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Abstract

Inexact Uzawa algorithms for solving nonlinear saddle-point problems are proposed.
A simple sufficient condition for the convergence of the inexact Uzawa algorithms
is obtained. Numerical experiments show that the inexact Uzawa algorithms are
convergent.
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1. Introduction

This paper provides convergence analysis of the inexact Uzawa methods for solving
the nonlinear saddle-point system

H(x, y)=

[
F(x)+ BT y − f

Bx − Cy − g

]
= 0, (1.1)

where B is an m × n matrix with full row rank (m ≤ n), BT is the adjoint of the
matrix B, C is an m × m symmetric positive semi-definite matrix, f is a vector in
Rn , g is a vector in Rm and F : Rn

→ Rn is a nonlinear strongly monotone function
differentiable everywhere. The nonlinear saddle-point system of the form (1.1)
arises frequently in electromagnetic Maxwell equations [9, 12], partial differential
equations [21] and nonlinear optimization [20, 33], for example,{

min
x∈Rn
{J (x)− ( f, x)},

s.t.Bx − Cy = g,
(1.2)
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where J (x) is the function satisfying 5J (x)= F(x). When F(x)= Ax with A being
an n × n symmetric positive-definite matrix, (1.1) becomes the well-known linear
saddle-point problem (

A BT

B −C

)(
x
y

)
=

(
f
g

)
. (1.3)

There has been a growing interest in preconditioned iterative methods for solving
the linear saddle-point problem (1.3), see [1, 4–7, 11, 16–19, 22, 23, 29, 30, 32, 34].
The Uzawa-type algorithms [1–4, 7, 8, 13, 16–18, 22, 23, 29] have been widely
investigated and used in scientific computing, because of simplicity, efficiency and
minimal computer memory requirements.

Elman and Golub [18] gave an inexact Uzawa method for solving linear saddle-
point problems (1.3) and obtained its convergence result. Their preconditioned inexact
Uzawa algorithm is defined as follows:

Given an initial approximation y0 of y
for i = 0 until convergence, do
Compute xi+1 such that Axi+1 = f − BT yi + δi

Compute yi+1 = yi + αQ−1(Bxi+1 − Cyi − g) (1.4)

enddo
The vector δi is the residual of the approximate solution xi+1 to the system
Ax = f − BT yi , α is a positive step size and Q is an m × m symmetric positive-
definite matrix.

Chen [10] extended the method (1.4) to solve the nonlinear saddle-point
problem (1.1):

Given an initial approximation y0 of y
for i = 0 until convergence, do
Compute xi+1 such that F(xi+1)= f − BT yi + δi

Compute yi+1 = yi + αi Q−1
i (Bxi+1 − Cyi − g) (1.5)

enddo
The vector δi is again the residual of the approximate solution xi+1 to the system
F(x)= f − BT yi , αi is a positive step size and Qi is an m × m symmetric positive-
definite matrix. Chen [10] also provided a deep analysis of convergence in the standard
n2-norm. The method for αi = 0, Qi = I was introduced by Ciarlet [14]. In fact,
in this case, it is not easy to solve for xi+1 in every iterative step for the nonlinear
function F(x).

There are other inexact Uzawa algorithms for solving the linear saddle-point
problem (1.3), see [7, 23]. Hu and Zou [24] extended the inexact Uzawa algorithm
of [23] to solve the nonlinear saddle-point problem (1.1), and also studied the
convergence rate of their algorithm with respect to the energy norm. However, the
algorithm of [24] should also solve a nonlinear system F(xi+1)= b when computing
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xi+1 in every step. Moreover, the algorithm is only suitable for C = 0. In this paper,
motivated by the inexact algorithms of [7, 8], we propose inexact Uzawa algorithms
to solve the nonlinear saddle-point problem (1.1) and give the convergence rate of
these algorithms with respect to the energy norm. The methods discussed in this paper
belong to the family of Uzawa-type methods.

The rest of this paper is organized as follows. In Section 2 we present our algorithms
and in Section 3 we analyze their convergence. Finally, in Section 4 we present the
results of some numerical experiments.

2. Algorithms

First, we recall some existing results from [10, 15, 24, 28], which will be used in
the subsequent analysis. Here Rn denotes the usual n-dimensional Euclidean space.
For any n × n positive-definite matrix G, the symmetric part Gs of the matrix G is
defined by

Gs =
1
2 (G + GT ), (2.1)

‖x‖Gs represents the G-induced norm, namely ‖x‖Gs = (Gs x, x)
1
2 for all x ∈ Rn , and

I is the identity matrix with appropriate dimension.
For the nonlinear system (1.1), in this paper, we always assume that F(x) is differ-

entiable everywhere, Lipschitzian and strongly monotone with modulus µ, that is,

(F(ξ)− F(η), ξ − η)≥ µ‖ξ − η‖2 for all ξ, η ∈ Rn. (2.2)

Chen [10] pointed out that the strong monotonicity property of F ensures that the
sequences {xi } and {yi } are well defined, that is, for any yi ∈ Rm , there exists a unique
xi such that F(xi )= f − BT yi . Let DF be the set of points where F is differentiable,
and let ∇F(ξ) be the gradient of F at ξ ∈ DF . The generalized Jacobian of F at x in
the sense of Clarke [15] is defined by

∂F(x)= co ∂B F(x),

where co ∂B F(x) denotes the convex hull of the set

∂B F(x)=

{
lim

ξ→x,ξ∈DF
∇F(x)

}
.

It is well known that if F is locally Lipschitzian, then the following generalized
mean-value theorem [15] holds: for any ξ, η ∈ Rn ,

F(ξ)− F(η) ∈ co ∂F(ξη)(ξ − η), (2.3)

where ξη is the line segment between ξ and η, and

co ∂F(ξη)= co{V ∈ ∂F(ζ ), ζ ∈ ξη}.

The strong monotonicity property (2.2) shows that all matrices in ∂F(η) are positive
definite for any η ∈ Rn

[25, 28], that is, the following inequality holds for any
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V ∈ ∂F(η):
(V ξ, ξ)≥ µ(ξ, ξ) for all ξ ∈ Rn. (2.4)

Then, as in [10, 28], for any ξ ∈ Rn , there exists a positive-definite matrix Q A ∈

∂B F(ξ + α) such that

lim
α→0

‖F(ξ + α)− F(ξ)− Q Aα‖

‖α‖
= 0. (2.5)

Note that all the above descriptions of the properties of the nonlinear mapping
F : Rn

−→ Rn are in terms of the l2-norm. Hu and Zou [24] pointed out that it is
more accurate to interpret these properties in terms of the energy norm, that is, the
norm induced by the generalized Jacobian A of F at ξi . We denote the generalized
Jacobian of F at x as Q, where {x, y} is the exact solution of system (1.1). By (2.4),
A is a positive-definite operator. Hence, As is a symmetric positive-definite operator.
Assume that As satisfies

(Av, w)≤ α(Asv, v)
1/2(Asw, w)

1/2 for all v, w ∈ Rn, (2.6)

for some number α. Clearly, α ≥ 1. Moreover, since As is symmetric positive-definite,
such an α always exists.

From (2.4) and (2.5), Hu and Zou [24] gave the following equation under the norm
‖x‖G = (Gx, x)

1
2 , where G is a positive-definite matrix. For any ξ ∈ Rn , there is a

positive-definite matrix A ∈ ∂B F(ξ + α) such that

lim
α→0

‖F(ξ + α)− F(ξ)− Aα‖Q−1

‖α‖Q
= 0. (2.7)

In fact, it is difficult to determine the exact description of the matrix Q, but we
know the exact description of A, and we give another more reasonable equation
which is similar to Equation (2.7). Since F is differentiable everywhere, Lipschitzian
and strongly monotone, then for any ξ ∈ Rn there is a positive-definite matrix A ∈
∂B F(ξ + α) such that

lim
α→0

‖F(ξ + α)− F(ξ)− Aα‖(A−1)s

‖α‖As

= 0. (2.8)

REMARK 2.1. Nonlinear saddle-point problems (1.1) arise from certain convex
optimization problems, and numerical solutions of certain nonlinear partial differential
equations; refer, for example, to [10].

Now, we define our inexact Uzawa algorithms for solving (1.1). These algorithms
are motivated by the Uzawa iteration [7, 8] for linear saddle-point systems.

ALGORITHM 1. For given x0 ∈ Rn and y0 ∈ Rm , the sequence {(xi , yi )} is defined for
i = 1, 2, . . . by {

xi+1 = xi + A−1( f − (F(xi )+ BT yi )),

yi+1 = yi + Q−1
B (Bxi+1 − Cyi − g),

(2.9)

where A ∈ ∂B F(xi ), and Q B is a symmetric and positive-definite operator.
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In Algorithm 1, the inner iteration should compute the inverse of the matrix A.
If A−1 is difficult to compute, the computation of A−1 can be replaced by that
of an approximation to A−1 obtained by applying a nonlinear iterative process for
inverting A. In Algorithm 2, the nonlinear Uzawa algorithm is proposed for nonlinear
saddle-point problems (1.1).

ALGORITHM 2. For given x0 ∈ Rn and y0 ∈ Rm , the sequence {(xi , yi )} is defined for
i = 1, 2, . . . by {

xi+1 = xi + φ( f − (F(xi )+ BT yi )),

yi+1 = yi + Q−1
B (Bxi+1 − Cyi − g),

(2.10)

where Q B is a symmetric and positive-definite operator, and φ(v) is an approximation
to the solution ξ of Aξ = v which satisfies

‖φ(v)− A−1v‖As ≤ δ‖A−1v‖As ≡ δ‖v‖(A−1)s
(2.11)

for some δ ∈ (0, 1). The assumption (2.11) is satisfied by the approximate inverse
associated with the GMRES method [31] for a nonsymmetric matrix A, the
approximate inverse associated with the preconditioned conjugate gradient (PCG)
algorithm [26] and the approximate inverse defined by one sweep of a multigrid
algorithm with conjugate gradient smoothing for the symmetric case, see [7, 27].

To analyse and describe the convergence of the above two algorithms, we need to
introduce some parameters. First, by (2.8) we know that, for any xi ∈ Rn , there is a
positive number ω ∈ (0, 1) such that

‖F(xi + α)− F(xi )− Aα‖(A−1)s
≤ ω‖α‖As . (2.12)

In addition, we assume that, for the symmetric positive-definite matrix Q B and any
y ∈ Rm , A ∈ Rn×n , there exists a number γ ∈ (0, 1) such that

(1− γ )(Q B y, y)≤ ((B(As)
−1 BT

+ C)y, y)≤ (Q B y, y). (2.13)

In the following section, we determine the convergence rates of Algorithms 1 and 2.

3. Convergence analysis of the Uzawa algorithms

First, we give some lemmas for later use.

LEMMA 3.1 ([8]). Suppose that A is an invertible linear operator with positive-
definite symmetric part As that satisfies (2.6). Then, (A−1)s is positive-definite and
satisfies

((A−1)sw, w)≤ ((As)
−1w, w)≤ α2((A−1)sw, w) for all w ∈ Rn. (3.1)

LEMMA 3.2. For any v ∈ Rn , if A is positive-definite and Q B is symmetric positive-
definite, and if (2.13) is satisfied, then we have the following inequality:

‖Bv‖Q−1
B
≤ ‖v‖As . (3.2)
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PROOF. For any v ∈ Rn and w ∈ Rm , by (2.13), we have

‖Bv‖2
Q−1

B
≡ (Q−1

B Bv, Bv)= sup
w∈Rm

(Q−1
B Bv, w)2

(Q−1
B w, w)

= sup
w∈Rm

(Bv, w)2

(Q Bw, w)
= sup
w∈Rm

(A
1
2
s v, A

−
1
2

s BTw)2

(Q Bw, w)

≤ sup
w∈Rm

(Asv, v)(B(As)
−1 BTw, w)

(Q Bw, w)

≤ (Asv, v)≡ ‖v‖
2
As
. 2

LEMMA 3.3. Suppose that A is positive-definite and its symmetric part As
satisfies (2.6). Let Q B be a symmetric and positive-definite operator satisfying (2.13).
For θ = (2− (2(1− γ )/α2))

1
2 ,

‖(I − Q−1
B (BA−1 BT

+ C))v‖Q B ≤ θ‖v‖Q B . (3.3)

Moreover, if 0≤ γ ≤ 1
2 , then θ ≤ 1.

PROOF. Let L = BA−1 BT . Then

‖(I − Q−1
B (BA−1 BT

+ C))v‖2Q B

= ‖v‖2Q B
− 2((L + C)v, v)+ ((L + C)v, Q−1

B (L + C)v). (3.4)

By (2.13) and (3.1), we obtain

(1− γ )‖v‖2Q B
≤ ((As)

−1 BT v, BT v)+ (Cv, v)

≤ α2(Lv, v)+ (Cv, v)≤ α2((L + C)v, v). (3.5)

Equation (3.1) gives

(A−1v, w) = ((As)
1
2 A−1v, (As)

−
1
2w)≤ ‖(As)

1
2 A−1v‖‖(As)

−
1
2w‖

= (A−1v, v)
1
2 ((As)

−1w, w)
1
2

≤ ((As)
−1v, v)

1
2 ((As)

−1w, w)
1
2 . (3.6)

Using (3.6), we obtain

(Lv, w)= (A−1 BT v, BTw)≤ (B(As)
−1 BT v, v)

1
2 (B(As)

−1 BTw, w)
1
2 . (3.7)

By the Cauchy–Schwarz inequality,

(Cv, w)≤ (Cv, v)
1
2 (Cw, w)

1
2 . (3.8)

https://doi.org/10.1017/S1446181110000829 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000829


[7] Analysis of the inexact Uzawa algorithms for nonlinear saddle-point problems 375

By (2.13), (3.7) and (3.8), and using the Cauchy–Schwarz inequality again, we get

((L + C)v, w) ≤ ((B(As)
−1 BT

+ C)v, v)
1
2 ((B(As)

−1 BT
+ C)w, w)

1
2

≤ ‖v‖Q B‖w‖Q B . (3.9)

Let w = Q−1
B (L + C)v. By (3.9),

((L + C)v, Q−1
B (L + C)v)≤ ‖v‖2Q B

. (3.10)

Equations (3.4), (3.5) and (3.10) show that

‖(I − Q−1
B (BA−1 BT

+ C))v‖2Q B
≤ θ2
‖v‖2Q B

,

where θ2
= (2− (2(1− γ )/α2)). It is easy to verify that if 0≤ γ ≤ 1

2 , then θ ≤ 1.
The proof of the lemma is completed. 2

For the convergence of the inexact Uzawa algorithm, we have the following
theorems.

THEOREM 3.4. Assume that Equations (2.6) and (2.13) hold and F is differentiable
everywhere. Let {(x, y)} be the solution pair for (1.1) and let {(xi , yi )} be defined
by the Uzawa Algorithm 1 and define the residuals ex

i = xi − x, ey
i = yi − y. Let

θ = (2− (2(1− γ ))/α2)
1
2 . Then xi and yi converge to x and y, respectively, if

0< ω <
1
2
, 0< θ <

1− 2ω
1− ω

. (3.11)

In this case, the following inequality holds:

ω(Asex
i+1, ex

i+1)+ (Q Bey
i+1, ey

i+1)≤ ρ
2(ω(Asex

i , ex
i )+ (Q Bey

i , ey
i )), (3.12)

where

ρ =
ω + θ +

√
(ω + θ)2 − 4ω(θ − 1)

2
. (3.13)

PROOF. From Algorithm 1 and (1.1), we have the following equations:

ex
i+1 = ex

i + A−1(F(x)− F(xi )− BT ey
i ), (3.14)

ey
i+1 = ey

i + Q−1
B (Bex

i+1 − Cey
i ). (3.15)

Equation (3.14) gives

ex
i+1 = A−1(F(x)− F(xi )+ Aex

i )− A−1 BT ey
i .

Substituting for ex
i+1 in (3.15) using the above equation,

ey
i+1 = ey

i + Q−1
B [BA−1(F(x)− F(xi )+ Aex

i )− (BA−1 BT
+ C)ey

i ]

= [I −Q−1
B (BA−1 BT

+C)]ey
i +Q−1

B BA−1(F(x)− F(xi )+ Aex
i ). (3.16)
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In addition, by (2.12), we conclude that

‖F(x)− F(xi )+ Aex
i ‖(A−1)s

≤ ω‖ex
i ‖As . (3.17)

It follows from the triangular inequality, (2.13), (3.1) and (3.17) that

‖ex
i+1‖As ≤ ‖F(x)− F(xi )+ Aex

i ‖(A−1)s
+ ‖A−1 BT ey

i ‖As

≤ ω‖ex
i ‖As + ‖B

T ey
i ‖(A−1)s

≤ ω‖ex
i ‖As + ‖e

y
i ‖Q B . (3.18)

Using the triangular inequality, from (3.2), (3.3), (3.16) and (3.17),

‖ey
i+1‖Q B ≤ ‖(I − Q−1

B (BA−1 BT
+ C))ey

i ‖Q B + ‖A−1(F(x)− F(xi )+ Aex
i )‖As

≤ ω‖ex
i ‖As + θ‖e

y
i ‖Q B . (3.19)

It follows from (3.18) and (3.19) that(
‖ex

i+1‖As

‖ey
i+1‖Q B

)
≤ M

(
‖ex

i ‖As

‖ey
i ‖Q B

)
, (3.20)

where M is given by

M =

(
ω 1
ω θ

)
.

Obviously, M is symmetric with respect to the inner product [., .] on R2 defined by[(
x1
y1

)
,

(
x2
y2

)]
≡

((
ω 0
0 1

)(
x1
y1

)
,

(
x2
y2

))
= ωx1x2 + y1 y2.

Thus, from (3.20),

ω(Asex
i+1, ex

i+1)+ (Q Bey
i+1, ey

i+1) =

[(
‖ex

i+1‖As

‖ey
i+1‖Q B

)
,

(
‖ex

i+1‖As

‖ey
i+1‖Q B

)]

≤

[
M

(
‖ex

i ‖As

‖ey
i ‖Q B

)
, M

(
‖ex

i ‖As

‖ey
i ‖Q B

)]
≤ ρ2(ω(Asex

i , ex
i )+ (Q Bey

i , ey
i )),

where ρ is the spectral radius of M . The eigenvalues of M are the roots of

λ2
− (ω + θ)λ+ ω(θ − 1)= 0.

From the above equation, we know that λ ∈ R and ω + θ > 0. Obviously, the spectral
radius ρ of M is equal to its positive eigenvalue which is given by (3.13).

It is easy to see that if (3.11) is satisfied, then ρ < 1. This completes the proof of
the theorem. 2
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THEOREM 3.5. Assume that F is differentiable everywhere, A is the Jacobian matrix
of F at xi and satisfies (2.6), and inequalities (2.11), (2.12) and (2.13) hold. Let
{(x, y)} be the solution pair for (1.1) and let {(xi , yi )} be defined by the nonlinear
Uzawa Algorithm 2 and with residuals denoted by ex

i = xi − x, ey
i = yi − y. Let

θ = (2− (2(1− γ )/α2))
1
2 . Then xi and yi converge to x and y, respectively, if

0< ω <
1
2
, 0< θ <

1− 2ω
1− ω

, 0< δ <
1− θ + ω(θ − 2)
3− θ + ω(2− θ)

. (3.21)

In this case, the following inequality holds:

(ω + δ + ωδ)(Asex
i+1, ex

i+1)+ (δ + 1)(Q Bey
i+1, ey

i+1)

≤ ρ2((ω + δ + ωδ)(Asex
i , ex

i )+ (δ + 1)(Q Bey
i , ey

i )), (3.22)

where

ρ =
2δ + θ + ω + ωδ +

√
(2δ + θ + ω + ωδ)2 − 4(ω + δ + ωδ)(θ − 1)

2
. (3.23)

PROOF. By (2.12), we conclude that

‖F(x)− F(xi )+ Aex
i ‖(A−1)s

≤ ω‖ex
i ‖As . (3.24)

From Algorithm 2 and (1.1), we have the following equations:

ex
i+1 = ex

i + φ(F(x)− F(xi )− BT ey
i ), (3.25)

ey
i+1 = ey

i + Q−1
B (Bex

i+1 − Cey
i ). (3.26)

Equation (3.25) gives

ex
i+1 = (φ − A−1)(F(x)− F(xi )− BT ey

i )+ A−1(F(x)− F(xi )+ Aex
i − BT ey

i ).

Substituting for ex
i+1 in (3.26) using the above equation,

ey
i+1 = ey

i + Q−1
B (Bex

i+1 − Cey
i )

= [I − Q−1
B (BA−1 BT

+ C)]ey
i + Q−1

B B[(φ − A−1)(F(x)− F(xi )− BT ey
i )

+ A−1(F(x)− F(xi )+ Aex
i )]. (3.27)

It follows from the triangular inequality, (2.13) and (3.24) that we have

‖ex
i+1‖As ≤ ‖(φ − A−1)(F(x)− F(xi )− BT ey

i )‖As

+ ‖F(x)− F(xi )+ Aex
i − BT ey

i ‖(A−1)s

≤ δ(‖F(x)− F(xi )+ Aex
i ‖(A−1)s

+ ‖Aex
i + BT ey

i ‖(A−1)s
)

+ ‖F(x)− F(xi )+ Aex
i ‖(A−1)s

+ ‖ey
i ‖Q B

≤ δω‖ex
i ‖As + δ(‖e

x
i ‖As + ‖e

y
i ‖Q B )+ ω‖e

x
i ‖As + ‖e

y
i ‖Q B

= (ω + δ + ωδ)‖ex
i ‖As + (δ + 1)‖ey

i ‖Q B . (3.28)
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Using the triangular inequality, from (2.13), (3.27), Lemmas 3.2 and 3.3,

‖ey
i+1‖Q B ≤ θ‖e

y
i ‖Q B + δ‖F(x)− F(xi )− BT ey

i ‖(A−1)s

+ ‖F(x)− F(xi )+ Aex
i ‖(A−1)s

≤ ω‖ex
i ‖As + θ‖e

y
i ‖Q B + δ(ω‖e

x
i ‖As + ‖e

x
i ‖As + ‖e

y
i ‖Q B )

= (ω + δ + ωδ)‖ex
i ‖As + (δ + θ)‖e

y
i ‖Q B . (3.29)

It follows from (3.28) and (3.29) that(
‖ex

i+1‖As

‖ey
i+1‖Q B

)
≤ M

(
‖ex

i ‖As

‖ey
i ‖Q B

)
, (3.30)

where M is given by

M =

(
ω + δ + ωδ δ + 1
ω + δ + ωδ δ + θ

)
.

Obviously, M is symmetric with respect to the inner product [., .] on R2 defined by[(
x1
y1

)
,

(
x2
y2

)]
≡

((
ω + δ + ωδ 0

0 δ + 1

)(
x1
y1

)
,

(
x2
y2

))
= (ω + δ + ωδ)x1x2 + (δ + 1)y1 y2.

Thus, from (3.30),

(ω + δ + ωδ)(Asex
i+1, ex

i+1)+ (δ + 1)(Q Bey
i+1, ey

i+1)

=

[(
‖ex

i+1‖As

‖ey
i+1‖Q B

)
,

(
‖ex

i+1‖As

‖ey
i+1‖Q B

)]

≤

[
M

(
‖ex

i ‖As

‖ey
i ‖Q B

)
, M

(
‖ex

i ‖As

‖ey
i ‖Q B

)]
≤ ρ2((ω + δ + ωδ)(Asex

i , ex
i )+ (δ + 1)(Q Bey

i , ey
i )),

where ρ is the spectral radius of M . The eigenvalues of M are the roots of

λ2
− (2δ + θ + ω + ωδ)λ+ (ω + δ + ωδ)(θ − 1)= 0.

From the above equation, we know that λ ∈ R and 2δ + γ + ω + ωδ > 0. Obviously,
the spectral radius ρ of M is equal to its positive eigenvalue which is given by (3.23).

It is easy to see that if (3.21) is satisfied, then ρ < 1. This completes the proof of
the theorem. 2

REMARK 3.6. In Theorems 3.4 and 3.5, the initial guess {(x0, y0)} is required to lie
within a small neighbourhood of the exact solution {(x, y)}.
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4. Numerical experiments

In this section, we consider the numerical example of the nonlinear saddle-point
problem (1.1) described in [24] to illustrate the convergence of Algorithms 1 and 2.
For completeness, we describe the example again.

Let Im be the m × m identity matrix and let Tm be an m × m matrix with entries
given by

ti j =

{
1 if |i − j | = 1,

0 otherwise.

For n = 2m, we define an n × n symmetric positive-definite matrix E , an m × n matrix
B with full rank and an m × m symmetric positive semi-definite matrix C as follows:

E =

( 5
2 Im −

1
4 Tm −Im

−Im
5
2 Im −

1
4 Tm

)
, B = (0, 2Im − Tm), C =

(
Im/2 0

0 0

)
.

The smallest and largest eigenvalues of E are [24]

λ1 = 4 sin2 mπ

2(n + m)
+ sin2 π

2(1+ m)
= 1+ sin2 π

2(1+ m)
,

λn = 4 sin2 nπ

2(n + m)
+ sin2 mπ

2(1+ m)
= 3+ sin2 mπ

2(1+ m)
.

The nonlinear mapping F is defined as

F(x) = Ex +
1
5

(
x1

1+ x2
1

,
x2

1+ x2
2

, . . . ,
xn

1+ x2
n

)T

,

for all x = (x1, x2, . . . , xn)
T
∈ Rn.

It is easy to verify that F is strongly monotone and Lipschitz continuous, see [24]. For
any given f ∈ Rn and g ∈ Rm , the system (1.1) has a unique solution. Moreover,

A = E +
1
5

diag
(

1− x2
1

(1+ x2
1)

2
,

1− x2
2

(1+ x2
2)

2
, . . . ,

1− x2
n

(1+ x2
n)

2

)
,

which implies
4
5‖η‖

2
≤ (Aη, η)≤ 21

5 ‖η‖
2.

The functions f and g in (1.1) are generated using (1.1) when the exact solution is
taken to be

x = (1, 1, . . . , 1)T , y =

(
1,

1
2
, . . . ,

1
m

)T

.

In our numerical experiments, the size of the problem is determined by the
dimension m. We choose the zero vector as the initial guess vector (x0, y0).
The iterations of Algorithms 1 and 2 terminate when

Error=
{
‖ f − F(xi )− BT yi‖

2
+ ‖g − Bxi + Cyi‖

2

‖ f ‖2 + ‖g‖2

} 1
2

≤ 10−6.
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TABLE 1. Iteration number and CPU time for IUA and NUA.

m IUA NUA

50 28(0.0470) 28(0.0780)
100 28(0.0940) 28(0.1090)
200 27(0.2030) 27(0.1710)
400 26(0.5000) 26(0.2820)
500 26(0.6880) 26(0.3440)
800 25(1.3590) 25(0.5000)

1000 25(1.9530) 25(0.5930)
2000 24(6.2820) 24(1.1250)
4000 23(22.4220) 23(2.0790)
5000 23(38.6410) 23(2.7030)
8000 22(99.1410) 23(4.9220)
9000 22(102.2190) 22(5.3120)

In both algorithms, we choose the preconditioner Q B =
5
4 BBT

+ C , which ensures
that inequality (2.13) holds. IUA denotes the inexact Uzawa Algorithm 1. NUA
denotes the nonlinear Uzawa Algorithm 2 only using the nonlinear approximation
to A−1. In NUA, φ is defined by five steps of the PCG with preconditioner M = L LT

applied to approximate the action of A−1, where L is the incomplete Cholesky factor
of E , that is, E = L LT

− R, with drop tolerance 0.01.
Numerical results are obtained using Matlab 7.0 on a personal computer with an

Intel(R) Pentium(R) D 3.00 GHz CPU and 1 GB memory. We restrict our attention
to the convergence of the IUA and NUA for nonlinear saddle-point problems. In
Table 1 we report the number of iterations and the total computational time in seconds.
Our numerical experiments illustrate the convergence theory developed in Section 3.
From Table 1, we see that the number of iterations is virtually constant, the CPU time
increases as m increases for both algorithms, and the NUA is better than the IUA. In
fact, the preconditioner Q B of the approximate Schur complement B(As)

−1 BT
+ C

plays an important role in the two algorithms, but, in practice, Q B is difficult to choose.
Hence, we will attempt to find other iterative methods for various nonlinear saddle-
point problems in further research.
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