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Abstract

A relation between positive commutators and absolutely continuous spectrum is ob-
tained. If i{ Y, Z] = 2Y holds on a core for Z and if Y is positive then we have a system of
imprimitivity for the group R: on R:, from which it follows that Y has no singular
continuous spectrum.

Assume that Y and Z are self-adjoint operators on a separable Hilbert space 3
and that

ilY,z}f=2f (1)
for all f belonging to a dense subset D of JC. We obtain conditions under which
the relation (1) implies that the singular continuous spectrum of Y is empty.

The argument is simple. We first show that if Y is positive and if

e~ % Ye'%u = e*Yu (2)
for all ¥ € D(Y) and all s € R, then the singular continuous spectrum of Y is
empty. We then obtain conditions on the subset D that ensure that whenever (1)
holds then (2) holds. We also obtain a converse to this, namely, if Y is a positive

self-adjoint operator with absolutely continuous spectrum on [0, 00) and uniform
spectral multiplicity then there exists a self-adjoint operator Z such that (1) holds.

THEOREM 1. Let Y be a positive self-adjoint operator and U, a unitary representa-
tion of the real line, such that for allu € D(Y) and all s € R

U 'YUu = e *Yu,

then if the spectrum of Y is continuous it is absolutely continuous.
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[2] Commutation relation 421

PRrROOF. For any complex number w,
U (Y —wl)Uu=e"2(Y — e*wl )u

for all u € D(Y) and all real s. Therefore, if the imaginary part of w is non-zero,
(Y — wl) is invertible, and

U Y —wl) U =e¥(Y — eXol)”".

This last equation holds as an operator identity in B(}) for all s € R.
Assume that the continuous spectrum of Y is non-empty and contains the
interval A. The spectral projection E,(Y') is given by Stone’s formula

Ef(Y)= lim (2771')“[A [(Y—wl)™' = (Y —a1)""] dp

where we have written w = p + je and @ = p — ie.
Therefore

—1 — . 2s Nl | _ 25 -1 _ 25—\~
UT'ENY)U, = lim e¥(2mi) fA[(Y e¥0) ™ — (Y — e2%) '] du

. 1 N iy N
Jim (27i) [ [ =n=ieg)™" =(¥ = +ieg)"| am

= Ea(Y) (3)

where we have put 1 + ig, = e*w.
Let B be any Borel subset in the continuous spectrum of Y, then by the usual
construction of Borel subsets from intervals we obtain

U7 'Eg(Y)U, = Eag(Y). (4)

Let R} = (0, 00) denote the multiplicative group of positive real numbers. We
obtain a representation ¥V, of R from the representation U, of R by putting
a = e* for all s € R, and observing that

V,= Uy, foralla ER; .

Ina

By hypothesis Y is positive definite and so its spectrum is contained in [0, o0).
By spectral multiplicity theory, the set of all spectral projections {Eg(Y); B a
Borel subset of [0, 00)} has a separating vector ®. In fact, @ is a cyclic vector for
the commutant of this family of projections.

The measure v(A) = (P, E5(Y)®), defined on the Borel subsets of R}, is
equivalent to the Haar measure of R] . To see this, first observe that because @ is
separating if A, is a Borel subset of R such that v(A,) = 0 then Ey(Y) =0,
and therefore

il

(@, ¥, 'E,(Y)V,@)=0 (5)
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for all @ € R} . On the other hand when equation (4) is written in terms of the
representation ¥, of the multiplicative group R; we obtain V,,“‘EAO(Y)V; =
E, a[(Y). Therefore

v(abdy) = (@, B, (Y)®)=0 (6)

for alla € R} . This means that v is a Borel measure on R that is quasi-invariant
with respect to the action of R} on itself, and therefore v is equivalent to Haar
measure of R} on R} .

The absolute continuity of the spectrum of Y follows because the Haar measure
of R} on R} is absolutely continuous with respect to Lebesgue measure. Let the
Borel subset S of R have Lebesgue measure zero, that is, | S |= 0. If S is a subset
of R}, v(S) = 0 and therefore E¢(Y )¢ = 0 and Eg(Y) = 0 because P is separat-
ing. If S is not a subset of R} then S = §, U S, where S, is a subset of R} and S,
lies in the complement of R} . Now Eg(Y) = Eg(Y) + Eg(Y) where Eg(Y) =0
by the argument given above and Eg(Y) =0 by the positivity of Y and the
continuity of spectrum of Y.

This theorem shows that the spectral measure class of the positive operator Y is
equivalent to the Haar measure of the multiplicative group of the positive reals,
R}, on itself. The equation (1) defines a system of imprimitivity of the group
R} . The proof is modelled on Mackey’s approach to the representations of the
canonical commutation relations [4].

DEFINITION. Let Y be a positive self-adjoint operator in a Hilbert space 3. A
subset D of 3C is said to be a domain of integration for the self-adjoint operator Z
with respect to the relation

i[y,z] =2y (7)
if
(YZ - ZY)f= -2iYf (8)
for all f € D implies that
e'%Ye %y =e BYu 9)

for allu € D(Y) and all s € R.

The terminology reflects the fact that equation (8) can be obtained from
equation (9) by differentiating with respect to s at s = 0. An immediate conse-
quence of this definition and Theorem 1 is the following result:

THEOREM 2. Let D be a domain of integration for Z and the relation (7) and

suppose that Y is positive definite, then whenever i[Y, Z|f = 2Yf for all f € D the
singular continuous spectrum of Y is empty.
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The problem of finding a domain of integration for the operator Z and relation
(7) is related to the problem of lifting a representation of a Lie algebra as
skew-adjoint operators on a Hilbert space to a unitary representation of the
corresponding Lie group. Nelson’s theorem (5] gives necessary and sufficient
conditions for the solution of the general problem, and can be used for our
problem. Nevertheless, we present a criterion for D modelled on a result of Kato
[2] for the problem of obtaining the Weyl commutation relations from those of
Heisenberg (see also Cartier [1]).

THEOREM 3. Let D be a subset of D(YZ) N\ D(ZY) on which equation (8) holds

with Y positive. D is a domain of integration for Z and relation (7) if D is a core for
Z

PRrROOF. Since D is a core for Z there is an a # 0 such that (Z — ia)D is dense
in 3C. If e > 0, (Y + &l) is strictly positive and symmetric and hence (Y + £)(Z —
ia)D is dense in (.

Let f€ D and put u = (Y + e}(Z — ia)f. Then u = (Z — i(a + 2))(Y + &)f
+ 2ief, and hence (Z —ia) ' (Y + &) lu=f=Y +e&) N(Z —i(a +2) '(u
—2ief) =Y +e) (Z—ila+2) 'u+e(Y +e) ' (Z—ia) ' —(Z—i(a+
)Y + &) 'u. But u € (Y +e)(Z—ia)D and thus we have the operator
equation

(Z—ia) '(Y+e) ' —(Y+e) (2~ i(a+2)""

=e(Y+e) '((Z-ia) ' = (Z-i(a+2) " N¥+e)~". (10
We now prove by induction that
(Z-ia)"(Y+e) ' —(Y+e) (Z—-i(a+2)"

=e(Y+e) (Z—ia) " —(Z—i(a+2))""(Y+e)~'. (1)
for all positive integers n. It is true for n = 1; assume it is true for n and write
Po=(Z—ia) ", P,=(Z—i(a+2)"",and Q = (Y + &)~ '. Then

P0"+IQ - QP2"+] P (PoQ — QPz) + (PO"Q - QP2")P2
= E{PO"Q(POQ - P2Q) + (QP0" - QPZ")QPZ}
=¢{QP/7'Q — QP 70},
on substituting for Py'Q and QP, in the penultimate line. The argument now goes
exactly as in [2]. Use the Neumann series for (Z — if)~! and the fact that

(Z - w)! 1s analytic for Imw # 0 to extend the validity of (11) from w = ia to
w=ifforallreal B, 8 %0, B % -2.
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Multiply equation (11) by (—ia)" and set a = n/s with s #0. (Z — ia)"
becomes (1 + in~'sZ)™" and (Z — i(a + 2))™" becomes (1 + n~'s(2 + iZ))™".
Both these expressions have strong limits as » tends to infinity:

(1+in"'sZ)" > €%  and
(1+n7's2+iZ)) " - e 2%,
Therefore
e"Z(Y +e) ' — (Y +e) e
=e(Y+e) (e7% — eZe )Y +6) |,
and, for all g € D(Y),
(Y + e)e g — e % 25(Y + e)g = e(e % — e %%~ %) g,
or
ei?Ye 125 = e 2Yg.

Putting these results together we have the useful corollary of Theorem 3.

COROLLARY. Let Y and Z be self-adjoint operators on a separable Hilbert space
3C and suppose that Y is positive. Let D be a subset of D(YZ) N D(ZY) such that

forallf€ D

ilY,z)f=2vf
and suppose that D is a core for Z. Then the singular continuous spectrum of Y is
empty.

We will now use this corollary in a number of examples.

EXAMPLES. 1.
W= L¥[a,b])), 0<a<b<oo,
_d? 1 d d
Y——F on D(Y), _2i(xa+dxx) on D(Z),
where

D(Y)={f€X|f€ AC*[a, b],f(a) = 0= f(b)},
D(z)={f€%|f € AC[a, b, xf € AC[a, b] and aff(a) = /b f(b)},
AC[a, b] = {f € I| f(x) is absolutely continuous on [a, b] and f'(x) € K},
AC*[a, b] ={f € I|fis differentiable,
/' is absolutely continuous and f”* € I(}.
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With these domains, Y and Z are self-adjoint and Y is positive. We take
D C D(YZ) N D(XY) to be C°[a, b}, the set of C* functions with compact
support in [a, b] whose support stays away from the end points. Then for all
fE€ D,

iy, Z] f = 2Yf.

We know that the spectrum of Y is not absolutely continuous, but this does not
contradict Theorem 3 as D is not a core for Z. For any real number a # 0,
(Z — ia)D is not dense in L*[a, b], because the function u(x) = Ax*""/? is
orthogonal to (Z — ia)D. In fact this function is orthogonal to (Z — ia)}(D(YZ)
N D(ZY)).

2,

K =L*[a,b]), 0<a<b<oo,

Y is the multiplicative operator, (Yf)(x) = x?f(x), with D(Y)=¥. Z =
—(1/2i)(xd/dx + (d/dx)x) on D(Z) as in example (1).
Both Y and Z are self-adjoint, Y is positive, and if we take D C D(YX) N
D(ZY) to be C{°[a, b] as in example (1), then for all f € D,
ilY, Z) f = 2Y/.
The argument of example (1) yields the result that D is not a core for Z, even
though we know that the spectrum of Y is absolutely continuous. This shows that
the conditions of Theorem 4 are not necessary. What goes wrong in this example
is that it is not true that e”%*Ye'?*f = e~ 2°Yf for all f € D(Y). This example
should be compared with the usual particle in a box counterexample to the
uniqueness of the representation for the Heisenberg commutation relations.
3.
IC= L*(0, 0),
Y is the operator of multiplication, (Y )(A) = A f(A\) and

D(Y) = {fE‘JC|/0°o>\2|f(>\)|2d>\<oo},

a4
A

z=-1(x

7 +di;\>\) with domain
D(Z) = {fe L*(0,00) |f € AC[0, ), Af € AC[0, 0)
and lim Jaf(a) = lim b/(5)}.

The last condition in the description of the domain of Z should be taken to mean
that both limits exist and are equal.
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With these domains, Y and Z are self-adjoint and Y is positive. Furthermore we
know that the spectrum of A is absolutely continuous. This does follow from
Theorem 4 because if D is taken to be C{°[0, co] with the support of the functions
staying away from zero and infinity, then D is a core for Z; in fact (Z — ia)D is
dense in L2([0, 00)) for any real a 5 0. This is so because if (Z — ia)D were not
dense there must be an element w 0 that is perpendicular to (Z — ia)D, but the
only possible w are of the form 4x*~!/2 which are not in L([ 0, c0)).

4. In non-relativistic quantum theory, the commutation relation (7) arises with
Y = H,, the kinetic energy or free Hamiltonian operator, and Z = 4, the
generator of the one parameter group of dilations. In the usual Schrodinger
representation for a single particle, H, = p?, 4 = 3(x - p + p - x) with p repre-
senting the canonical momentum operator and x the canonical position operator.
Further, H, and A are self-adjoint operators on their natural domains. It is well
known that the spectrum of H;is [0, c0) and is purely absolutely continuous. The
connection with this paper can be made directly but it is more interesting to
notice that in the usual spectral representation of Hy, {3], we have a unitary map
U from L3 (R?) to L* (R, , d\; 9C"), where €’ = L}(S?, dQ), and S? is the unit
sphere in R®, and d its usual surface measure, that sends H,, to multiplication by
A and A to the operator Z = —(1/i)(Ad/d\ + (d/dA)N) that is discussed in
example (3). Explicitly if f denotes the Fourier transform of an element of f of
L*(R’) then (Uf )(A; @) = (2)7 'N/4/(N/2w).

As a result of these last two examples we are led to the following proposition.

PROPOSITION. Let JC be a separable Hilbert space. If Y is a positive self-adjoint
unbounded operator with absolutely continuous spectrum on [0, o0] and uniform
spectral multiplicity then there exists a self-adjoint operator Z such that

ily,z}f=2yf

for all f belonging to a domain of integration Z.

PrOOF. By hypothesis, Y has a spectral representation as multiplication by A a
Hilbert space 9C = L*(R™, d\; ") for some constant fibre 3C’. But by Example
3 the operator Z, = —(§)(Ad/dA + (d/dA)N), with domain D(Z,) given in that
example, is self-adjoint and for all f € CP(R™ ; 3(C")

i[A, Zy]f=2Af.

Now the pre-image of Z; under the unitary map U of Example 4 gives a
self-adjoint operator Z on D(Z) C I such that i{[Y, Z] = 2Y on a domain of
integration for Z.
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This proposition gives a partial converse to Theorem 2 and appears to be useful
in non-relativistic scattering theory. We hope to discuss this connection in a
subsequent paper.
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