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D
Corresponding author. Email: serra@astron.nl

Abstract: We describe a simple method to determine the reliability of source finders based on the detection

of sources with both positive and negative total flux. Under the assumption that the noise is symmetric and that

real sources have positive total flux, negative detections can be used to assign to each positive detection a

probability of being real. We discuss this method in the context of upcoming, interferometric HI surveys.
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1 Introduction

In the coming years, a number of interferometric neutral-

hydrogen (HI) surveys will begin (e.g. Koribalski &

Staveley-Smith 2009; Verheijen et al. 2009). They will

observe HI within large cosmic volumes and detect tens of

thousands of sources,many ofwhichwill be resolved both

on the sky and in velocity.

These surveys will rely on automated source finders to

detect objects present in the data. In particular, the

detection of the faintest objects will require detection

criteria close to the noise level. However, as fainter and

fainter ‘true’ objects are detected an increasing number of

‘false’ detections will be included in the source catalogue

(i.e. detections that are, in fact, noise peaks). Quantifying

this effect is crucial to enable a proper scientific exploita-

tion of the final HI catalogues.

A quantity often used for this purpose is the reliability

R of a source catalogue. This is defined as:

R ¼ T

T þ F
; ð1Þ

where T and F are the number of true and false detections,

respectively. Normally, the price to pay for detecting faint

objects is a decrease in R.

In some cases, a single value of R may be used to

characterise an entire source catalogue. However, it is

more informative to study the n-dimensional function

R(p1, p2,y, pn) where pi is the set of source parameters.

For example,Rmay be given as a function of objects’ total

flux and line width.

There are many ways of measuring R. Zwaan et al.

(2004) estimate the reliability of the HIPASS catalogue

(Meyer et al. 2004) as a function of source total flux, peak

flux and line-width by re-observing a sub-sample of the

detected objects. They label confirmed detections as true

and non-confirmed detection as false, and adopt a formal-

ism equivalent to Equation 1 to estimateR. Unfortunately,

this empirical procedure may not always be practical and

it requires sources to be re-observed with at least the same

data quality of the original observations.

Another technique is to create a dataset where model

sources are injected on top of modelled (or observed)

noise and run a source finder as one would dowith the real

data (e.g. Kim et al. 2007; Saintonge 2007). Detections

corresponding to an input source are labelled as true and

detections not corresponding to an input source are

labelled as false. This approach gives a correct estimate

of R only if the model noise is a good approximation of

the real noise and if model sources are representative

of the objects actually contained in the data.

Here we discuss yet another method to measure R

based on the detection of ‘negative’ sources, i.e. sources

with negative total flux. This technique has been used in

various forms by several authors working in different

fields (e.g. Dickinson et al. 2004; Yan &Windhorst 2004;

Kovač, Oosterloo & van der Hulst 2009). In this paper we

develop it further with the aim of making it useful for

future HI surveys.

The main idea is to assume that true sources are

‘positive’ (i.e. they have positive total flux) and that the

noise is symmetric (we discuss the applicability of these

assumptions in Section 5). It follows that the number of

false positive detections equals the number of negative

detections. The reliability can then be defined as:

R ¼ P� N

P
; ð2Þ
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where P and N are the number of positive and negative

detections, respectively. It is trivial to verify that Equa-

tion 2 is equivalent to Equation 1 under the aforemen-

tioned assumptions.

The advantage of this method is that R is measured

directly from the data, with no additional observational or

modelling effort. In what follows we demonstrate this

technique by applying it to a test HI cube.We describe the

cube and the source finder used for this purpose in

Sections 2 and 3, respectively. In Section 4 we illustrate

the results. In Section 5 we discuss possible caveats and

improvements of this technique. We draw conclusions in

Section 6.

2 Test Data Cube

We test the negative-source method on a data cube which

is the sum of a noise cube and cubes containing only HI

sources. We build the noise cube by imaging in Stokes Q

the continuum-subtracted visibility data obtained from a

WSRT observation of the galaxy NGC 3941 (Serra et al.

2011). HI signal is unpolarised so the Stokes Q cube

contains only noise (and imaging artefacts). We Fourier

transform the visibilities using uniform weighting and

30-arcsec FWHM tapering. The resulting Gaussian beam

has a FWHM of,30� 30 arcsec2. The noise cube covers

a sky area of 1 deg2 and the recessional velocity range

,6000 to,12000 km s�1 (z, 0.02–0.04; the median z of

galaxies detected by the WALLABY survey is expected

to be,0.03, see Koribalski & Staveley-Smith 2009). The

channel width is ,3.8 km s�1, and we scale the cube to

obtain a root-mean-square (r.m.s.) noise level of

1.6mJy beam�1, as per WALLABY specifications.

We add ,100 HI cubes available in the WHISP

database (van der Hulst 2002) to the noise cube. To do

sowemake use of the cubes’ clean components derived as

part of the WHISP data reduction. Each set of clean

components representing an observed field is randomly

redshifted within the z range covered by the noise cube

(using a triangular parent distribution for z), convolved

with a ,30� 30 arcsec2 Gaussian beam, and placed at a

random sky position within the noise cube (in a few cases

this results in a position close to the edge of the cube). We

note that some WHISP cubes contain more than one HI

source, so the number of input HI sources is slightly larger

than the number of WHISP cubes used.

This data cube is also used by Jurek (2011) to develop

and refine the CNHI source finder and by Westmeier,

Popping & Serra (2012) to test the Duchamp source

finder. Compared to other test data cubes discussed in

this issue (e.g. Popping et al. 2012), this cube has the

advantage of including real interferometer noise (and

therefore imaging artefacts) and real HI sources. For

example, the left panel in Figure 1 shows a right

ascension-velocity plane of the noise cube. Imaging

artefacts are visible as vertical stripes on this projection.

The right panel in the figure shows that the distribution of

volumetric pixel (voxel) values is Gaussian.

3 Source Finder

We look for objects in the test data cube by running a

modified version of the HI source-finder used in Serra

et al. (2011). This finder smooths the data with a variety of

kernels and, for each smoothed version of the cube,

detects signal above a specified threshold. In this way we

attempt to optimise the signal-to-noise ratio of objects

present in the data using a limited number of filters. In

practice, we look for sources in the original HI cube and in

the cubes obtained by smoothing the original cube either

on the sky, or in velocity, or along all three axes. In this

study we use a Gaussian filter of FWHM¼ 60 arcsec for

smoothing on the sky, and a box filter of width 2, 4, 8, 16,

and 32 channels for smoothing in velocity.

For each smoothed version of the cube we build amask

including all voxels brighter (in absolute value) than 4s,
where s is the r.m.s. noise in that cube. The final mask is

the sum of all masks (i.e. a voxel is included in the total

mask if it is included in at least one of the individual

masks). We size-filter the mask by performing
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Figure 1 Properties of the test noise cube. Left: Right ascension-velocity slice going through the centre of the cube. Artefacts are visible as

faint vertical stripes. Right: Histogram of voxel values for the entire cube (black line) and a Gaussian distribution with s¼ 1.6mJy beam�1

(red line).
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morphological opening with the scipy.ndimage PYTHON

package. We perform the opening using a 3� 3� 3

structuring element where 1 pixel is 10 arcsec. Therefore,

the structuring element has similar size as the beam and

extends over 3 channels. Morphological opening filters

out ensembles of voxels similar to or smaller than the

structuring element. Therefore, this procedure removes

most noise peaks included in the mask (noise peaks are

typically smaller than the beam).

We merge detected voxels into individual sources

using a 3� 3� 3 structuring element. Because our detec-

tion criterion is applied to voxels’ absolute value the final

source catalogue includes both sources with positive and

negative total flux.

The performance of this finder relative to other finders

is discussed by Popping et al. (2012). They show that it

detectsmore true sources than any other finder included in

their study when applied to a test cube containing HI disc

model sources. Here we make use of the positive and

negative source catalogue to estimate the reliability R as a

function of source parameters, and demonstrate how R

can be used to select samples of true detections.

4 Results

The top panels of Figure 2 show the distribution of

positive (blue) and negative (red) detections on three

projections on the parameter space defined by source total

flux Ftot, peak flux Fmax, and number of voxels Nvox.
1

Positive detections are shown again in the middle

panels of Figure 2, where black circles and grey crosses

represent true and false detections, respectively.

A detection is labeled true if itsmask has non-zero overlap

with an input source in the cube. Input sources are defined

taking all voxels brighter than 0.16mJy beam�1 in the

noise-less cube (1/10 of the noise level — see Section 2)

andmerging them as in Section 3. This results in 137 input

sources.

We find 303 positive detections. Of these, 63 are true.

We have verified that undetected input sources are too

faint and occupy a different region of parameter space

than detected ones. Figure 2 shows that, a posteriori, it

would be easy to define a criterion to efficiently separate
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Figure 2 Distribution of detections in the test HI cube on all projections of the adopted parameter space (see text). Top: Positive (blue) and

negative (red) detections.Middle: True (black circles) and false (grey crosses) positive detections. Bottom: Same as middle panels, but showing

detections with R. 0.99 only. We also show constant surface-density contours of positive (blue) and negative (red) detections estimated from

the distributions in the top panels as described in the text.

1
For negative detections Ftot and Fmax are obtained after multiplying all

voxels by �1. Both Ftot and Fmax are given in Jy beam�1.
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true from false detections for this particular combination

of data cube and source finder. For example, all 41

detections with log10 Ftot > �0:3 and log10 Fmax > �2:1
are true. Our goal is to show that a similar selection can be

designed by applying Equation 2 to the distribution of

positive and negative sources shown in Figure 2. The

advantage of this second approach is that it needs no

a priori knowledge about the sources and can therefore be

applied to any observed data cube.

We compute the density field of positive and negative

detections by convolving their distribution shown in

Figure 2 with a Gaussian kernel of width s¼ 0.075,

0.035, 0.250 dex along the three logarithmic axes of the

Ftot;Fmax;Nvoxð Þ space (we comment on the kernel choice

below). We use the density fields to calculate the value of

P and N at the location of each detected source, and apply

Equation 2 to estimate the reliability R at that location.

The bottom panels of Figure 2 show the same distribu-

tion of points as in the middle panels, but for detections

with R. 0.99 only. Blue and red contours represent

constant-surface-density contours of positive and nega-

tive sources, respectively. The figure shows that red and

blue contours lay on top of each other in the noise-

dominated region of the parameter space. Deviations

occur in regions hosting true detections. We find 41

detections with R. 0.99. Of these, 40 are true, in excel-

lent agreement with the a posteriori selection mentioned

above. In fact, the only false detection (grey cross in the

bottom panels) could be discarded based on its position in

the parameter space.

We note that the choice of kernel made for the above

calculation can influence the result of our analysis.

A larger sample of detections would allow us to use a

smaller kernel and, therefore, sample the function

R Ftot;Fmax;Nvoxð Þ in a finer way. We attempt to make

an objective choice of the kernel as follows.

We study the quantity P�N estimated from positive

and negative density fields at the location of negative

detections. We assume that the noise dominates at these

locations, so that the majority of detections are false.

Given our assumptions (Section 1), it then follows that

P¼N. Assuming that P and N follow a Poissonian

distribution the quantity ðP� NÞ=ðPþ NÞ1=2 should fol-
low a Skellam distribution centred on zero and with

variance 1 (Irwin 1937). However, for small kernels, the

guaranteed presence of a negative source pushes the

distribution to negative values. Only when the kernel is

sufficiently large does the mean of the distribution move

towards the expected value of zero. We therefore choose

the smallest kernel which results in a P�N distribution

centred on zero.

5 Caveats and Improvements

This methodworks under two basic assumptions: that true

sources have positive flux and that the noise is symmetric

(i.e. its distribution and morphology are symmetric about

zero). The first assumption is not satisfied by data cubes

where HI absorption systems are also present. However,

absorption is only detectable at the location of sufficiently

bright continuum sources. Therefore, we believe that

these systems could be easily excluded from an analysis

like that presented in Section 4.

Deviations from noise symmetry may be a more

serious issue. Real data can be thought as a superposition

of HI sources, perfect interferometer noise, and imaging

artefacts resulting from faulty calibration, continuum

subtraction, cleaning of bright sources and RFI removal.

Such artefacts may represent a challenge for this method.

The data cube analysed in Section 4 contains real WSRT

noise and includes some minor artefacts such as stripes

visible in right ascension-velocity and declination-

velocity projections (see Figure 1). However, it is a

relatively clean case and does not allow us to assess

the impact of imaging artefacts on the negative-source

method.

To test the impact of RFI we analyse an HI cube where

RFI is present on short baselines. This cube is derived

from a WSRT observation of NGC 3665 taken by Serra

et al. (2011). Previous analysis has shown that no HI

emission is present in this cube. We run the same source

finder described in Section 3 with the same settings, and

perform the same analysis discussed in Section 4. The

only difference is that we now use a Gaussian kernel of

width s¼ 0.10, 0.10,0.25 dex along the three logarithmic

axes of the Ftot;Fmax;Nvoxð Þ space. This is the smallest

kernel for which the mean of all P�N values at the

location of negative sources equals zero (see Section 4).
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Figure 3 Constant surface-density contours of positive (blue) and negative (red) detections for the datacube with RFI. Grey crosses indicate

sources with R. 0.99.

Using Negative Detections to Estimate Source-Finder Reliability 299

https://doi.org/10.1071/AS11065 Published online by Cambridge University Press

https://doi.org/10.1071/AS11065


The result is shown in Figure 3. Only 2 detections have

R. 0.99 (grey crosses). These are very large on the sky

and their moment-0 image shows clearly that they are

artefacts. We conclude that the method discussed here

gives satisfactory results also in this particular case of

RFI-contaminated data. The reason why our method may

be able to deal with imaging artefacts is that they are

usually symmetric in interferometric images, so that the

method incorporates them as extra noise (in fact, the total

flux of an interferometric dirty image is always zero

because of the lack of data at zero spacing). A more

thorough investigation of this aspect is beyond the scope

of this paper and requires the analysis of a large number of

data cubes including various types of imaging artefacts

(e.g., RFI on different baselines and timescales, cleaning

residual) in presence of true HI sources.

This technique can be improved by working on a more

appropriate parameter space. For example, we have

characterised detected sources with the number of voxels

they occupy. We could however consider more para-

meters describing the shape of a source. For example,

the number of channels occupied by the source, and the

major-to-minor axis ratio of the moment-0 image of the

source. These parameters may be useful to separate

spurious detections caused by imaging artefacts (which,

for example, may be very elongated) from real sources.

Analysis including more parameters will be possible with

datasets larger than the one analysed here.

6 Conclusions

We discuss a method to determine the reliability of

sources detected in HI cubes.We assume that true sources

are positive and that the noise is symmetric. It follows that

the number of negative detections equals the number of

positive false detections. Negative detections can there-

fore be used to estimate the reliability R of positive

detections as a function of their position in a chosen

source parameter space.

We demonstrate this method by running a smooth-

and-clip source finder on a test HI cube containing

real interferometer noise and real HI sources. We show

that sources with R. 0.99 are true. The volume of

parameter space where this simple method gives R. 0.99

is essentially the same which we would have selected

knowing which source is true and which false in this

test cube.

We discuss the applicability of this method to HI cubes

with artefacts. We show that at least in the analysed case

of a cube with RFI the method performs well. The reason

is that artefacts in interferometric images tend to be both

positive and negative, so that they do not necessarily

invalidate the noise symmetry assumption.
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