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THE SPUTTERING TEMPERATURE OF A COOLING
CYLINDRICAL ROD WITHOUT AND WITH AN INSULATED CORE

IN A TWO-FLUID MEDIUM
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Abstract

Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are
obtained for the temperature distributions on the surface of a cylindrical rod without an
insulated core as well as that inside a cylindrical rod with an insulated inner core when the
rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different
layers of fluid with different cooling abilities. Simple expressions are derived for the values
of the sputtering temperatures of the rod at the points of entry into the respective layers,
assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent.
Both the problems are solved through a three-part Wiener-Hopf problem of special type
and the numerical results under certain special circumstances are obtained and presented in
tabular forms.

1. Introduction

The two physical problems (referred to as Problems I and II respectively) considered in
this paper involve the determination of the temperature distributions on the surface of
a cylindrical rod without an insulated core (I) and (II) inside the surface of a cylindrical
rod with an insulated core; the heated rod is allowed to enter with a uniform speed v
a two-fluid medium of different depths with two different rates of cooling, producing
two quench fronts (see [3]) that also propagate with the same speed. Recently, in
the course of analysing the phenomena of cooling of a single infinite slab as well
as a composite slab, in a two-fluid medium, Bera and Chakrabarti ([1], [2]) have
generalised the mixed boundary-value problems considered in [3, 4, 5, 7, 8] where
similar cooling phenomena have been investigated for a single fluid medium.

The principal mathematical tool employed to solve such mixed boundary-value
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problems is the Wiener-Hopf technique, as described in [9] and [10] and utilized for
the problems considered in [1, 2, 4, 5, 7, 8]. Following the methods of Jones [9],
the two problems under consideration are reduced to those of solving two Wiener-
Hopf type functional relations, known as "three-part Wiener-Hopf problems" (see
Chakrabarti [6]). This three-part Wiener-Hopf problem is solved by employing an
idea similar to that of Jones (see Jones [9] and Chakrabarti [6]) after reducing the
problem to a system of algebraic equations involving two-infinite unknowns, whose
solutions are completed in a standard manner. As in Evans [7] and Chakrabarti [4],
we find that the sputtering temperatures, that is, the temperatures on the surface of the
cylinder at the points of entry to the two layers of fluids, can be calculated by means of
simple formulae involving the modified Bessel functions, the radius of the cylinder for
the first problem and the outer and inner radii of the cylinder for the second problem,
the speed v, and the diffusivity K, along with the rates hx and h2 of cooling. Certain
typical values of the various parameters of the problems are considered here for the
purpose of numerical evaluation of the sputtering temperatures.

2. Formulation of the problems and their reduction to Weiner-Hopf equations

Problem I : Taking r = b as the radius of the cylinder without a core, and using
cylindrical polar coordinates (r, 6, x), with Jc-axis along the axis of the cylinder, the
mathematical problem of determining the temperature um{r, x, t) inside the cylinder
is that of solving the diffusion equation

)

in the region occupied by the non-insulated material of the cylindrical rod, 0 < r < b,
—oo<x< oo, where K is the thermal diffusivity of the material.

Assuming that the rod gets cooled by allowing it to enter, with a uniform speed v
in the positive x direction, into two different layers of cold fluids, one of finite depth
and the other of infinite extent, and using the coordinate transformation

x = x + vt,

where x is fixed to the rod and x is measured with respect to the fluid, we have that

um{r,x,t)*mm(r,x)

with d/dt = vd/dx. Then (2.1) transforms into the new form

ldum
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with s = V/2K.

Problem II : Similarly taking r = a and r = b as the inner and outer radii of the
cylinder and using cylindrical polar coordinates (r, 6, x), with the *-axis as the axis
of the cylinder, the mathematical problem of determining the temperature u(2)(r, x, t)
is that of solving the diffusion equation

3«(2) (d2u™ 32«(2) 19«( 2 ) \
+ + (2-3)dt V ox2 dr2 r dr J

in the region occupied by the non-insulated material of the cylindrical rod, a < r < b,
—oo < x < oo, where K is the thermal diffusivity of the material. (The insulated
inner core occupies the region 0 < r < a.)

Proceeding as in Problem I, we transform (2.3) to an equation which is exactly the
same as (2.2). Setting

M0)(r, x) = 1 - <t>U)(x, r)esx, (j = 1, 2),

both the problems under consideration can be reduced to that of solving the partial
differential equation

(2.4)
r

in the respective regions

(0 < r < b, -oo < x < oo), for Problem I (2.5a)

and

(a < r < b, —oo < x < oo), for Problem II, (2.5b)

subject to the following boundary and infinity conditions for each problem.

Problem I:

(i) -^— = 0 at r = b, x < 0,
dr

(ii) d4—+ hx<l>m = h x e ~ s x a t r = b , 0 < x < 1,
dr

dd>m

(iii) -£— + /i20(1) = h2e~sx at r = b, 1 < x < oo,
or

(iv) 0(1) ~ O(*r") as x -> +00,
(v) 0(1) ~ O(e") as x - • -00 ,
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9</>0)

(vi) 0(1) and — - O(l) as x -» 0 and x -*• 1, for uniqueness of the solution.
or

Problem II:
a</><2)

(i) = 0 at r — a, —oo < x < oo,
or

a</>(2)

(ii) -f— = 0 at r = 6, * < 0,
or

(iii) -^— + hi(p(2) = hxe~sx at r = b, 0 < x < 1,
9r

(iv) -^— + /?20 ( 2 ) = h2e"sx atr =b,l <x <oo,
dr

(v) </>(1) ~ O(e~sx) as x ^ +oo,
(vi) ^0) ^ o(e") as x -+ -oo,

3<6(2)

(vii) (/>(2) and ~ O(l) as x —> 0 and A; —> 1, for uniqueness of the solution.
dr

We define the following Fourier transforms:

<ty)(a, r) s O^(a, r) + ^ ' ' ( o , r) + ^ ( a , r),

4>'U)(a, r) = ^ ( a , r) + 4>',0)(a, r) + *^>(a, r),

with

<S>^(a, r) = f <l>U)(x, r)eiax dx,
J — 00

/ . I

4>*y)(a, r) = I <pU)(x, r)e'ax dx,
Jo

f 00

<S>lJ.\a, r ) = <f>U)(x, r)eiax dx,
J\

f° 3d>U) •
<P'y (a, r) = I e'axdx,

J-oo dr

/o
/•OO

4>'lj\a,r)= ^j—eiaxdx, (J = 1,2), (2.6)

and by using the conditions (iv), (v) and (vi) for Problem I and (v), (vi) and (vii)
for Problem II deduce that O ^ and 4>+j), (_/' = 1,2), are analytic functions of a in
the upper half-plane Im(a) > —s and Q^ and <J>'̂ ), (j = 1, 2), are analytic in the
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lower half-plane Im(a) < +s of the complex a-plane, while O(/' and 4>,(;) are entire
functions of a, so that 3>0)(a, r) and &U)(a, r), (j = 1, 2), are analytic in the strip
|Im(a)| < s.

In the case of Problem I, the appropriate solution of (2.4) can be taken in the form

4>(l)(a, r) = C,/oO/r), (2.7)

where y = +(a2+s2)1 / 2 , with the positive branch of the square root, C\ is an arbitrary
constant and /0(y r) denotes the modified Bessel function of order zero. Applying the
Fourier transform to the boundary conditions (i), (ii) and (iii) for Problem I along with
the use of (2.7), we obtain the relations

a, b) = 4>'f(a, b) + 4>',(1)(a, b) = C,ylx{y, b), (2.8)

(a, b) + A ^ j V , b) = - ^ — [1 - e~
Hs-ia)] , (2.9)

5 — ia L J

' i ' V b) + ^ " ' ( a , &) = - ^ V - • c-1(s-'a), (2.10)
+ 5 - Ja

— ia
(2.11)

Eliminating C\ from (2.8) and (2.11), we obtain the following three-part Weiner-Hopf
functional relation for the determination of the three unknown functions 4> !̂'(a, b)
[= &l\a)], O'JV, b) [= *i!)(a)], and <D',(1)(a, i) [= <bf\a)\, for the problem I:

K?\aWli)(a) = -l/(s-ia\ (2.12)

valid in the strip | Im(a)| < s, where

In the case of Problem II, the appropriate solution of the transformed equation (2.4)
satisfying condition (i) can be taken in the form

4>(2)(<x, r) = Ci[l*(yr)Kxiyd) + h(ya)Ko(yr)]% (2.14)

where y = +(a2 + s2)1/2 as has been used earlier, C\ is an artibrary constant and
In(X) and Kn(x) denote modified Bessel functions of order n of the first and second
kinds respectively.

Proceeding as in Problem I and using the conditions (ii), (iii) and (iv) for the
Problem II along with the use of (2.14) and finally eliminating the constant Cx from
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the resulting equations, we obtain the following different three-part Wiener-Hopf
functional relation for the determination of the three unknown functions <t> '̂(a),
<t>+2)(a) and O',(2)(o0, for the Problem II:

<?f\a) = -l/(s-ia), (2.15)

valid in the strip | Im(a)| < s, where

Kx («) = 1+ - • — ^ _ — - — — — — _ _ ,

(2i ^2 Io(yb)Ki(ya) + / 1 (ya)A r
o (y6)

^2 (a ) = 1 H • . (2.16)
y I\(yb)K\(ya) — I\{ya)K\(yb)

If A, = /i2 and / = 0, we obtain that Kf\a) = Kf\a)\ then (2.15) exactly coincides
with (9) of Chakrabarti [4].

3. Solution of the Wiener-Hopf equations

Using the two relations of (2.13), we have for Problem I

We then factorize K^{a) in the form

[l\ {i)+ln-(a), (3.2)

where AT,(l)+(a) and A",(1)~(a) are analytic in the overlapping half-planes Im(a) > r_
and Im(a) < T+ respectively (the details of which will be presented below) and rewrite
(2.12) as

1 (3.3)
K[n~(a)(s-ia)'

We can also express (3.1), after using the factorization (3.2), in the form
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giving

1 *<»(«) _ 1 (1)+ /I 1\ 1

*; •<»- (« )"* . • ( ) U . **; *<»-(«)• ( }

Using (3.4) in (3.3), we obtain

= ^ ^ - • (3.5)

Now,

°° rof24-o'(1)2i

= A n 2TJi)2
n=l L« + Pn J

where i/a^1', ±^n
(1) are the zeros of yhiyb) + hxl0(yb) and yl\(yb) respectively,

and A is a known constant.
We also observe that |A",(l)(ar)| -> constant as |a| -> oo. Writing

n=\

(|Ar,(1)+(a)| -+ constant, as |a| -^ oo) ,

which is free from zeros and poles in the lower half-plane T = Im(a) >
}1max(-a}1), -^,(1)) = r_, say, and

>• constant, as \a\ ->• oo) ,

which is free from zeros and poles in the lower half-planer = Im(a) < min(aj1),
= r+, say, we observe that for Im(a) < C and r_ < C < r+,

Kt (at) Lit i J-oo+ic Ki (w)( - a)

K'—) n=i LV"; - « » ; j (3.7)
"ft
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which can be derived by closing the contour in the upper half-plane, by a large
semicircular arc.

Then using (3.7) in (3.5) and splitting additively into — and + functions, we obtain,
by employing Liouville's Theorem,

where a e lower half-plane T < r+.
We again rewrite (2.12) as

(3-9)

where

( 3 1

and use the factorization, K(l)(a) = Kw+(a)Km-(a), where

=\ la

and db/a^^ and ±:c^(1) are the zeros of yl\(yb) + ^i,2^o(K^) respectively, and B
is a known constant, different from the constant A, appearing earlier. (Note that
|^i(1)±(a)| —> constant, as |a| —>• oo in the respective half planes.)

Dividing both sides of (3.9) by Km~(a) • e'al, we obtain the relation

K\l)(a)KW-(a) I s - la A Q Ua)
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Observe that we can write (see Jones [9] and Noble [10])

1

95

K\l)(a)K^-(a) s-ia

oo+id hxe -iwl

2JTI J-
(

- io J a» - a
(3.12b)

where 7+ is analytic inr > d and K_ is analytic in r < d', with r_ < d < d' < x+.
Then from (3.12a) and (3.12b), by using Liouville's theorem with the conditions (iv),
(v) and (vi), along with the Abelian theorem on Fourier Transforms, we obtain that

h2

— / n
27TI J-oo+ij *=\

-iwl

r I i
*^(ft>) +

L s-ico]

dco

s — ico co — a
(3.13)

where a G the region above the line (—oo + id, oo + id).
Evaluating the integral in (3.13), by closing the contour in the lower half-plane and

using the residues at the poles, we get

{BA)W j
j=i

TT
n = l

OO

I
(BA)1/2|^l=l|^_/(a0)+a(i

.-a"/e '

Jl- (3.14)
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where a e upper half-plane r > r_.
Using a — —/or*" in (3.8) and a = ia^ in (3.14), we obtain the following two-

infinite system of algebraic equations for the two-infinite unknowns <t>(l\—ia(
r
l)) = xr

and O+'^/a^) = yr respectively :

and

cr yr + / drj Xj = 8r v = !•> >̂ • • • )> ( J . I J )

where

"*i (3.16)

It is rather difficult to establish the uniqueness of the solution of the above very
complex-looking system (3.15), but the fact that the boundary-value problems under
consideration possess unique solutions may be convincing.

Proceeding exactly in the same manner as in Problem I and replacing AT,(l)(a) and
K?\a) by K?\a) and K?\a); ^l\a), < ° ( a ) and 4>',(1)(a) by 4>L2)(a), < 2 ) ( a )
and O',(2)(a); K\l)±(a) and Km±(a) by K\2):k(a) and /sT(2)±(a) respectively, we shall
arrive at the system of equations similar to that of (3.15) for Problem II. The only
other change is that ±/a^2) and ±/^2 ) are the zeros of

- Ii(ya)Kl(yb)]+ h^IoiytyKdya) + h(ya)K0(yb)]
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and

respectively and ±/a<2) and ±/c^(2) are the zeros of

~ htya)Kx[yb)] + hu[l0(yb)KdYa) + h{Ya)KG{yb)\

respectively.
It is interesting to note that the Wiener-Hopf functional relations (2.12) and (2.15)

containing the three unknowns ^ ' ( a ) , 4>+j)(a) and *',0)(CK), 0 = 1, 2), in each of
the two problems considered here, are tackled in such an elegant way (similar to that
already reported in [1] and [2]), that the determination of only two unknown functions
O(:°(a) and 4>+;)(a), (j = 1, 2) in each case will solve the problem completely.

4. Calculation of sputtering temperatures

The temperature distribution for the Problem I can be determined by using the
relations (3.8) and (3.14). The sputtering temperature at x = 0, that is, at the entry to
the first fluid stratum, is obtained from the relation (see Chakrabarti [4]),

1 - <£(1)(0, b) = u(
o

n(b) = lim [l -
|a|->oo L|a|->oo

*1 \ — lS

f a 0 ' - ftw~\
~ —

In the special case hx = h2, the expression for the sputtering temperature at x = 0
reduces to the same form as obtained by Evans [7] and Chakrabarti [4].

The sputtering temperature for this problem at the entry to the second fluid stratum,
that is, at x = I, is given by

u(i\l,b) = \-(t>m{l,b)esl, (4.2)

where

/, b) = - lim \iae-ia'<t>(l\a)) . (4.3)
|a|->-ooL J
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Using (3.14), we finally derive that

[12]

1

~AB

oo f f l O ("1 0 0 / oil) 1 (v ry ~j U-^nf n ;

4-̂  - nm \ * M rv'(1) -I- o-!
y=l |_ "y J n=i \«n T- uy

(4.4)

The temperature distribution for the Problem II can be determined in the similar
way, and the sputtering temperatures at x = 0 and at x = I are respectively given by
the relations

and

1
AS

(4.6)

5. Numerical results

Numerical results are presented below in Tables 1 and 2 respectively for the sput-
tering temperatures u(

o
l\b) and M(1)(/, b) for Problem I and for u$\b) and w(2)(/, b)

for Problem II at the points of entry to the first and second fluid strata for particular

https://doi.org/10.1017/S0334270000000485 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000485


[13] The sputtering temperature of a cooling cylindrical rod in a two-fluid medium 99

choices of A, ix, s, I and b. Here A. = bh\ and n = bh2 with b = 1 for Problem I and
for other choices of A, /x, v, s, and /, where A = bhu /x = bh2, v = a/b, for Problem
II with AB = 1. The zeros of yh(rb) + hi2I0(yb) are determined by the method
of 'bisection' and are found to be correct up to seven decimal places. The zeros of
Yhiyb) are available from standard books of tables of functions. Utilizing these
roots, the system (3.15) is solved by the method of 'Gauss Elimination with Partial
Pivoting'. These solutions and the roots already obtained are then used in (4.1), (4.4),
(4.5) and (4.6) to determine the sputtering temperatures displayed in Tables 1 and 2.
All these calculations were done on a PC. The method of calculation clearly ensures
the correctness of the results to three significant figures which will be sufficient for
such problems.

TABLE 1. Calculation of sputtering temperatures u(
0'\b) and w(1)(/, b)

/x = .O2
/ = .O2
u{

o
l)(b)

um{l,b)

A = .04
s = .10
0.359
0.302

A = .06
s = .10
0.405
0.290

A = .08
s = .10
0.449
0.295

A = .60
s = .105

0.551
0.161

A = .80
5 = .105

0.653
0.159

A = 1.0
5 = .105

0.747
0.157

TABLE 2. Calculation of sputtering temperatures u^\b) and um{l, b)

li = .02
/ = .O2

v - 0 2 " " W

A = .04
s = .10
0.365
0.304
0.385
0.310

A = .06
s = .10
0.418
0.295
0.454
0.306

A = .08
s = .10
0.472
0.291
0.523
0.306

A = .60
s = .105

0.770
0.289
0.878
0.313

A = .80
5 = .105

0.516
0.181
0.592
0.145

A = 1.0
s = .105

0.651
0.177
0.938
0.220

6. Discussion

The numerical results presented in Tables 1 and 2 for the two problems under
consideration show clearly that the sputtering temperatures, at the two entry points,
remain less than 1, as expected. This fact establishes the power of the Wiener-
Hopf technique. Furthermore, it handles more complicated boundary-value problems
associated with the diffusion equation than those handled previously.
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Some asymptotic results for large values of the depth of the upper fluid are derivable
from the solutions obtained here. Because of the rather complex-looking expressions
involved, such asymptotic calculations are deferred to a later work.
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