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THE TRANSITION THROUGH RESONANCE
OF A NONLINEAR NON-AUTONOMOUS SYSTEM
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Abstract

An approximate nonlinear perturbation analysis for the re-entry roll resonance
model is given. The results are used to identify the dynamic processes involved, as
characterised by terms in the model equations, and to suggest a prudent manage-
ment rule for this and similar transiently-resonant systems.

1. Introduction

The presence of non-autonomous terms in nonlinear systems may complicate
their analysis. Direction-field singularities are no longer available as a guide
to it, since the related autonomous system has always one member

dxn+l _ ,
dt -

with nowhere-vanishing right-hand side. The potential for complication is
not reduced if the system under consideration is oscillatory and undergoes
transient or persistent resonance. But compensation for the absence of di-
rection field singularities may occur if there are families of quasi-steady so-
lutions, or of asymptotic solutions, available as the bases for perturbation
analysis of the system. Thus the main object of the further investigation be-
low of a previously-studied non-autonomous system is the perturbation of a
family of its quasi-steady solutions. Calculations of this kind are useful in
identifying the essential processes which determine the dynamics in physical
problems, and the essential variable scales. They may also produce simple
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82 P. B. Chapman [2]

rules-of-thumb for the design or management of systems with similar under-
lying mechanics.

For a problem describing an externally axi-symmetric projectile with dis-
placed mass center which undergoes re-entry roll resonance, Kevorkian [5],
[6] developed a plausible, non-autonomous analytical paradigm in essentially
two physical variables—spin about the symmetry axis and a component of
the precessional pitch/yaw motion of the symmetry axis—which, as will be
seen, has two families of quasi-steady solutions. He used a formal mathe-
matical procedure to select and perturb one of these families. The results
were then used to confirm, among other things, apparently-divergent ("sus-
tained resonant") solutions observed in some numerical integrations of the
full equations, but little physical interpretation was advanced for the un-
usual phenomenon described. Granted, intuition is a chancy guide to rigid-
body dynamics with even small aerodynamic inputs, but there is some com-
mon experience available in special case of axi-symmetric bodies—and of
course, there are the special solutions of classical mechanics to the zero-
moment problem. For example, even occasional viewers of American Foot-
ball's minute television coverage would be struck by the apparent stability
aiforded the ellipsoidal ball (whose mass center is likely to be slightly dis-
placed) by the quarterback's imparting spin to it, and the classical solutions
describe a continuum of angular-momentum-conserving modes at constant
energy, in which the motion to a fixed observer is precession of, and spin
about, the symmetry axis of the axi-symmetric body.

Thus Kevorkian's "distinguished solution" leading to sustained resonance
seemed remarkable, as it is available no matter how small the magnitude of
(what can be interpreted as) an initial pitch/yaw disturbance p for suffi-
ciently large spin p0 ; unavailable for small enough spin no matter how large
the initial pitch/yaw disturbance; with both extreme cases independent of the
size of a coupling parameter e ([5], Section 4, paragraph whose first equation
is 4.12).

The nature of the sustained resonance is even more striking. Kevorkian's
analysis predicted a divergence (the present usage is the engineering one:
uncomfortably large, and growing) in spin and axial precession rates, while
latter's amplitude p remains locally almost constant. These observations
notwithstanding, a sustained resonant solution family exists, but it will be
shown to be unavailable to a perturbation theory, being generated by condi-
tions near the left hand limit outside the range of perturbations. The family
is in fact characterised by a monotone slow decay in the pitch/yaw amplitude
as the time-like variable increases (Section 2 below) and so describes recovery
from certain large pitch/yaw disturbances through a spin divergence.

Thus it seemed to the writer that either the paradigm used as the basis of
the description was inappropriate, or that the analysis in [5] was deficient.
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[3] Transition through resonance 83

Consideration of the first alternative suggested the paradigm to be a not-
unreasonable reduction of the full equations; but the analysis given in [5]
is in error. In brief this is: a matching procedure between inner and outer
solutions is spurious because the inner solution's interval of validity does not
intersect that of the outer solution. A correction was attempted by Kath [3],
[4] in a more general context; there is no apparent modification in a later
study [6] by Kevorkian. A discussion of these assertions is given below in
Section 5.

A correct approximate analysis of Kevorkian's paradigm is advanced in
Sections 2, 3 here, with a proof of its validity in Section 4. The key to the
successful local application of a modification of the averaging algorithm (for
an account of the standard version, see Guckenheimer and Holmes [2]) is
a preliminary transformation of the independent variable, along the lines of
LighthilPs [7] technique for "rendering solutions . . . uniformly valid", which
here extends the interval of applicability of locally-valid averaged solutions
beyond that which would otherwise be available to them. A justification of
the non-standard averaging is given in Section 4. These local approximations
(Section 3) are then matched to solution approximations which apply in a
region where the dynamics are not resonant. The latter class (also used in
[5]) are stated in Section 2.

The approximate solutions obtained in Section 3 have properties different
from those of the solutions advanced in [5]. The essential process involved
can be interpreted as an energy exchange, determined by average rates, be-
tween the spin and pitch/yaw modes of the projectile due to weak coupling
at a transient resonance, with both the amplitude and the frequency of the
pitch/yaw mode affected. Energy is not, however, generally conserved in the
exchange—presumably a balance could be struck through some other cou-
pling with the projectile's translational energy. The sense of the transfer is
determined essentially by a relative phase which cannot be inferred at" — oo ",
but the sense is from spin to pitch/yaw for almost half the 2n range of the
relative phase, and the reverse for almost the remainder. Away from the in-
teraction, all solutions decay with time in pitch/yaw, but the energy exchange
process implies that the pitch/yaw amplitude of some solutions has a maxi-
mum near the resonant transition. In a non-perturbation theory, sufficiently
large pitch/yaw displacements might lead either to aerodynamic inputs be-
yond the scope of the present model (and hence to other divergence prob-
lems), or to eventual recovery in pitch/yaw through the sustained resonant
spin divergence.

The phenomenon of sustained resonance is addressed, as already noted. In
Section 2 this class of solutions is identified on an interval which includes the
origin, but not -oo . However, these solutions turn out to be incompatible
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with a complete set of perturbation solutions whose domain includes that
limit, so the conclusion is that, at least for sufficiently-small values of the
controlling small parameter, sustained resonance does not occur for accessible
conditions at — oo. This conclusion seems to be in agreement with numerical
simulations of a more elaborate problem reported in [5].

Finally, a suggestion is made for the reduction of resonant intersection on
the basis of the paradigm.

2. Quasi-steady and some local asymptotic solutions

The equations of Kevorkian's paradigm are [5], 2.14a, b, c and 2.1 le. The
proliferation of symbols in its analysis is much reduced if the problem is
restated as follows. Choose a new time t origin to be the first point at which
co and p are equal, to K say. Such a point will almost certainly exist, on
account of the monotone behaviour of co, and the structure of the equations.
Next, make the scaling changes

t = tN{KVl)~X, x = xNK~l, P=PNK,

V = y/N, e = eNKV2

in Kevorkian's equations (2.1 le, 2.14a, b, c) to obtain the system to be used
below which, after dropping the now superfluous suffix, is

d X U 2 + CO2)X = 0, (2.2)

— - ' ( ) 2 (2 31

" # - ' • <»>

<y2(ef) = exp(eO- (2.5)

Since, as it turns out, integration of (2.4) leads to an integral which diverges
at — oo, there can be no sensible initial-value problem requiring a y/ value
at that limit. Thus the system (2.2-5) is first regarded as an initial-value
problem to be integrated in both senses from the t origin, where one initial
condition is

p(0) = 1; (2.6)

the others are parameters of the problem and assumed to be of unit order.
Here it is noted that, although the coefficient e in (2.3) could be removed by
a further scaling of the variable x, it is better to take (2.2-6) as perturbation
equations of the underlying system on a particular x scale.
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While this approach to the problem—essentially the examination of all
combinations of initial states and non-homogeneous term which lead to the
same spin at the first instant of resonance—simplifies the presentation of
the analysis, it will make the interpretation of the results more complicated.
However, it seems to the writer that, on balance, there are advantages in
this approach. Consideration of the physical initial-value problem from the
left-hand (-00) limit will be given later.

There are two families of quasi-steady solutions of the system (2.2-5)
which could be perturbed. The first of these

p = 0; y/ = ±mn, m = 0, 1, 2, ... , (2.7)

and x any solution of the equation

^-+
l-co2x = 0 (2.8)

at z

is not immediately relevant to the present study, as the condition (2.6) is not
met. However, its perturbations could conceivably represent an asymptotic
state of the system (2.2-5) in the limit t —> 00, even for small e . This is
not the case, for, with m — 0 in (2.7) as an example, on introducing a new
variable

et = u, (2.9)
and using the Liouville-Green [8] approximation, it is found that a particular
asymptotic solution of (2.8) is

x~-^w~1/2sin(Gj/v/2e) (2.10)

(again, for example) with A a constant. It follows that the perturbation
equation governing y is

***-*£.+ AOT112 «n{a>/y/2e)v = 0. (2.11)

This linear equation may be shown to have only one bounded solution family
for fixed e and w —> 00

( L - 2e
2

Aco~i/2 cos ( ^ ) ) ) (2-12)

where C is an arbitrary constant. Then p may be calculated from the version
of (2.4)

^ = ^ (2.13)
dco eto

and this calculation shows that the perturbed solution p has oscillatory
growth as co -> 00, so that the solution (2.7-8) is unstable, and unsuitable
as a limiting form.
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A second family of quasi-steady solutions of (2.2-6) is

x = 0, p=\, y/ = t+y/{0), (2.14)

and perturbations of this family are the "inner solutions" in Section 3 below.
There are also approximations to solutions of (2.2-5) which are asymptotic

in e and apply on intervals of extent ~ 0{e~ ) on either side of, but ex-
cluding O{e~l/2) sub-intervals containing, the origin. They are conveniently
called "outer solutions", and their limit form for small values of the natural
variable {et) will be used to "match" solution approximations—the inner
solutions—which apply in the sub-intervals containing the origin.

These outer solutions are correctly identified by Kevorkian ([5], equations
3.24a, b; 3.25a) and in the present notation they are

x(t)~2RelA±l^ J exp

(2.15)

p~p+, t>0) P+, P_ constants;
~ / ? _ , t<0) | p + _ i | ; |/?_ - 1| ~ <9(e1/2)

y ~ p . t + i//,,; y/. , y/._ c o n s t a n t s (2.17)

In (2.15) the constants A+ and A_ are complex; the apparently artificial
complex notation is introduced here for later convenience.

A heuristic description of approximations to a special family of solutions
of (2.2-6)—the sustained resonant [5] family—is now given. This approxi-
mation is used primarily for et > 0, although it continues back to et < 0;
and it applies for small e but not, as it turns out, for unit order disturbances
in the x variable. It is found by picking a particular family of Liouville-
Green approximations (Olver [8]) to the solution of (2.2) on the assumption
that p and its derivative with respect to co are respectively approximated
on a useful et interval as

P*co, * « 1 , (2.18)

so that p is slowly varying. These approximations (2.18) are suggested by
some of the numerical simulations reported by Kevorkian ([5], Figure 2).
The solution family foreshadowed above, and the p approximation (2.18),
must then be demonstrated consistent with (2.2-4) by using them to show
that an improved approximation to p is a perturbation.
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The only approximations to solutions of (2.2) consistent with (2.3-4, 2.18)
will be (in real variable form), some of the family

x ~ Aco'1'2cos ( f(p2 + co2(u))i/2du/eV2 + v(0))

/ > / _ x \ ( 2 J 9 )

~ Aco~1/2 cos (J (p + ^ y ^ J du/e + if/(O)j ,
where the tangent plane at p — co is used to approximate the cone

in the integrand. (All other Liouville-Green approximations

x ~ Aco~ sin((2<u/e) + h), h constant

to the solution of (2.2) constructed on the basis of (2.18) resonate when they,
and the similarly approximated solution of (2.4), y/ ~ (2w/e) + y/(0), are
substituted in (2.3) to calculate the correction to (2.18): averaging arguments
can there be used to reduce (2.3) to

i/2
~2Aco

+ rapidly oscillating terms, neglected on average.

So the implied correction to p is proportional to co , and not a perturba-
tion of the approximation (2.18) used to generate it.) The expression (2.19),
if justified by its consistency, shows the characteristic monotone decay in
amplitude.

Since p is assumed to be slowly varying, the integral of (2.4) is expressed
as

f"i// ^ I p(u) du/e + V'(O). (2 20)
Jo

Equation (2.3) then becomes, on using the approximations (2.18-19), taking

for example the case y/{0) = 0, and with co = exp(ei/2) = exp(«/2)

** p — CO j . \

CO )

Here a new constant A = A/e is introduced, and the assumption is made
which is central to consistency, namely: that the argument of the sine remains
small on the interval. This is the only way to generate solutions p satisfying
the empirical conditions (2.18). Now substitute in (2.21)

(2.22)
CO
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to obtain from it the linear, non-homogeneous equation

^ ^ = - c o ' i +eA&r1/2sin(4(ttf- l)/e). (2.23)
dco2 codco

The existence theory for the homogeneous version of (2.23) shows asymptotic
stability only if the constant A is negative, as is now assumed, in which
case a solution pair can be asymptotically approximated as co —> oo from
expressions

FCF = ftT3/8exp(±*W/4)(l + 0( |Af 1 / 2 f t r 3 / 4 ) ) ,

(2.24)

b = 4|A|1/2/3.

If \A\ is large, these approximations will certainly be valid on intervals 1 <
co < oo. Particular integrals for the separate parts of the right hand side of
(2.23) have combined asymptotic representation as co —> oo

Vpi ~ -\A\~lco~i/2 + e3\A/l6\co~l/2 sin(4(co - l)/e), (2.25)

with the natural representation for the derivative and, if |A| is not too large,
then these will apply on the same co interval as the complementary functions
(2.24).

In order for the reduction leading to the approximate equation (2.21) to
be consistent, it is necessary that both \V/e\ and \dV/dco\ remain uniformly
small on the interval of interest—that is (for the present), co > 1. The latter
condition follows from the definition (2.22), which requires

The initial conditions on (2.23) are

F( l ) = 0, ^ - ( l ) = 0 (2.26)
dco

as follow from the definition (2.22) of V and the condition (2.6); here

p(a>=l) = l.

Thus the terms dominating the approximation to the solution of (2.23) are
— I — VR 1IA —I / ?

c^ |A| (<u COS(O(G) — 1)) — <y ) , (2.27)

(which implies the improved approximation

p ~ co(l + O(\A\~l/2co~5/S)))

if the small correction required for the derivative condition (2.26) and other
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relatively small terms are ignored. So the condition for consistency -\V/e\
small—necessitates lAel"1 = \A\~* small, that is to say the amplitude in
pitch/yaw (2.19) is large

\A\ » 1.

When this inequality is satisfied the derivation of the sustained resonant
solution shown above is consistent, but it is incompatible with the assumption
underlying the scaling (2.1) that the disturbances are unit order.

The limit initial forms on x and y/ which augment the specification of
the sustained resonant solutions, obtained from the limit forms of approxi-
mations (2.19-20) are

yZ.Zo)
x(et-+0)~Acos{t + i//(0)), A<0,

and

p{et ->• 0) ~ (o ~ 1 + et/2,

where the last follows from the basic assumption generating this class of
solution. These forms (2.28) would have to coincide with approximations to
the inner solutions found in Section 3 below for f in a range e~'^2 >c t «
e"1 in order that sustained resonant solutions be available from accessible
perturbation conditions at -oo, but it will be seen in Section 3 that this
matching condition cannot be met. In fact the approximation (2.25) to the
sustained resonant solution can be continued to the left of co = 1 (that is, to
the left of t = 0) before it breaks down, and clearly it cannot generate a p
(through 2.27) compatible with an outer solution of the type (2.16).

By contrast with the previous case, the limit forms of the approximations
(2.15-17) are not fixed by the relative phase of the x oscillation and sin(^)
but are

} (2.29)

(2.30)
(2.31)

once again applying on intervals e~i/2 «: / «C e"1. Here it is remarked
that the apparently inconsequential difference between the third member of
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(2.28) and (2.31) is in fact crucial in deciding the possibility or otherwise of
matching inner and outer solutions.

3. The inner solution—transient resonance

It is perhaps helpful at this stage to give a qualitative account of the pro-
cesses involved at the transient resonance (that is, in an O(e~1' ) interval
of t about t = 0) from an energetics standpoint. If y/ replaces t as the
independent variable in (2.2-5) then that system becomes

d2x . . .o? dx
dy/2 KY'p

2dy/
(3.1)

$ - = 2ex sm(y/)co2 (3.2)
ay/

where t is calculated from the integral

d¥lp(y/). (3.3)
JoJo

The dependence of co upon y/ is not explicit, but this is not important since
p is slowly varying (3.2) and so y/ and t are roughly linearly connected.
Further, on intervals for which p is close to co, that is, in particular near
t — 0, (3.1) can be regarded as describing a weakly non-linear harmonic
oscillator

d2x dx (3.4)

whose solutions are of the form x = asin(y + *F), where a and *F are
slowly varying functions of y/. Then the usual energetic form

d ((dx\2 i\ . . , Jdx\2

T - h - + x = -lex sin(^) -j—
dy/ \\dy/J ) KY' \dy/J

would interpret the right hand side of (3.4) as indicating a mean energy flow
rate, depending on the average of (x sin y/) on the fast time scale

average(-xsin(^)) = -acos(*F)/2.

Similarly, the right hand side of (3.2) indicates an energy flow rate for the
spin mode, in the opposite sense to that for the pitch/yaw. (It is something
of a paradox that the solution which locally corresponds to the sustained res-
onance case discussed above in Section 2, x — -\a\ cos(^ + V'(O)), has zero
average energy exchange rate at the transient resonance.) These observations
agree with intuition: in the zero applied moment case for the axi-symmetric
projectile, if some mechanism caused configuration change at constant energy
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and momentum, increase in spin energy would imply a decrease in energy
associated with pitch/yaw (precession), and vice-versa.

The next step is to put the ideas outlined above into a rigorous mathemat-
ical argument. It is convenient to first introduce a new variable n through
the identification

p = l+eU, II(0) = 0. (3.5)

The implied scaling is not, in fact, the correct one— n turns out ultimately
to be O(e~I/2)—but it gives a tidier presentation to proceed as indicated.

With the object of finding approximate solutions whose t interval of ap-
plicability extends to \t\ > e~1/2, the independent variable transformation
t —> (p is introduced (in a parallel to the Lighthill [7] technique) through the
locally near identity transformation

^ = p ( l + eL) = ( l+e I I ) ( l+eL) , (3.6)

where L is chosen so that formally

2 V 2 O(e3). (3-7)

Then L is a formal power series

eL(0 = fy i . ; ( 0 (3.8)
l

with

L, = -(o2n/(l+co2), (3.9)

L2 = (311V - lot1 /"'(L, + n) dt - L\{ 1 + a)2)\ /(2( 1 + a)2)) (3.10)

etc., and so q> can be expressed as

<p(t) = t + e / n( l + co2yl dt + O(e2). (3.11)
./o

The transformation (3.6-7) is locally invertible, and the inverse is

t{<p) = <p-e [''n(l+w2r' d<p + O(e2), (3.12)
J

while the y/{q>) relation is

2a}2yld<p + O(e2), (3.13)
f(

JoJo
if the initial value is denoted as y'(O) = y/Q. All of the approximations (3.11-
13) are locally near linear. The error orders given in them are formal, and
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actually underestimate as a consequence of the underestimation of the mag-
nitude of n . The effect on the analysis will be reviewed later.

On implementation of the transformation (3.6-7), (2.2-3) become

d2x exco2 sin(p + y/Q) dx
+

exco2 sin(p + y/Q) dx 1 2 , / 2 dx \ 3 n5 + 5 —ZT-+ ~(l+co )x = <e x-j } + {e x - } ,
dip2 l+co2 d(f> 2V \ dtp )

(3.14)

e - r - = eo)2 x sm{q> + V 0 ) + {e2 • • • } (3.15)

where co (e<p) = exp(e^) and where the { } braces denote the terms omitted
in the subsequent approximating analysis. Again, the magnitudes indicated
by the formal powers of e are underestimates, but the true magnitudes are
small enough to justify the omissions.

The reduced system (3.14-15) is therefore

d<p2 l+(o2 d(p 2V

e— = eco2x sin( + (3 17)

and its essential feature is the absence of the variable II from its first mem-
ber. Not only does this reduce the problem to second order plus two quadra-
tures, but also it will be seen to give approximation validity on the interval
required for matching to the outer solutions of Section 2, that is, \<p\ intervals
~ O(e~l/2~q) for some positive q (but q < 1/2).

In oscillatory problems in dynamics it is usually an advantage to work
in complex notation, the advantage being that otherwise necessarily additive
error statements can be expressed multiplicatively, and this is generally de-
sirable. The practice is follows below, and it leads naturally to a particular
formalism.

Solutions X and X (where the overbar is used to denote complex conju-
gation) of the linear equation

d2X 1
—2 + x(l +exp(e<p))X = 0 (3.18)
dip 2

which dominates (3.16), may be considered to be known. Their expan-
sions, asymptotic to an arbitrary power of e, may be constructed using the
Liouville-Green methods described by Olver [8]. The rapid growth of the
exponential in the coefficient at +oo, and its decay at - oo , allows strong
uniform error statements to be made. It is convenient to express the solu-
tions in terms of a function

6{eip)= [ ' 6\u)du (3.19)
Jo
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whose derivative is
0'(M) = 2-1/2(l+exp(M))I/2. (3.20)

The solutions of (3.18) can then be inferred from the expressions

X = (d'(e<p))~l/\l + eE) exp(i6(e<p)/e), (3.21)

2i(l + eF) exp{id{e<p)/e), (3.22)
dtp

where the errors E and F satisfy bounds

\eE\, \eF\ < exp(2eA) - 1 (3.23)

with the exponent

=
Jo
r(d(u))^((e'(u))-1/2)du (3.24)
o du

is uniformly bounded for all values of the argument. So the bounds (3.23)
can be further simplified as

\eE\, \eF\ ~ O(e). (3.25)

Express solutions of (3.16) as

(3.26)

where the real and imaginary parts of y are to be determined. An extra
condition must thus be imposed to close the problem, and it is taken to be

dy dy^ n ,., ,_.
dip dtp

With this condition the derivative is

j^- = y^T+y^T- = iS'(yX(\ + O(e)) -yX(l + O(e))), (3.28)

the reduction coming from the properties (3.21-25) of X.
After substituting (3.21) and (3.28) for X and its derivative in (3.16), and

on calling the condition (3.27), it follows that

d2x , 1,. , i._~.dy±(l+(o2)x = 2i^d'X(l+O(e))
dtp

ied'{yX + y X)(yX{ 1 + O(e)) - y X( 1+ O(e)))a)2 si

l+co2

(3.29)
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(together with its conjugate, if required) can be used to determine y. Further,
since X has no zeros for real <p it can be divided out, and if only the larger-
order terms are retained in the resulting expression, it is

= ^co2(y2Xsin(<p + y/Q) -fxZX~i sin(<p + ^0))(l + co2)'1

= ~co2(-y2Xexp(-i(<p + y,0)) - 2ifx2X~l sin(p + y/0)

On substituting the evaluation (3.21) for X in (3.30), it will be seen that
the terms on the right-hand side of the latter are of two essentially different
kinds. Ignoring for the moment the slowly-varying factors which are powers
of 6' and co, the second pair in the large brackets have explicit, fast <p
dependences that can be expressed as the derivatives of asymptotic series
with no large multiplying factors. For example, the first such term can be
split into a pair, one of which, again for example, has the fast dependence

X2X~l exp(i(<p + y/0))

= (slowly varying factors) f exp ( i ( y/0 — 1 1 1 ,

where 8 is denned in (3.20). Now, on any interval on which the derivative
P1 of some given P does not vanish, any product of terms

Q(e<p)exp(iP(e<p)/e)

can be expressed as the derivative of an asymptotic series

Q(e<p)exp(iP(e<p)/e)

and any term in (3.30) containing such a factor satisfies the conditions de-
scribed in the next section which enables it to be, so to say, averaged out.
The last two terms in the large brackets in (3.30) are expressible as the sum
of such terms, and thus can be ignored in the primary averaging procedure.

Thus the averaged version of (3.30) is

(3.32)

or, to leading order

dy~i
ie i 2.-i/;Q/,-i/2 (. (6{e<p) - eq> \ \ . . .

= - a ) ( l + c o ) ( 6 ) ' e x p ( ^ - ^ Vo))- (3-33)
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This last equation is closely related to the first of Kath's [3] equations (2.14),
but the essential difference is that the preliminary transformation (3.6-7) here
has made the oscillatory factor in (3.33) known in terms of the tp variable.
Of course, the solution of the problem has to be completed before <p itself
can be expressed in terms of the original t variable.

Standard asymptotic-approximation methods can be used to evaluate in-
tegrals of the type

1(9) = [ Q(e<P) exp(i7l(ep)/e) d<p (3.34)
Jo

when R and Q are real on the real line and analytic in a non-small origin-
centered disk in the complex (etp) plane, in cases when R(0) = R'{0) — 0.
These evaluations are expressed in terms of complex Fresnel integrals [9]

f exp(iecn2)dn = (ec)-l/2 f " exp(iz2) dz (c > 0)
Jo Jo (3.35)

and it can be shown (see, for example [ 1 ]) that they are

I{e<p) = Q(O)(R"(O)e/2)-i/2(F((R"(O)e/2)l'2<p) + 0{\(p\2e2)). (3.36)

The error term in (3.36) finds the approximation to be a good one on any
interval \q>\ ~ 0{e~x+q) for any q > 0; that is, an interval large enough that
F can approach its asymptotic value

F(±oo) = ±v/*78exp(ijr/4). (3.37)

For the solution of (3.33) straightforward calculations give

(2(0) = j exp(-»>0), R"(0)/2 = 1/8 (3.38)

in (3.36), so the result is

V * {[y(0)fl + <W8)1/2 exp(-/>o)F((e /8)1 /V))"1

- y(0) - LK0)]2/(e/8)1/2 exp(-iy/0)F((e/S)l/2<p).

The error statement is omitted from these results; it can be taken from the
asymptotic approximation (3.36). While the first line of (3.39) is the more
attractive, error control on the required \p\ interval demands that e is small,
so the second line of the result is really the only admissible one. (It will be
shown below, on calculating p and n , that the solution singularity suggested
by the first line of (3.39) could not in any case be reached in the t variable.)

On substituting (3.26) for x in (3.17), arguments analogous to those used
to reduce (3.30) reveal that an approximation to n is obtained from the
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integration

en ~ -e lm < f yco2Xexp(-i(<p + y/Q))d(p \ . (3.40)

Equation (3.32) shows that

eeu2*exp(-/(p + </0)) = 4/(1 + co2)y ~2 j -

and in the o(e~') neighbourhood of the origin where this calculation is done
repeated partial integration gives the result

en = 8Re{ln(y(O)/j/(«0) + O(e)}

~ 8Re{ln(l + j;(0)/(e/8)1/2exp(-/>0)JF((e/8)1/V))} (3.41)

in which has been used the evaluation (3.39) of y. It is stressed that the
error term in the first line of this result is not linear in t, being in fact
{e x (uniformly bounded function) +O(e2)}; and that the last line is the
usable result—for the same reasons advanced in the discussion of the result
(3.39).

It is also noted that, questions of solution admissibility for the moment
ignored, the second line of (3.41) implies that a zero of p = 1 + en must
immediately precede the singularity in the logarithm at the zero of its argu-
ment. The underlying variable transformation (3.6) would be singular at the
value of <p = <I> corresponding to the zero of p, so that ?(O) is the point
at infinity. Thus the singularities in y and p suggested by the first lines of
their evaluations (3.39, 3.41) are not reachable to finite t.

The problem is now that of matching the "large |e1/2$?|" forms of the
evaluations (3.39, 3.41) to the limit forms (2.29-31) of the outer solutions
(2.15-17). The start point for the calculation is finding explicit approxima-
tions to the basic transformation (3.6), and in particular the integral in the
expression (3.12). For suitably large values of |e1/2p|—that is, much greater
than unity but much less than e —this can be approximated as

e / n ( l + to2)~x d<p~e I ndcp/2
Jo Jo

*>(0)exp(-*>0) / F(w)dw\

~ 4Re{i>(0)exp(-/>0)((e/8)l/2(9F(oosgnp) - i

(3.42)
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where the notation

lirn^ 1%) = A± - 1 ~ 0{e'2) (3.43)

is introduced, and

ff(y(0), WO) = 2Re{y(0) exp(-/>0)} (3.44)

is denned. Then the transformation (3.12) can be asymptotically expressed
as

(ei'2t, ei/2<p —• ±oo) and the inverse is asymptotically

2 , . - (3.45)

in the same limits. Finally, the integral in the approximation (3.13) can be
asymptotically approximated to yield in these limits

w ~ (p I 1 H — I + Wn + a
V \ 2 J w° (3.46)

— '/*± + y/,o "̂  ^~
The last set of approximations enables the matching procedure to be carried
out after calculating the limit forms of the results of this section:

x(e <p —> ±oo) = 2Re{yX} ~ 2Re{j>± exp(i<p)}

~ 2 R e | > ' ± e x p f / f 1 + ^ — \ t + ia\\ ,

1 / 2
/ * ± . (3.48)

In these last results, y± denotes the indicated limit, explicitly

y± =y(0)(l ?&-ly(O)(nef2exp(-i(y/o-n/4))), (3.49)

= 1 ± (ne)l/2Re{y(0) e x p ( - i ( ^ " 3*/4))> - (3-50)

following from the approximations (3.37, 3.39, 3.41). (For sufficiently small
e , (3.49) has a root y(0) close to y_ , in particular for all i//Q e [0, 2n), so
a y(0) can be calculated for bounded but otherwise arbitrary y_.)

The matching of the outer approximations (2.15-17) whose limit forms are
(2.29-31) to the inner approximations implied by (3.39) and (3.41) through
the limit forms (3.47, 3.46 and 3.48) follows if the constants A+, A_ , p+,
P- > Vi+. a n d V[_ are chosen so that

P+=/*+; P _ = / > _ , (3.51)
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= y_ exp(iff),

(3.52)

Vi+ = Wi- = V0 +
 2°- (3-53)

On the other hand, the presence of the term (et/2) in the third of the
limit forms (2.28) precludes the matching of the corresponding approximate
solutions with those of the limit forms (3.46-48). It is therefore to be con-
cluded that the inner solutions calculated here do not show the phenomenon
of sustained resonance—at least, for sufficiently small e .

To "complete" the problem, it remains to show that there is a continu-
ous, one-to-one, onto relationship between a set of parameters describing all
possible dynamic states at the origin, and a set describing all possible initial
dynamical states. The matching conditions (3.51-53) show that this reduces
to showing a continuous, one-to-one, onto relationship between the origin set,
and a set describing the asymptotic dynamical state at the negative limit for
the inner solution, which is now referred to as the "initial" state. An approx-
imate description of the relationship is now given; once the approximation
is settled, it can be corrected in a straightforward way—at least, in principle.

The fourth-order system's (2.2-4) dynamical configuration at the origin
(the "original configuration") is determined by three free real parameters
namely y/Q, which locates the projectile's mass center eccentricity with re-
spect to some datum, and $ and £, where

(3.54)

To this list must be added the fixed original condition (2.6) on p(0).
The initial configuration is determined by real parameters ^,_ , A, a and

P , where A is a measure of the spin perturbation

A = r 1 / 2 ( 1 - / . J (3.55)

and a and /? are the amplitude and phase in the matching requirement
(3.52) which is approximately

aexp(ifi) — y_ exp(jff). (3.56)

Not all the nominated constants can be independent, because p(0) is speci-
fied in the original configuration, and so there must be one relationship among
the initial configuration variables.

Now (3.49) shows that
y(0)~y_ (3.57)

and therefore
a « # (3.58)
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and to sufficient an approximation, (3.56) then reduces to

j J « { + a = £ + 2dcos(!p0-O (3.59)

while (3.50, 3.55) are together

A = ni/2dcos(<f/0 - £ - 3TI /4) . (3.60)

Thus for any triple (y/0, ti, £) there can be calculated a triple (A, a , /?).
But closer examination of (3.53, 3.59-60) suggests that the relative phases

fi = fi-VQ, £ = t-V0 (3.61)
along with a and A, are the effective variables at the initial state. This is
so because, on using (3.53) and the definitions (3.61), (3.59-60) become a
parametric relationship connecting /? and A

(3.62)

(3.63)

and it can be shown that, given any fixed non-negative d, the equations

0{Zl) = P(£2) and A(£,) = A«2)
have a unique solution ^, = £2 on a 2n interval of £

-In/4 <£<n/4 (3.64)

that suffices to describe all possible original relative phases. For the original
state problem then, in the light of (3.58, 3.62-63) it is only necessary to
prescribe the three original parameters y/0, # and £, and then all the initial
parameters can be inferred uniquely. The other, now subsidiary, original
parameter £, is obtainable from (3.61).

Thus it is better to interpret the original-value problem in the following
geometric way. To keep the imagery at its most simple, assume for the
moment that # and hence a, approximately, are fixed. Then the solution to
the original-value problem can be regarded as a one-to-one continuous map
from points

0 < yQ < In, - 7 T I / 4 < £ < TI/4 (3.65)

in the plane in M3 {£,, £, y0)

Z-WQ-£ = 0 (3.66)

onto a set of points on the surface of a cylinder in I (/?, ft, A) defined
parametrically (parameter T)

/? = T + 2#COS(T),
(3.67)

4 ) ,

-77T/4 < T < 7T/4;
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the mapping is described by (3.62-63), and by (3.61) in the form

P = k£) + W (3-68)
The point set accessed from the original state is the set S"6 cut off from the
surface of the cylinder (3.67) by the planes

0=ji and 0 = 0 + 2n. (3.70)

All possible states at the origin are thus uniquely and continuously associated
with points on S^ , and conversely there are available at least 2n intervals
of £ and 0 .

For the initial-state problem, a > 0 can be prescribed arbitrarily. Then,
by virtue of the approximation (3.58), the set S^ is known with the value of
# taken from that approximation to be # — a, and a complete set of states
at the origin can be reached, each uniquely associated with a point (0, 0, k)
of 5^a . For, given some point (0 , 0, k) on S?a , and noting that a 2n range
of values of 0 is available with any (0, k) pair, the original state (£, £, y/Q)
is found using the unique solution x = £ of the equations

(3.71)

-77t/4 < T < n/4.

(Both equations (3.71) are needed to specify a unique £, as either on its own
will not suffice.) Then the remaining initial configuration values are

y/Q = 0-0 and £=£+if/0. (3.72)

The foregoing is an approximate description of the geometric connection
between three degree-of-freedom initial- and final-value problems, which in
its most concise mathematical form describes a continuous one-to-one map-
ping between a set of parameters (6, £, ^0) sufficient to describe all original
states, and a set (a, T, 0) sufficient to describe all initial states. The map-
ping is approximated by the equations

a = 6, x = £, fi = fi(i)-V0 (3-74)

on 0 < 0, —In/4 <£< n/4, 0 < y/0 < 2n; and the inverse map inverts the
third member of (3.74)

y/o = 0{r)-0 (3.75)

on 0 < a, -7n/4 < x < n/4, (0(x) - 2n) < 0 < 0(x).
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They (3.74-75) are correctable for the errors induced by the approxima-
tions (notably 3.56-58) made in their construction. All possible perturbation
states and configurations are describable and all possible perturbation states
and configurations are continuously reachable for either the original or ini-
tial problems, so the description is complete. (Of course, the problem before
the introduction of the scaling (2.1) is fourth order; and the missing degree
of freedom is the scale factor K introduced in the variable scalings (2.1).)
It is therefore concluded that the sustained resonant solutions discussed in
Section 2 are not associated with perturbation initial conditions.

Finally, it is remarked that the origin shifting used in conjunction with the
scaling (2.1) to reduce the Kevorkian model to a less awkward form has a
very distorting effect on the above results if any attempt is made to restore it
to the analysis. The difficulty is that, for example, an O(e~l/2) shift in the
origin leads only to an O(ei/2) change in the analysis.

4. Existence

In this section, an existence theory for a family of transiently resonant
oscillators is given. The theory is modelled on that for averaged systems,
a succinct account of which is contained in the text by Guckenheimer and
Holmes [2], and the preamble together with part (1) of their Theorem 4.1.1
is relevant.

Suppose an initial-value problem for a complex-valued variable y of a
real variable t is

^ y,t), 0 < | < J | , e « l , (4.1)

y(0) = a. (4.2)

The non-autonomous multiplier C could in practice have a more compli-
cated /-dependence (as in the example of Section 3 above, where C also has
an et variation) but the arguments which will be given are adequate provided
the secondary variation is on a substantially slower scale, and C is subject
to some other restrictions which are described below.

In the application considered here, / and g are entire functions of their
separate arguments for all t. Then a w(y, y, t) can be constructed with the
property

^ = g, w(t = 0) = 0. (4.3)

It is assumed that the following conditions are satisfied: there exist real con-
stants 3? and Z such that for all t and points y in a disk Qix in the
complex plane
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{y €.0&.: \y\ < Z + SJF}, (4-4)

the bounds

apply. The complex-valued C(u) is further supposed to be integrable for all
u, its integral having finite limits as u —» ±00. It would be a not unusual
case if C were C(u) = exp(/«2).

Suppose 5 is specified as

d = e
( e + 1 / 2 ) (4.6)

for Q positive. Then, for any initial value a e 2lx of y and sufficiently
small e, on any interval

l ^ l ~ o ( l ) , (4.7)

solutions of the differential equation (4.1) are uniformly approximated by
zo(t) which satisfies

^f = df(zo)C(e1/2t). (4.8)

Thus, if H is defined as a natural indefinite integral (here a "natural" indef-
inite integral is one such as

/ •
then

[Z°du/f(u) = H(z0)-H(a), (4.9)
Ja

and if also F is defined to be

e~l/2S f C(u)du = eQr(el/2t), (4.10)
./o

zQ can be expressed in terms of an inverse function H~

) + e F(e t)). (4.11)

REMARKS. 1. The first term in (4.1) is analogous to the averaged term in the
usual theory, and the second one to the residual which, in that theory, has
zero r-average.

2. The construction of the approximate solution implies the existence of
a bound for

\f(zo(t))\-
l<jr, (4.12)

JP being redefined if necessary.
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3. Error statements justifying the above claims will be made later.
Following the averaging procedure, introduce a new dependent variable z

by means of the family of near identity transformations

y = z + dw(z,-z,t), (4.13)

y = z + Sw(z, z,t),

which is parametrised by t. This transformation is consistent and invertible
for points in a disk 2 {z 6 3:\z\ < Z}—that is, there exist continuous
functions Cx and C2 such that at any t

z = y + d { l { y , y ) , ~z = y+ 5^(y ,y)

and also

The differential equation governing z is therefore

dz s (dw dz dw d~z\
~dt+ \~dz~~dt+~df~di)

= d{f(z)C(el/2t) + g(z + dw ,~z + dw , t) - g(z ,~z, t)}

+ dw)-f(z)}C(el/2t)

with initial condition
z(0) = a , (4.15)

and required also is \a\ < Z .
The presence of the term

d

in (4.14) complicates the issue slightly, but the validity proof given by Guck-
enheimer and Holmes [2] is usable after consideration of the system con-
sisting of (4.14) and the equation governing the conjugate ~z(t) (obtained
by taking the conjugate of (4.14) and noting that, since t is a real variable,
relations hold

d^_dzL

dt ~ dt
and

/(z) = / ( z ) ; w(z, z-,t) = w(z, z,t); g(z,z, 0 = g{T, z, /))•

This last differential equation is made consistent with (4.14) by imposing the
proper initial condition 'z(O) = a . The new system (4.14 and its conjugate)
has the form
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where I is the 2 x 2 identity matrix, the matrix W is denned

w dw \*A ')

and the entries Gj in the complex 2-vector G are uniformly bounded in
modulus

by the bound inequality (4.4).
The matrix (I + <5W) is invertible and its inverse can be expanded as a

power series for sufficiently small 8. So the proof given by Guckenheimer
and Holmes [2] carries through, interpreted where necessary in complex vari-
able formalism. In using their error bound inequality (4.1.10) in [2], the
initial value of the error is zero, and the integral in that formula is assigned
its value, rather than a bound, so that for the present use the error growth is

\z{t) - zo(t)\ < <JJT(1 + 2^)(exp(«5Jr7) - 1). (4.19)

(Here (4.18) has been used, and % replaces the Lipschitz constant L used
in [2].)

The implications of this last result are the following. On a \t\ interval of
O(8~ | In <5|), solution existence is assured, that is to say, both

\z(t)\,\zo(t)\<Z.

Further, on any \t\ interval such that the product {831't) is small, the bound
on the error growth rate (4.19) is approximately linear

\z{t) - zo(t)\ < 823?2{\ + 23?)t = e2Q+i3T2(l + 23?)t. (4.20)

Thus the approximate solution zQ(t) (4.11) is defensible only on intervals at
most |/| ~ 0{e~y) with -y + 2Q+l=Q, that is,

y = Q+l. (4.21)

In the problem discussed in Sections 2 and 3 above, the parameter Q = 1/2
so that an upper bound on y based on the calculation (4.21) is 3/2, which
is clearly large enough to allow C to relax sufficiently to be satisfactorily
approximated asymptotically within an acceptable interval of \t\. (In fact
y is limited by the fundamental existence interval \t\ ~ <9(<5-11 ln«5|) ~
O{e~Q~ll2\ lne |) , so the approximation z0 is a good one on any shorter in-
terval). Thus the analysis of those sections—in particular the matching with
outer solutions—is justified.

5. Discussion of previous studies

In a study [5] Kevorkian claims to be able to identify by an approximate
theory a "distinguished solution" of equations inessentially different from
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(2.2-5) which leads to sustained resonance. This solution is one associated
with a trajectory passing through a saddle point in a phase-plane diagram
generated by an equation locally modelling the dynamics in the / interval
on which p is close to co, and the solution is claimed to be available for
all values of the small parameter. The resonance is an unusual one, both in
occurrence and character; the erroneous conclusion drawn from the analysis
is a consequence of the cited author's failure to establish uniform applica-
bility of his inner solution on a ^-interval which is at least O(e~^2). This
contention is also addressed in the following.

Empirically, the distinguished solution of Kevorkian's central result de-
scribes an unusual dynamic instability, although it is certainly a feature of
the equations. As was demonstrated above in Section 2, it predicts a (slow)
divergence in spin p (angular velocity about the symmetry axis of the pro-
jectile) and a concommitant increase in frequency of the pitch/yaw (x) os-
cillation (to a fixed observer, rate of precession of the symmetry axis); the
amplitude p ([5], equation 4.10a) of the latter is locally almost unaffected,
although it slowly decays—(2.19) above shows that

x ~ Aco~l/2 cos(2(w - l)/e + ^(0)).

The increase in the total rotational energy of the projectile which, on the
basis of the present (2.19) is approximately

p + (cox) + (dx/dt) ~ co + A co

might conceivably be extracted from its translational kinetic energy by aero-
dynamic coupling. Even if the basic pitch/yaw amplitude A were large, such
a divergence might not be an exceptional concern: the system is simply re-
covering from a significant disturbance. (Anecdotal evidence of observations
of such recovery is known to the writer.)

However, readers familiar with the behaviour of spun projectiles in the at-
mosphere will be more accustomed to perturbation-induced divergence from
spin about the symmetry axis to gyration about an axis roughly tangent to
the original trajectory, and in a plane perpendicular to the symmetry axis of
the projectile. (The apparently angular-momentum-conserving, perturbation-
induced gyration of the "underspun", high-velocity small-arms projectile is
suggested.) Here the energy demands of the transfer are essentially supplied
by the initial spin energy, although possibly augmented by aerodynamic cou-
ples drawing on the translational kinetic energy if angular momentum is not
conserved. Although the situation modelled here is not the same, it would
be unremarkable to find similarities in the basic dynamics.
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Error estimates for Kervorkian's study [5] can be made by recapturing his
results using methods for which such estimates can be inferred. It transpires
that Kevorkian's description of the dynamics ([5], Section 4) also follows
from use of the averaging algorithm in a slightly non-standard context. To
see this, define

p = l+el/2
Pl, (5.1)

(5.2)

(5.3)

0(0) = 0 (5.4)

and write (2.2-4) as the system

dx
( 5-5 )

i ( l +co2)x- (el/2p - 1 + {ep2/2})x^ = - i ( l +co2)x- (el/2p - 1 + {ep2/2})x, (5.6)

^ (5.7)

dd i/2 . . o.
-j-t=e'pv (5.8)

To study the dynamics of the resonant interaction, Kevorkian ([5], equation
4.7) truncates the power series expansion of the exponential (see 2.5 above)

co2=l+et (5.9)

and, in effect and reasonably, omits the { } bracketed, second-order term in
(5.6) so that it becomes

dy 1/2, 1/2^

1/2

= —x-s wx

where the new variable w is defined by implication, and has the property
to(0) = 0. (5.11)

To present the system (5.5, 5.10, 5.7-8) in averagable form, introduce new
variables

(5.12)

y = -r sin(t) + s cos(t) (5.13)
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and on replacing px by w as a variable, obtain the system

-J- =el/2w(rcos(t) + ssin(t))sin(t),

d^ = -el/2w(rcos(t) + ssin(t))sm(t),
at

dw i ii
— = e ' [(rcos(*)+.ssin(f))sin(0 + / + y(0)) 4- I] ,

dd 1/2, 1/2.,,
-j-t = e {w - e t).

107

(5.14)

(5.15)

(5.16)

(5.17)

The system (5.14-17) almost satisfies the conditions for application of the
averaging theorem (see, for example [2]). If the (et) were dropped from
(5.17) it would do so, and in that case the solution vector of the truncated
system would be approximated as

' r '
s
w

.6.

r KO) i
s(0)
to(O)

. 0 ( 0 ) .

+ Fl/2
T o

' P~
a
Q + E (5.18)

- lon an interval \t\ < ke , with a an error E growth bound which is in effect

| |E (0 | |<£e r (5.19)

for |;| of O(e~l/2). (This last statement is inferred if the inequality 4.1.10
in [2] is approximated for non-large values of the argument of its exponential
when, as in Section 4 above, the integral in that inequality is evaluated rather
than bounded. Note that in the present discussion, the small parameter is e1^2

but in [2] it is e.) Here k and L are two 0(1) constraints, and the explicit
parts of the approximation (p, a, Q, n), which are governed by equations
deducible from those developed below, also have a unit order bound on the
interval.

It is immediately clear that error growth bound (5.19) is such that the
explicit, non-constant terms in the approximation (5.18) can only be guar-
anteed to be distinguishable from its error on a \t\ interval that is small in
comparison with e~1/2. This limitation is crucial to any inferences to be
made from the theory. For Kevorkian's purpose—that is, a matching with
"outer" solutions developed for |/| much greater than e~1/2—this validity
interval would be inadequate.

We next show how Kevorkian's ([5], Section 4) description of the resonant
interaction can be extracted by averaging (5.14-16), and keeping (5.17) as it
stands. In this case it is possible to prove results essentially identical to those
(5.18-19) above obtained when (et) is omitted by using a straightforward

https://doi.org/10.1017/S0334270000007396 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007396


108 P. B. Chapman [28]

modification of the proof shown in [2]. In particular, the error growth bound
(5.19) remains effectively unaltered.

Equations (5.14-16) can be re-expressed as

dr _

ds _
dt

dw

V/:

2f i

" 2 6

V/:
2e

ws+2e

wr- ^e

(rsin(0 + y/

iu(rsin(2f) -ssin(2t)),

'2w(isin(20 + A-sin(2/))

r(O))+5COs(0+ v(0)) + 2),

(5

(5

.20)

.21)

+ ie1/2(rcos(2Osin(0 + ^(0)) -ssin(2*)cos(0 + y(0))), (5.22)

so the equations governing the explicit part of the averaged approximation
are

i/2 <5 2 3)

v. „ Vv, , Y\"JJ •• scos(d + y/(0)) + 2). (5.25)
ui 2

The first two (5.23-24) of these equations have a closed form solution

(5.26)

(5.27)
\ •<• /

in terms of a new variable

e 0 — e I w dt

= el/2 f'Pldt+l-et2 (5-28)
Jo *•

and constants p0 and fi chosen to satisfy initial conditions r(0) and 5(0).
Two remarks are apposite here. In the first place these solutions are equiva-
lent to Kevorkian's [5] (4.9a,b with 4.10a,b); and in the second, their closed
form produces a seductive but illusory impression of uniform applicabil-
ity. This last contention follows from the averaging theorem, and the error
growth bound quoted above (inequality 5.19). It is less misleading to state

https://doi.org/10.1017/S0334270000007396 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007396


[29] Transition through resonance 109

these results (5.26-27) in the form (see 5.18)

r = p0 sin(/J) + /> o e 1 / 2 | cos(/?) + Er, (5.29)

s = poca*(fi) - p 0 e 1 / 2 | sin(/?) + Es (5.30)

for / ~ O(e9~1^2) and any q > 0, where the errors Ef and Es are ~
O(eq+l/2).

To complete the reproduction of Kevorkian's description, substitute (5.26-
27) into (5.25) and use (5.28) to obtain an equation

which can be re-expressed using (5.17) as

)) (5.31)

The introduction of a slow variable 1 — e^2t and a redefinition 8 = 6 - *%-
makes (5.31) equivalent to Kevorkian's [5] (4.10c), which is central to his
local theory. Thus, as foreshadowed, Kevorkian's description of the resonant
interaction is an application of averaging, and is subject to the limitations of
that theory as set out above. It cannot therefore be used to make predictions
concerning the evolution of the system.

In contrast, the application of averaging to the problem in the present
study is, in a sense, an indirect one. The preliminary transformation (3.6-
7) ensures that the small coefficient in (3.30) which is averaged is e rather
than e1^2 , while the independent variable remains a perturbation of t. Thus
averaging gives a uniform description of the process on a t scale which is
large enough to allow matching with the outer solutions. The availability of
these solutions on the extended interval, different from those of Kervorkian—
they show neither the sustained resonant solution, nor its neighbours—means
that extrapolation of the Kevorkian solutions is an invalid procedure.

Kath [3], [4] recognises the shortcoming of the Kevorkian approach—
see the remark following equation 2.14 in [3], which notes the necessity of
an 0(6"') existence interval for approximate solutions in the transient res-
onance. He attempts to calculate the resonant interaction directly, if not
explicitly. However, his computation is not internally consistent. In the re-
duction in [3] which takes the first of those equations (2.12) to the first of
equations (2.14) (via the substitution (2.13)) it is assumed that {p &)P « co
on what is required to be an O(e~l) t interval. This ansatz carries through,
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and is re-used in the averaged form

in the calculation of (sin(6)). (See the second of equations 2.14 and equa-
tion 3.12 in [3].) The calculations which follow establish what is in effect
a multiplicative, supplementary x amplitude growth equation (3.11 in [3])
whose solution (3.13) fixes that growth rate as proportional to a>^8. Irre-
spective of the form of any monotone function to € C , if both (p — co) and
its averaged T derivative are small, application of the Liouville-Green ap-
proximation to equation (1.1) in [3] with p s» co is justified, and it will give
an overall amplitude decay rate proportional to co~1^2 , rather than co~3^ as
implied in [3] by equations (3.13), (2.1). An internally consistent approxi-
mate theory from the ansatz p « co on an O(e~ ) t scale is given in Section
2 above, and it is shown there (2.27) that the additive perturbation correction
to p is proportional to co3^.

6. Conclusions

The description of the non-linear oscillator's resonant transition given in
Section 3 above is fundamentally different from the one advanced in [5].
In physical terms, the present mechanism is best thought of as an energy
exchange process between two modes (spin and pitch/yaw), and it is capable
of proceeding in either direction, depending essentially on the value of a
relative phase

This last cannot reasonably be assessed from initial conditions at - oo , but
for half the possible range of its values the energy flow is one way, and for the
other half the flow is reversed. It is speculated that the pitch/yaw amplitudes,
in cases when the energy flow is towards that mode, could become sufficiently
large as to require unmodelled aerodynamic inputs which in turn lead to
divergence.

Insofar as sustained resonance is concerned, the present description finds
none for sufficiently small values of the small parameter e and given finite
initial disturbance \y_\. In contrast, the solution claimed in [5] predicts
divergence to be possible no matter how small the e value, provided the
product of the base spin and initial pitch/yaw amplitude is large enough. The
sustained resonant solution can be identified (Section 2) but it is not available
for the specified initial conditions. The analysis in Section 3 suggests that a
measure of disturbance size at which that solution might become available is
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when
Q = ei<2xN = 2-l/V/2Kl/2x~l. (6.1)

Here the N suffix on the scaled variables denned in (2.1) is reinstated, Jc
denotes the initial dispersion magnitude in pitch/yaw (a in Section 3), and
K, strictly the spin at resonance, could be taken to be the initial spin rate.
This contrasts the comparable result claimed in [5] that is, in the present
notation, sustained resonance possible for Kx > 1.

Finally, the result (3.29) (or 3.41) suggests a somewhat counter-intuitive
method of reducing the response to the transient resonance. In terms of the
original variables (that is, before introduction of the scalings (2.1)) the mag-
nitude of the product (eK)l/2 is controlling, for given \y(0)\, so it suggests
that reduction of the datum spin rate K would reduce sensitivity to initial
axial misalignment. After some thought it seemed to the writer that this idea
was not without merit as:

1. The less the value of K, the higher the altitude at which resonance oc-
curs, so the less the atmospheric density, and hence the less the aerodynamic
coupling moment; and

2. The less the value of K, the less the spin energy available to be fed
into the undesirable pitch/yaw mode. (For the connection between the time
variable and altitude refer Kevorkian [4].) But the reduction of K should not
be sufficient to make the problem a perturbation from some p = 0 analysis
which, as suggested in Section 2, may present its own stability problem.
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