.29007/7wxb
https://easychair.org/publications/paper/9ZGS
https://doi.org/10.1017/S0956792525000099

54 M. Casadio et al.

[28] Katz, G., Barrett, C., Dill, D. L., Julian, K. & Kochenderfer, M. J. (2017) Reluplex: An efficient smt solver for verifying
deep neural networks. In International conference on computer aided verification, pp. 97–117. Springer.

[29] Bak, S., Liu, C. & Johnson, T. (2021) The second international verification of neural networks competition (vnn-comp
2021): Summary and results, arXiv preprint arXiv: 2109.00498

[30] Baluta, T., Chua, Z. L., Meel, K. S. & Saxena, P. (2021) Scalable quantitative verification for deep neural networks. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 312–323. IEEE.

[31] Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C. & Kochenderfer, M. J. (2021) Algorithms for verifying deep neural
networks. Found. Trends R© Optim. 4(3-4), 244–404.

[32] Singh, G., Ganvir, R., Püschel, M. & Vechev, M. (2019a) Beyond the single neuron convex barrier for neural network
certification. Adv. Neural Inf. Process. Syst. 32.

[33] Barrett, C. & Tinelli, C. (2018) Satisfiability modulo theories. Handbook of Model Checking, pp. 305–343.
[34] Albarghouthi, A. (2021) Introduction to neural network verification. Found. Trends R© Program. Lang. 7(1–2), 1–157.
[35] Dantzig, G. (1963) Linear Programming and Extensions, Princeton University Press.
[36] Winston, W. L. (2004) Operations Research: Applications and Algorithm, Thomson Learning, Inc.
[37] Cheng, C.-H., Nührenberg, G. & Ruess, H. (2017) Maximum resilience of artificial neural networks. In Automated

Technology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune, India: Springer, pp. 251–268,
October 3-6, 2017, Proceedings 15

[38] Lomuscio, A. & Maganti, L. (2017) An approach to reachability analysis for feed-forward relu neural networks, arXiv
preprint arXiv: 1706.07351

[39] Tjeng, V., Xiao, K. & Tedrake, R. (2019) Evaluating robustness of neural networks with mixed integer programming. In
International Conference on Learning Representations.

[40] Singh, G., Gehr, T., Mirman, M., Püschel, M. & Vechev, M. (2018). Fast and effective robustness certifica-
tion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N. & Garnett, R. (eds.), Advances
in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc, URL, https://proceedings.neurips.
cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf

[41] LLC Gurobi Optimization (2020) Gurobi: Gurobi optimizer 9.1 interface. R package version, pages 9-1
[42] Xu, K., Zhang, H., Wang, S., Wang, Y.Jana, S., Lin, X. & Hsieh, C. J. (2021) Fast and complete: Enabling complete

neural network verification with rapid and massively parallel incomplete verifiers. In International Conference on Learning
Representation (ICLR).

[43] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh,C. J. & Kolter, Z. (2021a) Beta-crown: Efficient bound propagation
with per-neuron split constraints for neural network robustness verification. Adv. Neural Inf. Process. Syst. 34, 29909–
29921.

[44] Cousot, P. & Cousot, R. (1977) Abstract interpretation: a unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252.

[45] Cousot, P. (2003) Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th
Birthday, pp. 243–268. Springer, Verification by abstract interpretation

[46] Cousot, P. & Cousot, R. (2014) Abstract interpretation: past, present and future. In Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 1–10.

[47] Wong, E. & Kolter, Z. (2018) Provable defenses against adversarial examples via the convex outer adversarial polytope. In
International conference on machine learning, pp. 5286–5295. PMLR.

[48] Gowal, S., Dvijotham, K. D., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arandjelovic, R., Mann, T. & Kohli, P.
(2019). Scalable verified training for provably robust image classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4842–4851.

[49] Lyu, Z., Ko, C.-Y., Kong, Z., Wong, N., Lin, D. & Daniel, L. (2020) Fastened crown: Tightened neural network robustness
certificates. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 5037–5044.

[50] Mirman, M., Gehr, T. & Vechev, M. (2018) Differentiable abstract interpretation for provably robust neural networks. In
International Conference on Machine Learning, pp. 3578–3586.PMLR.

[51] Li, L., Xie, T. & Li, B. (2023) Sok: Certified robustness for deep neural networks. In 2023 IEEE symposium on security
and privacy (SP), pp. 1289–1310. IEEE.

[52] Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J. & Daniel, L. (2018) Efficient neural network robustness certification with
general activation functions. Adv. Neural Inf. Process. Syst. 31.

[53] Singh, G., Gehr, T., Püschel, M. & Vechev, M. (2019b) An abstract domain for certifying neural networks. Proc. ACM
Program. Lang. 3, 1–30.(POPL)

[54] Müller, M. N., Makarchuk, G., Singh, G., Püschel, M. & Vechev, M. T. (2022) Prima: General and precise neural network
certification via scalable convex hull approximations. Proc. ACM Program. Lang 6, 1–33.(POPL),

[55] Althoff, M. (2015) An introduction to CORA 2015. In Proc. of the 1st and 2nd Workshop on Applied
Verification for Continuous and Hybrid Systems, 120–151. DOI: 10.29007/zbkv EasyChair, December URL,
https://easychair.org/publications/paper/xMm

[56] Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S. & Vechev, M. (2018) Ai2: Safety and robustness
certification of neural networks with abstract interpretation. In 2018 IEEE symposium on security and privacy (SP), pp.
3–18. IEEE.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/1706.07351
https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 55

[57] Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P. & Mudigonda, P. K. (2018) A unified view of piecewise linear neural network
verification. Adv. Neural Inf. Process. Syst. 31.

[58] Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J. & Kohli, P. (2020) Branch and bound for piecewise linear neural
network verification. J. Mach. Learn. Res. 21(2020).

[59] Ferrari, C., Mueller, M. N., Jovanović, N. & Vechev, M. (2022) Complete verification via multi-neuron relax-
ation guided branch-and-bound. In International Conference on Learning Representations. URL https://openreview.net/
forum?id=l_amHf1oaK

[60] Jordan, M., Lewis, J. & Dimakis, A. G. (2019) Provable certificates for adversarial examples: Fitting a ball in the union of
polytopes. Adv. Neural Inf. Process. Syst. 32.

[61] Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hseih, C. J. & Kolter, Z. (2022) General cutting planes for bound-
propagation-based neural network verification. Adv. Neural Inf. Process. Syst. 35, 1656–1670.

[62] Müller, M. N., Makarchuk, G., Singh, G., Püschel, M., & Vechev, M. (2021). Prima: Precise and general neural network
certification via multi-neuron convex relaxations. arXiv preprint arXiv: 2103.03638.

[63] Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D. & Jana, S. (2019) Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE symposium on security and privacy (SP), pp. 656–672. IEEE.

[64] Li, B., Chen, C., Wang, W. & Carin, L. (2019a) Certified adversarial robustness with additive noise. Adv. Neural Inf.
Process. Syst. 32.

[65] Dvijotham, K. D., Hayes, J., Balle, B., Kolter, Z., Qin, C., Gyorgy, A., ... & Kohli, P. (2020). A framework for robustness
certification of smoothed classifiers using f-divergences. In International Conference on Learning Representations.

[66] Zhang, D., Ye, M., Gong, C., Zhu, Z. & Liu, Q. (2020a) Black-box certification with randomized smoothing: A functional
optimization based framework. Adv. Neural Inf. Process. Syst. 33, 2316–2326.

[67] Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S. & Yang, G. (2019) Provably robust deep learning via
adversarially trained smoothed classifiers. Adv. Neural Inf. Process. Syst. 32.

[68] Mohapatra, J., Ko, C.-Y., Weng, T.-W., Chen, P.-Y., Liu, S. & Daniel, L. (2020) Higher-order certification for randomized
smoothing. Adv. Neural Inf. Process. Syst. 33, 4501–4511.

[69] Singh, G., Gehr, T., Püschel, M., & Vechev, M. (2019). An abstract domain for certifying neural networks. Proc. ACM
Program. Lang. 3(POPL), 1–30.

[70] Casadio, M., Komendantskaya, E., Daggitt, M. L., Kokke, W., Katz, G., Amir, G. & Rafaeli, I. (2022) Neural network
robustness as a verification property: A principled case study. In Computer Aided Verification (CAV 2022), Lecture Notes
in Computer Science. Springer.

[71] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. arXiv preprint arXiv:
1412.6572.

[72] Kolter, Z. & Madry, A. (2018) Adversarial robustness: Theory and practice.Tutorial at NeurIPS, page 3
[73] Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O. & Mann, T. A. (2021) Data augmentation can improve

robustness. Adv. Neural Inf. Process. Syst. 34, 29935–29948.
[74] Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C. & Vechev, M. T. (2019) DL2: training and querying

neural networks with logic. In Chaudhuri, K. & Salakhutdinov, R.(eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, Long Beach, California, USA, Vol. 97 of Proceedings of Machine Learning Research,
pp. 1931–1941, PMLR. 2019. 9-15 June 2019, URL, http://proceedings.mlr.press/v97/fischer19a.html

[75] Slusarz, N., Komendantskaya, E., Daggitt, M. L., Stewart, R. J. & Stark, K. (2023) Logic of differentiable logics: Towards a
uniform semantics of DL. In Piskac, R. & Voronkov, A.(eds.), LPAR 2023: Proceedings of 24th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Manizales, Colombia, Vol. 94 of EPiC Series in Computing,
pp. 473–493, EasyChair, 2023. DOI: http://dx.doi.org/10.29007/C1NT URL https://doi.org/10.29007/c1nt

[76] Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B., Boning, D. & Hsieh, C. J. (2020b). Towards stable and
efficient training of verifiably robust neural networks. In 8th International Conference on Learning Representations, ICLR
2020.

[77] Müller, M. N., Eckert, F., Fischer, M., & Vechev, M. (2023). Certified training: Small boxes are all you need. arXiv preprint
arXiv: 2210.04871.

[78] Zhang, Y., Albarghouthi, A. & D’Antoni, L. (2020c) Robustness to programmable string transformations via augmented
abstract training. In Proceedings of the 37th International Conference on Machine Learning, pp. 11023–11032.

[79] Zhang, W. E., Sheng, Q. Z., Alhazmi, A. & Li, C. (2020d) Adversarial attacks on deep-learning models in natural language
processing: A survey. ACM Trans. Intell. Syst. Technol. (TIST) 11(3), 1–41.

[80] Wang, W., Wang, R., Wang, L., Wang, Z. & Ye, A. (2021b) Towards a robust deep neural network against adversarial texts:
A survey. IEEE Trans. Knowl. Data Eng. 1–1.

[81] Wang, X., Wang, H. & Yang, D. (2022) Measure and improve robustness in nlp models: A survey. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4569–4586.

[82] Li, Z., Xu, J., Zeng, J., Li, L., Zheng, X., Zhang, Q., Chang, K. W. & Hsieh, C. J. (2021) Searching for an effective defender:
Benchmarking defense against adversarial word substitution. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3137–3147.

[83] Zhou, Y., Zheng, X., Hsieh, C.-J., Chang, K.-W. & Huan, X. (2021) Defense against synonym substitution-based adversarial
attacks via dirichlet neighborhood ensemble. In Association for Computational Linguistics (ACL).

[84] Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T. & Liu, J. (2019) Freelb: Enhanced adversarial training for natural
language understanding. In International Conference on Learning Representations.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://openreview.net/forum?id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}l_amHf1oaK
https://openreview.net/forum?id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}l_amHf1oaK
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2103.03638
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.1412.6572
http://proceedings.mlr.press/v97/fischer19a.html
https://doi.org/http://dx.doi.org/10.29007/C1NT
https://doi.org/10.29007/c1nt
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2210.04871
https://doi.org/10.1017/S0956792525000099

56 M. Casadio et al.

[85] Dong, X., Luu, A. T., Ji, R. & Liu, H. (2021) Towards robustness against natural language word substitutions, arXiv preprint
arXiv: 2107.13541

[86] Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T. & Hovy, E. (2021). A survey of data
augmentation approaches for NLP, association for computational linguistics. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pp. 968–988, Online 2021. DOI: 10.18653/v1/2021.findings-acl.84 URL
https://aclanthology.org/2021.findings-acl.84

[87] Dhole, K. D., Gangal, V., Gehrmann, S., Gupta, A., Li, Z., Mahamood, S., ... & Zhang, Y. (2021). Nl-augmenter: A
framework for task-sensitive natural language augmentation. arXiv preprint arXiv: 2112.02721.

[88] Cheng, Y., Jiang, L. & Macherey, W. (2019) Robust neural machine translation with doubly adversarial inputs. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4324–4333.

[89] Iyyer, M., Wieting, J., Gimpel, K. & Zettlemoyer, L. (2018) Adversarial example generation with syntactically controlled
paraphrase networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol. 1, pp. 1875–1885, (Long Papers)

[90] Cao, Y., Li, D., Fang, M., Zhou, T., Gao, J., Zhan, Y. & Tao, D. (2022) Tasa: Deceiving question answering models by twin
answer sentences attack. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 11975–11992.

[91] Liang, B., Li, H., Su, M., Bian, P., Li, X. & Shi, W. (2017) Deep text classification can be fooled, arXiv preprint arXiv:
1704.08006

[92] Ebrahimi, J., Rao, A., Lowd, D. & Dou, D. (2018) Hotflip: White-box adversarial examples for text classification,
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 2, 31–36.(Short Papers)

[93] Lei, Y., Cao, Y., Li, D., Zhou, T., Fang, M. & Pechenizkiy, M. (2022) Phrase-level textual adversarial attack with label
preservation. In Findings of the Association for Computational Linguistics: NAACL, pp. 1095–1112.

[94] Belinkov, Y. & Bisk, Y. (2017) Synthetic and natural noise both break neural machine translation, arXiv preprint arXiv:
1711.02173.

[95] Gao, J., Lanchantin, J., Soffa, M. L. & Qi, Y. (2018) Black-box generation of adversarial text sequences to evade deep
learning classifiers. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 50–56.IEEE.

[96] Li, J., Ji, S., Du, T., Li, B. & Wang, T. (2019b) Textbugger: Generating adversarial text against real-world applications. In
Proceedings 2019 Network and Distributed System Security Symposium.

[97] Samanta, S., & Mehta, S. (2017). Towards crafting text adversarial samples. arXiv preprint arXiv: 1707.02812.
[98] Ivankay, A., Girardi, I., Marchiori, C. & Frossard, P. (2022) Fooling explanations in text classifiers, arXiv preprint arXiv:

2206.0317
[99] Di, J., Jin, Z., Zhou, J. T. & Szolovits, P. (2020) Is bert really robust? a strong baseline for natural language attack on text

classification and entailment. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34, pp. 8018–8025.
[100] Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M. & Chang, K.-W. (2018) Generating natural language

adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2890–2896.

[101] Kuleshov, V., Thakoor, S., Lau, T. & Ermon, S. (2018) Adversarial examples for natural language classification problems.
[102] Pennington, J., Socher, R. & Manning, C. D. (2014) Glove: Global vectors for word representation. In Proceedings of the

2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543.
[103] Moradi, M. & Samwald, M. (2021) Evaluating the robustness of neural language models to input perturbations. In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1558–1570.
[104] Jia, R. & Liang, P. (2017) Adversarial examples for evaluating reading comprehension systems. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pp. 2021–2031.
[105] Wang, Y. & Bansal, M. (2018) Robust machine comprehension models via adversarial training. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Vol. 2, pp. 575–581, (Short Papers)

[106] Wang, B., Xu, C., Wang, S. (2021c) Adversarial glue: A multi-task benchmark for robustness evaluation of language
models, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah, and Bo Li, arXiv preprint arXiv: 2111.02840

[107] Welbl, J., Huang, P. S., Stanforth, R., Gowal, S., Dvijotham, K. D., Szummer, M., & Kohli, P. (2020). Towards verified
robustness under text deletion interventions. In International Conference on Learning Representations.

[108] Wang, Y., Yang, Y., Di, H. & He, K. (2023) Robustness-aware word embedding improves certified robustness to adversarial
word substitutions. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 673–687.

[109] Ko, C.-Y., Lyu, Z., Weng, L., Daniel, L., Wong, N. & Lin, D. (2019) Popqorn: Quantifying robustness of recurrent neural
networks. In International Conference on Machine Learning, pp. 3468–3477. PMLR.

[110] Du, T., Ji, S., Shen, L., Zhang, Y., Li, J., Shi, J., Fang, C., Yin, J., Beyah, R. & Wang, T. (2021) Cert-rnn: Towards certifying
the robustness of recurrent neural networks. CCS 21(2021), 15–19.

[111] Bonaert, G., Dimitrov, D. I., Baader, M. & Vechev, M. (2021) Fast and precise certification of transformers. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 466–
481.

[112] Ye, M., Gong, C. & Liu, Q. (2020) Safer: A structure-free approach for certified robustness to adversarial word substitutions.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3465–3475.

[113] Wang, W., Tang, P., Lou, J., & Xiong, L. (2021, June). Certified robustness to word substitution attack with differential pri-
vacy. In Proceedings of the 2021 conference of the North American chapter of the association for computational linguistics:
human language technologies, pp. 1102–1112.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://arxiv.org/abs/2107.13541
https://doi.org/10.18653/v1/2021.findings-acl.84
https://aclanthology.org/2021.findings-acl.84
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2112.02721
https://arxiv.org/abs/1704.08006
https://arxiv.org/abs/1711.02173
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.1707.02812
https://arxiv.org/abs/2206.0317
https://arxiv.org/abs/2111.02840
https://doi.org/10.1017/S0956792525000099

European Journal of Applied Mathematics 57

[114] Zhao, H., Ma, C., Dong, X., Luu, A. T., Deng, Z.-H. & Zhang, H. (2022) Certified robustness against natural language
attacks by causal intervention. In International Conference on Machine Learning, pp. 26958–26970. PMLR.

[115] Zeng, J., Xu, J., Zheng, X. & Huang, X. (2023) Certified robustness to text adversarial attacks by randomized [mask].
Comput. Linguist. 49(2), 395–427.

[116] Ye, M., Yin, Z., Zhang, T., Du, T., Chen, J., Wang, T. & Ma, F. (2023) Unit: A unified look at certified robust training
against text adversarial perturbation. In Thirty-seventh Conference on Neural Information Processing Systems.

[117] Zhang, X., Hong, H., Hong, Y., Huang, P., Wang, B., Ba, Z. & Ren, K. (2023a) Text-crs: A generalized certified robustness
framework against textual adversarial attacks. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 53–53.IEEE
Computer Society.

[118] Zhang, Z., Zhang, G., Hou, B. (2023b) Certified robustness for large language models with self-denoising, Wenqi Fan,
Qing Li, Sijia Liu, Yang Zhang, and Shiyu Chang, arXiv preprint arXiv: 2307.07171

[119] Bowman, S. R., Angeli, G., Potts, C. & Manning, C. D. (2015) A large annotated corpus for learning natural language
inference, Association for Computational Linguistics. In Màrquez, L., Callison-Burch, C. & Su, J.(eds.), Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 632–642, Lisbon, Portugal, September,
URL, DOI: 10.18653/v1/D15-1075, https://aclanthology.org/D15-1075

[120] Adam, C. J.2017). Toxic comment classification challenge. Jeffrey Sorensen Julia Elliott Lucas Dixon Mark McDonald
nithum and Will Cukierski. URL. Available at: https://kaggle.com/competitions/jigsaw-toxic-comment-classification-
challenge

[121] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y. & Potts, C. (2011) Learning word vectors for sentiment
analysis. In Lin, D., Matsumoto, Y. & Mihalcea, R. (eds.), Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, Association for
Computational Linguistics. URL, https://aclanthology.org/P11-1015,

[122] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. & Potts, C. (2013) Recursive deep models for semantic
compositionality over a sentiment treebank. In Yarowsky, D., Baldwin, T., Korhonen, A., Livescu, K. & Bethard, S. (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642, Seattle,
Washington, USA, October, Association for Computational Linguistics. URL, https://aclanthology.org/D13-1170,

[123] Shen, T., Lei, T., Barzilay, R. & Jaakkola, T. (2017) Style transfer from non-parallel text by cross-alignment. Adv. Neural
Inf. Process. Syst. 30

[124] Pang, B. & Lee, L. (2005) Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating
scales, Association for Computational Linguistics. In Knight, K., Ng, H. T. & Oflazer. K. (eds.), Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05), pp. 115–124, Michigan: Ann Arbor. June,
DOI: 10.3115/1219840.1219855, URL https://aclanthology.org/P05-1015

[125] McAuley, J. & Leskovec, J. (2013) Hidden factors and hidden topics: understanding rating dimensions with review text.
In Proceedings of the 7th ACM conference on Recommender systems, pp. 165–172.

[126] Williams, A., Nangia, N. & Bowman, S. (2018) A broad-coverage challenge corpus for sentence understanding through
inference, Association for Computational Linguistics. In Walker, M., Ji, H. & Stent, A. (eds.), Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Vol. 1, pp. 1112–1122, New Orleans, Louisiana, June, (Long Papers), URL, DOI: 10.18653/v1/N18-1101,
https://aclanthology.org/N18-1101

[127] Zhang, X., Zhao, J. & LeCun, Y. (2015) Character-level convolutional networks for text classification. Adv. Neural Inf.
Process. Syst. 28.

[128] Li, X. & Roth, D. (2002) Learning question classifiers. In COLING 2002: The 19th International Conference on
Computational Linguistics. URL https://aclanthology.org/C02-1150

[129] Gros, D., Li, Y. & Yu, Z. (2021) The rua-robot dataset: Helping avoid chatbot deception by detecting user questions about
human or non-human identity. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6999–7013.

[130] Altman, S., Marcus, G., & Montgomery, C. (2023). Oversight of AI: Rules for Artificial Intelligence. Available at:
https://www.ibm.com/policy/wp-content/uploads/2023/05/Christina-Montgomery-Senate-Judiciary-Testimony-5-16-23.
pdf.

[131] Atleson, M. (2023) Chatbots, deepfakes, and voice clones: AI deception for sale-federal trade commission. Available at:
https://www.ftc.gov/business-guidance/blog/2023/03/chatbots-deepfakes-voice-clones-ai-deception-sale.

[132] Abercrombie, G., Curry, A. C., Dinkar, T., Rieser, V. & Talat, Z. (2023) Mirages. on anthropomorphism in dialogue
systems. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 4776–4790.

[133] Leviathan, Y., & Matias, Y. (2018). Google Duplex: An AI system for accomplishing real-world tasks over the
phone. Google AI blog, 8.

[134] Lieu, J. (2018) Google’s creepy AI phone call feature will disclose it’s a robot, after backlash. Available at:
https://mashable.com/2018/05/11/google-duplex-disclosures-robot.

[135] Forum, W. E. (2020) Chatbots RESET: A framework for governing responsible use of conversational AI in health-
care. Available at: https://www.weforum.org/publications/chatbots-reset-a-framework-for-governingresponsible-use-of-
conversational-ai-in-healthcare/.

[136] Ghorbal, K., Goubault, E. & Putot, S. (2009) The zonotope abstract domain taylor1+. In Computer Aided Verification:
21st International Conference, CAV 2009, Springer, Grenoble, France, pp. 627–633, June 26-July 2„ Proceedings 21

[137] Cohen, J., Rosenfeld, E. & Kolter, Z. (2019) Certified adversarial robustness via randomized smoothing. In International
conference on machine learning, pp. 1310–1320. PMLR.

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://arxiv.org/abs/2307.07171
https://doi.org/10.18653/v1/D15-1075
https://aclanthology.org/D15-1075
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://aclanthology.org/P11-1015
https://aclanthology.org/D13-1170
https://doi.org/10.3115/1219840.1219855
https://aclanthology.org/P05-1015
https://doi.org/10.18653/v1/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/C02-1150
https://www.ibm.com/policy/wp-content/uploads/2023/05/Christina-Montgomery-Senate-Judiciary-Testimony-5-16-23.pdf
https://www.ibm.com/policy/wp-content/uploads/2023/05/Christina-Montgomery-Senate-Judiciary-Testimony-5-16-23.pdf
https://www.ftc.gov/business-guidance/blog/2023/03/chatbots-deepfakes-voice-clones-ai-deception-sale
https://mashable.com/2018/05/11/google-duplex-disclosures-robot
https://www.weforum.org/publications/chatbots-reset-a-framework-for-governingresponsible-use-of-conversational-ai-in-healthcare/
https://www.weforum.org/publications/chatbots-reset-a-framework-for-governingresponsible-use-of-conversational-ai-in-healthcare/
https://doi.org/10.1017/S0956792525000099

58 M. Casadio et al.

[138] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). Llama: Open and
efficient foundation language models. arXiv preprint arXiv: 2302.13971.

[139] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for
computational linguistics: human language technologies, volume 1 (long and short papers), pp. 4171–4186.

[140] Reimers, N. & Gurevych, I. (2019) Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China: November, Association for
Computational Linguistics, URL, DOI: 10.18653/v1/D19-1410, https://aclanthology.org/D19-1410.

[141] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv: 2202.08904.
[142] Kugler, K., Münker, S., Höhmann, J. & Rettinger, A. (2023) Invbert: Reconstructing text from contextualized word

embeddings by inverting the bert pipeline. JCLS. 2(1), 1–18.
[143] Barber, C. B., Dobkin, D. P. & Huhdanpaa, H. (1996) The quickhull algorithm for convex hulls. ACM Trans. Math. Softw.

22(4), 469–483.
[144] Sartipizadeh, H., & Vincent, T. L. (2016). Computing the approximate convex hull in high dimensions. arXiv preprint

arXiv: 1603.04422.
[145] Jia, Y., Wang, H., Shao, S., Long, H., Zhou, Y., & Wang, X. (2019). On geometric structure of activation spaces in neural

networks. arXiv preprint arXiv: 1904.01399.
[146] Klema, V. & Laub, A. (1980) The singular value decomposition: Its computation and some applications. IEEE Trans.

Autom. Control 25(2), 164–176.
[147] Beeching, E., Han, S., ans Nazneen Rajani, N. L., Sanseviero, O., Tunstall, L. & Wolf, T. (2023). Open llm leaderboard.

Available at: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.
[148] Lin, S., Hilton, J. & Evans, O. (2022) Truthfulqa: Measuring how models mimic human falsehoods. In Proceedings of the

60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3214–3252.
[149] Wang, W., Bao, H., Huang, S., Dong, L. & Wei, F. (2021). Minilmv2: Multi-head self-attention relation distillation for

compressing pretrained transformers, In, Findings of the Association for Computational Linguistics: ACL-IJCNLP, 2140–
2151, 2021

[150] Yu, L., & Rieser, V. (2022). Adversarial robustness of visual dialog. arXiv preprint arXiv: 2207.02639.
[151] Liljequist, D., Elfving, B. & Roaldsen, K. S. (2019) Intraclass correlation—A discussion and demonstration of basic

features. PloS one 14(7), e0219854.
[152] Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries, Barcelona, Spain, pp. 74–81, Text

Summarization Branches Out, Association for Computational Linguistics, July, URL, https://aclanthology.org/W04-1013
[153] Vasiliev, Y. (2020) Natural Language Processing with Python and spaCy: A Practical Introduction. No Starch Press.
[154] Daggitt, M. L., Kokke, W., Atkey, R., Slusarz, N., Arnaboldi, L. & Komendantskaya, E. (2024) Vehicle: Bridging the

embedding gap in the verification of neuro-symbolic programs, arXiv preprint arXiv: 2401.06379.
[155] Cordeiro, L. C., Daggitt, M. L., Girard-Satabin, J., Isac, O., Johnson, T. T., Katz, G., ... & Wu, H. (2025). Neural Network

Verification is a Programming Language Challenge. arXiv preprint arXiv: 2501.05867.
[156] Brix, C., Müller, M. N., Bak, S., Johnson, T. T. & Liu, C. (2023a) First three years of the international verification of neural

networks competition (vnn-comp). Int. J. Softw. Tools Technol. Transf. 25(3), 329–339.
[157] Brix, C., Bak, S., Liu, C. & Johnson, T. T. (2023b) The fourth international verification of neural networks competition

(vnn-comp 2023): Summary and results, arXiv preprint arXiv: 2312.16760.
[158] Brix, C., Bak, S., Johnson, T. T. & Wu, H. (2024) The fifth international verification of neural networks competition

(vnn-comp 2024): Summary and results, arXiv preprint arXiv: 2412.19985.

Cite this article: Casadio M., Dinkar T., Komendantskaya E., Arnaboldi L., Daggitt M.L., Isac O., Katz G., Rieser V. and
Lemon O. NLP verification: towards a general methodology for certifying robustness. European Journal of Applied Mathematics,
https://doi.org/10.1017/S0956792525000099

https://doi.org/10.1017/S0956792525000099 Published online by Cambridge University Press

https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2202.08904
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.1603.04422
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.1904.01399
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2207.02639
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2401.06379
https://arxiv.org/abs/ https://doi.org/10.48550/arXiv.2501.05867
https://arxiv.org/abs/2312.16760
https://arxiv.org/abs/2412.19985
https://doi.org/10.1017/S0956792525000099
https://doi.org/10.1017/S0956792525000099

	Introduction
	Contributions
	Contributions part 1: characterisation of verifiable subspaces and general
	1.1.2 Contributions part 2: NLP verification pipeline in use: an NLP perspective on the embedding gap

	Related work
	DNN verification
	Geometric representations in DNN verification
	Robust training
	NLP robustness
	Datasets and use cases used in NLP verification
	Datasets proposed in this paper

	Previous NLP verification approaches

	3 The parametric NLP verification pipeline
	Semantic perturbations
	NLP embeddings
	Geometric analysis of embedding spaces
	Working with embedding spaces: our approach
	Exclusion of unwanted sentences via shrinking
	Exclusion of unwanted sentences via clustering
	Eigenspace rotation
	Geometric and semantic subspaces
	Measuring the quality of sentence embeddings

	Training
	Choice of verification algorithm

	Characterisation of verifiable subspaces
	Metrics for understanding the properties of embedding spaces
	Baseline experiments for understanding the properties of embedding spaces
	Verifiability-generalisability trade-off for geometric subspaces
	Verifiability of geometric subspaces
	Generalisability of geometric subspaces

	Verifiability-generalisability trade-off for semantic subspaces
	Verifiability of semantic subspaces
	Generalisability of semantic subspaces

	Adversarial training on semantic subspaces
	Zonotopes vs hyper-rectangles

	NLP case studies
	Role of false positives and false negatives
	Performance of existing LLMs as safety-critical filters
	Experimental setup of the verification pipeline
	Analysis of the role of embedding functions
	Analysis of perturbations
	Understanding the scale of the problem
	Automatic ways to measure and report perturbation validity
	5.5.3 Cosine similarity
	5.5.4 ROUGE-N

	Embedding error
	Embedding error

	Conclusions and future work
	References

