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Glacial lake drainage: a stability analysis
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ABSTRACT. A model has been formulated to determine the stability regimes for
water flow 1n a subglacial conduit draining from a reservoir. The physics of the water flow
is described with a set of differential equations expressing conservation of mass, momen-
tum and energy. Non-steady flow of water in the conduit 1s considered, the conduit being
simultaneously enlarged by frictional heating and compressed by plastic deformation in
response to the pressure difference across the tunnel wall. With the aid of simplifying
assumptions, a mathematical model has been constructed from two time-dependent,
non-linear, ordinary differential equations, which describe the time evolution of the con-
duit cross-sectional area and the water depth in the reservoir. The model has been used to
study the influence of conduit area and reservoir levels on the stability of the water flow
for various glacier and ice-sheet configurations. The region of the parameter space where
the system can achieve equilibrium has been identified. However, in the majority of cases
the equilibrium is unstable, and an initial perturbation from equilibrium may lead to a
catastrophic outburst of water which empties the reservoir.

NOMENCLATURE

A Horizontal cross-section of the reservoir

B Flow-law coefficient (5.8 x 10’ Nm %"

frn Friction coefficient for flow in the conduit, taken to be
0.25 (Spring and Hutter, 1981)

g Gravitational acceleration (9.8 ms )

h  Reservoir depth

L Specific latent heat of fusion (3.34 x 10° J kg )

l Conduit length

m  Mass melting rate at the conduit wall

pr Ice-overburden pressure

Pw  Water pressure at the conduit inlet

@  Volume discharge through the conduit

Qv Inflow rate to the reservoir

r  Conduit radius

S Cross-sectional area of the conduit (S = 7r?)

u  Areal and longitudinal mean flow speed in the conduit

Z Thickness of the glacier or ice sheet in vicinity of seal

a  Conduit slope

pr Density ofice (910kgm )

pw  Density of water (1000 kg m )

T Average shear stress exerted by the flow on conduit walls

Subscripts

E  Equilibrium
I Initial

INTRODUCTION

The stability of water flow in the subglacial conduit con-
nected to an ice-marginal reservoir is examined. Sometimes
a glacier will dam a stream and create a lake. Subsequent
rain and meltwater input may raise the level of the lake until
the water dammed above, within or beneath the glacier
bursts free. The most spectacular floods are the jokulhlaups

https://doi.org/10.3189/50260305500012131 Published online by Cambridge University Press

that occur in Iceland, which are often associated with volca-
nic activity (Bjornsson, 1974). In the western Canadian
Cordillera, Alaska and the Alps (e.g. Post and Mayo, 1971;
Haeberli, 1983), outburst flooding has been documented at
numerous sites. The conditions leading to outburst flooding
are examined in this paper.

The motion of water through a glacier has been studied
previously by Roéthlisberger (1972), Nye (1976), Spring and
Hutter (1981), Clarke (1982) and Walder and Fowler (1994),
among others. Each of these authors approaches from a dif-
ferent point of view the problem of water flow through an
mtraglacial conduit, but all of them consider a very similar
mathematical description of the problem. Despite the com-
plexity of water flow in glaciers (Hooke, 1989), most of the
authors consider flow through a single, straight conduit.

The objective of this paper is to develop the stability con-
ditions for flow in such a simple glacial conduit. The water is
supplied from an ice-dammed lake. We employ a set of
widely used differential equations describing water flow in
the conduit, make a number of simplifying assumptions
and focus the analysis on the necessary conditions for flow
stability. We address the [ollowing unresolved questions: (a)
Can a stable lake exist? (b) If outbursts oceur, will they
always produce a “single event” hydrograph as is generally
believed? (¢) Are there different possible modes of outburst
flooding?

MODEL DESCRIPTION

We consider the unsteady flow of water in a straight sub-
glacial conduit with a circular cross-section (Fig. 1). The dif-
ferential equations governing the physics of the process are
based on those presented and discussed by Raothlisherger
(1972), Nye (1976), Spring and Hutter (1981) and Walder and
Fowler (1994). However, in this paper the focus is not so
much on time-dependent solutions as on the system’s stabi-
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Fig. 1. Schematie cross-section of the glacier, conduit and reser-
voir. The symbols are defined in the Nomenclature.

lity conditions. The model 1s based on equations describing
the conduit area, and the momentum and energy conserva-
tion of the flowing water. While, in general, the mathemat-
ical description of the flow is specified by a set of partial
differential equations, we consider the region of the seal that
controls the flow (Clarke, 1982), thereby reducing the prob-
lem to a set of time-dependent ordinary differential equa-
tions.

The geometrical boundary condition for the conduit
specifies that the rate of change of the cross-section is deter-
mined by the difference between the rate of melting and the
rate of plastic creep (Nye, 1976):

ds m 2
= (p1 —pw)*S

at  p 27B°
where
P1 = P19z
and
pw = pwgh. (1)

We assume that the conduit pressure gradient is constant
along its length and that the water pressure at the outlet is
atmospheric. Furthermore, we neglect the relatively small
change in atmospheric pressure between the conduit outlet
and the reservoir surface. It would, however, be straight-
forward to modify the outlet pressure to allow for the con-
duit’s discharge into a lake. The water pressure at the seal is
determined by the hydrostatic equation for the reservoir, so,
implicitly, we assume the conduit is always full.

For simplicity, the acceleration term is neglected in the
momentum equation, which can then be written as a force
balance:

Although the acceleration term is neglected, we admit the

+ Spwgsina = 27rr. (2)

possibility of velocity changes in the conduit arising as the
wall shear stress adjusts to the changing pressure gradient.
We assume that the reservoir temperature is equal to the
melting point. However, we recognize that the variation of
this temperature influences the results, as has been shown by
Spring and Hutter (1981) and Clarke (1982). In addition, we
have neglected changes of the internal energy of the flowing
water. Nye (1976) cautions that the available relations des-
cribing heat transfer for forced convection in the conduit
may not be valid during flood events, as a result of very high
Reynolds number values. Consequently, we further assume
that the water temperature remains constant at the freezing
point and that all of the frictional heating leads to melting of
the conduit wall:

mL = 2nrTu. (3)

In turbulent pipe flow, there is a quadratic dependence
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of the wall shear stress on the mean flow speed (Gerhart and
others, 1992; Walder and Fowler, 1994):

T = 0.125 frpwu’ . (4)
Substituting Equation (4) into Equation (2), and using the
relation Q = Su and S = 7%, we obtain a relation for the

rate of discharge through the conduit:

2405 k 0.5 N
= (— + sin a) - (5)

= ,J.rn.zsfnﬂ-ﬁ l
Substituting Equations (2)—(3) into Equation (1), and using
Equation (5), we obtain a relation for the rate of change of
the conduit cross-section:

dS  2pwg'? (h

P T p—_IL?r"'25fn[]‘5 —=|=SIN:Cx

) l“‘351.'2.5 24
l

27TB°
3
(pz— pwh)'S. (6)
The continuity equation for the reservoir is:
d(Ah)
b — ) 7
7 - On-Q (7)
Assuming the horizontal cross-section of the reservoir to
be constant, and using Equation (5}, one may write Equa-
tion (7) as:

dh Qv 2P ho . = 1.25
E_T_W -[erma S, [8)

Equations (6) and (8), along with initial values of the con-
duit cross-section and reservoir depth, determine the prob-
lem. These equations are similar to the relations derived by
Clarke (1982).

In the next section, we will examine the linear stability
of these model equations around their equilibria, We will
also investigate the time-dependent behaviour of the system,
The analysis will be undertaken for both glacier and ice-
sheet configurations.

MODEL PREDICTIONS

There are seven physical parameters in Equations (6) and
(8). These parameters describe the reservoir geometry, h,
A, the rate of inflow to the reservoir, Qx, the conduit geo-
metry and slope, S, [, @, and the thickness of the glacier or
ice sheet in the vicinity of the seal, z. The influence of these
parameters on the system’s behaviour will be examined
helow. Two groups of cases characterized by different con-
duit slopes will be considered: sin a =0.1 and sin «« = 0.001.
These cases were chosen to represent glacier and ice-sheet
configurations, respectively. The values of the constants
used in the calculations are provided in the Nomenclature.

Flow stability in a glacial conduit

In this subsection, we analyze the linear stability, in the
vicinity of the equilibrium solutions, of the non-linear sys-
tem of Equations (6) and (8) for the high-slope glacier case
with sina = 0.1. Io reduce the number of free parameters,
we assume that the reservoir is a rectangular box and that
its sides are ten times the depth, i.e. A =10k x 10h. The
system’s equilibria are determined by setting the lefthand
sides of the model equations to zero. This process yields two
algebraic equations in the five equilibrium quantities, by,
QinE, Sk, I and zg. Three of these may be considered inde-
pendent, while the remaining two can be expressed as [unc-
tions of these three. We use Equation (6) to determine Sp
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(hg, lg, z5) and Equation (8) to determine Qing (hE, lg, zE).
After linearizing the system of differential equations around
this equilibrium, the stability of the linearized system can be
determined as a function of the equilibrium glacier thick-
ness in the vicinity of the seal, the equilibrium reservoir
depth and the equilibrium conduit length. Because the
results show that variation of the conduit length, over a rea-
listic range of values, has little influence on the stability con-
ditions, we assume a fixed conduit length of 10km in the
remaining analysis.

Iigure 2 shows the results of the local stability analysis as
a function of the equilibrium ice thickness and equilibrium
reservoir depth. Five types of equilibria can occur: a saddle,
an unstable node, an unstable spiral, a stable spiral and a
stable node. If an equilibrium is a stable node and a linear
system is initially perturbed from the equilibrium, the
system returns asymptotically to this equilibrium with time.
If an equilibrium 1s a stable spiral, the system comes back to
the equilibrium following harmonic oscillations of decreas-
ing amplitude. On the other hand, if an equilibrium is
unstable or a saddle, the system does not return to the equili-
brium. For more rigorous definitions of these types of equili-
bria see, for example, Boyce and DiPrima (1992).

At any point in the plane, the equilibrium conduit cross-
section and equilibrium inflow can be calculated from
Equations (6) and (8), respectively. Contours of the equili-
brium conduit cross-section have been plotted in Figure 2,
where these seem to be realistic. The equilibrium cross-
section increases with increasing glacier thickness. It is un-
realistically large for high thickness and vice versa. The
magnitude of the equilibrium reservoir inflow, which would
support a steady discharge through the conduit, is related to
the conduit cross-section through Equation (5), but is not
graphed in Figure 2. In the spiral regimes, the time-depen-
dent solution is periodic of increasing or decreasing ampli-
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Fig. 2. Stability regimes of equilibrium water flow in ihe
glacier conduit as a function of the equilibrium glacier thick-
ness, zp, and the equilibrium reservoir depth, hg, with
sinae =01 A =100 hg® and lg =10 km. The heavy solid
lines separale the five stability regimes, the dotted lines are
contours of escillation period in the two spiral regimes, and
the dashed lines are contours of equilibrium conduit cross-
section. The four dols correspond lo case-studies in Figure 3.
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tude. Contours of the system’s period have been drawn in
the stable and unstable spiral regimes where the approach
to or departure from equilibrium is oscillatory. The period
decreases with increasing thickness, and increases rapidly in
the vicinity of the boundary between the stable spiral and
stable node (these contours are not shown in Figure 2).

Figure 2 suggests that, for realistic values of conduit
cross-section, the system is inherently unstable unless the
reservoir is very small. Further analysis (not shown) indi-
cates that an increase in the aspect ratio of the reservoir
(side to depth) leads to expansion of the unstable region in
Figure 2.

Figure 3 shows the time evolution of the conduit cross-
section, reservoir depth and discharge from the reservoir
for four equilibria shown as points in Figure 2. The system
1s perturbed from its equilibrium by augmenting the reser-
voir depth by 1% (except that in the b =5 m case the init-
ial reservoir depth is doubled), while leaving the initial
conduit cross-section at its equilibrium value. In each case,
the equilibrium reservoir inflow is maintained. When the
equilibrium is a stable spiral (hg =5 m; see Fig. 2), the initial
perturbation leads to damped oscillations of the system.

100 prerrr e e T T
o L 1
iz I ]

he=5m

< 2 ]
2 s 4
B J

[}
s - -
2 : he=40m
o F ]
0.1 PR 0 Y O B o L I Y L0 0 I o WGl B (o T = o e
T T T T

2]
o

he=80m

(o))
o

FESTE] NTRE VRN (NI S [ T LA

Reservoir depth, h (m)
&

20

0 vl Oy r i 0T o [0y wike e v Jeeen
1000 SRR R RS LRl RAZEY FRARS AEARE RARRE BARE
1005— he=5m / _E

-
(=]

T

PR |

he=40
h.=80m e=eom

Discharge, Q (m®s™)

(oG [ T B B W IR AU Bl il A
0 5 i0 15 20 25 30 35 40 45

Time, t (days)

Fig. 5. Time evolution of the conduit cross-section, reservotr
depth and discharge through the conduit for four values of the
equiltbrium reservorr depth, 5, 20, 40 and 80 m. The system is
perturbed from equilibrium by increasing the initial reservorr
depth by 1% ( except for the 5 m case where the initial depth is
increased by 100% ). The fixed parameters are: sin e =0.1,
A = 100hg?, Iy, = 10 km and zg =400 m.
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conduit closes is shown in Figure 4. The shape of these
curves reflects the existence of two competing processes.
| For a given conduit size, a deeper reservoir provides a higher
£ hydrostatic pressure in the channel, reducing the creep rate
and increasing the likelihood of drainage. The likelihood of
drainage also increases with shallow reservoirs because of
the small liquid volume and short time required for drai-
nage.

Time-dependent solutions for three initial reservoir
depths, 20, 55 and 65 m, are presented in Figure 5. The init-
ial conduit cross-section is 1 m?® and the glacier thickness at
the seal is 400 m. With an initial reservoir depth of 20 m, the
conduit closes rapidly, the discharge diminishes and the
final reservoir depth is 11.0 m. With an initial reservoir depth
of 55 m, 1t takes more time for the conduit to close because of
the higher water head. Consequently, the total discharge
through the conduit is higher and the final reservoir depth
is 487 m. A further increase of the initial reservoir depth
leads to a qualitatively different solution. When h; =65 m,
the rate of conduit wall melting exceeds the rate of ice creep

100
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40

Initial reservoir depth, h, (m)
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0 200 400 600 800
Glacier thickness, z (m)

Fig. 4. Influence of the initial conduit cross-section on the type
of solution ( reservoir drainage or conduit closure) as a_func-
tion of the glacier thickness and initial reservoir depth. The
curves, labelled with initial conduit cross-section, separate
region in which the conduit closes before the reservoir drains
and region in which the reservoir drains before the conduit

from the beginning. The initial increase in conduit cross-
section is followed by an increase in the discharge, which
further enhances melting due to frictional dissipation. This

R e o e T e T YR R T
closes. There is no inflow to the reservotr, Qi =0, and 100 b =
sina =01, A = 100h®, | = 10 km. Three circles are used E
as case-studies in Figure 5, :, 100 p 3

§ 10 E’ E
When the equilibrium is an unstable spiral (hy =20 and g i i __
40 m), the increasing amplitude of the oscillations over time @
eventually leads to complete drainage of the reservoir. 8 103 [ .
Results for other cases in this range (not shown) indicate 3
that there seems to be no systematic relation between the Pt
moment of reservoir emptying and the ascending or des- o ‘ TR ]
cending phase of the discharge. For larger values of the E 60 o
equilibrium reservoir depth, the ice creep progresses more : ]
slowly and the period of the oscillations increases. When o 1
hr =80 m, the equilibrium is an unstable node (see Fig. 2). a 40 ]
In this case, the conduit cross-section gradually increases = 1
from its initial equilibrium value, and later increases £ i
quickly, allowing a rapid discharge of the entire reservoir % i
volume; this is the classic “j6kulhlaup” o

0

Time-dependent water flow in a glacier conduit E
without inflow to the reservoir R E

o 10" | .
So far we have discussed the system’s behaviour around its E E
equilibria. We have shown that equilibria which occur with o 10 3 3
realistic parameter values tend to be unstable. We will now ¢ 100 E 2
consider cases where the initial conditions are not equili- =4 - F _.
brium values. 1o keep the problem simple, we assume no in- 5 Lo
flow to the reservoir, Qny = 0. 8 103 ;r 3

With this restriction, two types of time-dependent solu- 104 L ]

o
(8]
n
o

tions can be distinguished: those in which the reservoir 10 15

drains entirely and those in which the conduit closes with
water left in the reservoir. In the following analysis we con-
sider initial conduit cross-section, initial reservoir depth
and glacier thickness in the vicinity of the seal to be control-
ling variables, and assume fixed parameter values as follows:
sina =01, A =100h1%, | =10km and Qv =0. For a given
initial conduit cross-section, the curve separating the region
in which the reservoir drains and the region in which the
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Time, t (days)

Fig. 5. Time evolution of the conduit cross-section, reservotr
depth and discharge through the conduit for three initial values
of the reservorr depth, 20, 55 and 65 m. For all three cases, the
initial conduit cross-section is Sy = 1m’, there is no inflow to
the reservoir, Qv =0, and sina =01, A =100 Bt
[ =10km, z =400 m.
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Fig. 6. Time required for the reservoir to drain, or for the con-
duit cross-section to decrease from Im’ to 107" m”, as a func-
tion of the initial reservoir depth, for three values of the glacier
thickness, 300,400 and 500 m. There is no inflow to the reser-
voir, Qv =0, and sin o« = 0.1, A = 100 hi®, | = 10 km.

positive feedback leads to a runaway process, and the reser-
voir drains rapidly, 90% of the volume discharging in
about 5d.

Figure 6 shows the time-scale of reservoir drainage and
conduit closure as a function of the initial reservoir depth
for three glacier thicknesses. When the reservoir drains, the
time-scale is defined as the time for complete discharge. For
the remaining cases the time-scale is defined as the time
needed for the conduit cross-section to decrease to 10 *m?
from its initial value of 1 m* When the glacier thickness is
300 m or less, the reservoir always drains (see Fig. 4). The
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Iig. 7. Stability regimes for flow in an ice-sheet conduit as a
JSunction of the equilibrium ice-sheet thickness, zy, and the
equilibrium  reservorr  depth, hg, with sina = 0001,
A = 100hg? and lg = 50 km. The heavy solid lines separate
the five stability regimes, and the dashed lines are contours of
the equilibrium conduit cross-section.
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longest drainage time occurs when the initial reservoir
depth is around 60 m. An increase in the initial reservoir
depth leads to higher water volumes and higher water pres-
sure, the former tending to increase the discharge time and
the latter to reduce it. Under these conditions the pressure
effect seems to dominate and the drainage time decreases
as the initial gradual water discharge is followed by an
abrupt opening of the conduit. However, for small values of
the initial reservoir depth, h; <60m, the volume effect
dominates and a reduction in the reservoir depth leads to a
corresponding reduction in the drainage time. These two re-
gimes can also be seen for a glacier thickness of 400 m. In
the region where the conduit closes, an increase in reservoir
depth leads to a rapid increase in the closure time because of
the higher water pressure. Similarly the pressure effect leads
to a reduction in drainage time in the region where the re-
servoir drains. When the glacier thickness at the seal is
500 m, similar effects can be observed.

Flow stability in an ice-sheet conduit

By scaling up the problem, we have also undertaken an
analysis of the stability of conduit flow in an ice sheet. The
conduit slope and length and the aspect ratio of the reser-
voir are taken to be: sina =000, [ =50km
A = 100hg® The five stability regimes and the equilibrium
conduit cross-section are shown in Figure 7, as a function of
the equilibrium ice-sheet thickness in the vicinity of the seal,
and the equilibrium reservoir depth. These results suggest
that for a realistic range of cross-sections, with inflow to
the reservoir supporting a steady discharge through the
conduit, there are both stable and unstable equilibria. For
combinations of reservoir depth and ice-sheet thickness out-
side this range of the cross-section, a realistic equilibrium
does not exist.

and

CONCLUSIONS

We have constructed a simple mathematical model of the
dynamics of water drainage from a reservoir through a sub-
glacial conduit. An equilibrium condition (steady state), in
which the flux through the conduit equals the rate of inflow
to the reservoir, may occur only over certain ranges of
glacier or ice-sheet thickness and reservoir depth. These
equilibria are typically unstable, with a perturbation lead-
ing to a catastrophic outburst of water and emptying of the
reservoir. The parameter space where discharge may occur
periodically with growing amplitude has also been identi-
fied. The equilibria are stable only over a very limited range
of parameter values. We have also demonstrated that the
parameter space where equilibria can occur is narrower for
an ice sheet than for a glacier configuration. Finally, for var-
ious non-equilibrium combinations of initial reservoir
depth, initial conduit cross-section and glacier thickness,
the parameter regions associated with reservoir drainage
or conduit closure have been elucidated.

In the future, we plan to relax the assumption that the
heat from frictional dissipation is transferred instant-
aneously to the conduit wall to effect melting. The influence
of lake temperature, lake geometry and conduit shape on
stahility should also be examined. We also plan to compare
the results of our stability analysis with actual lake-outburst
measurements,
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