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Abstract A characterization is given of those unital, 2-subhomogeneous, Fell C*-algebras which have
only inner derivations. This proves Sproston and Strauss’s conjecture from 1992. Various examples are
given of phenomena which cannot occur for separable C*-algebras. In particular, an example is given of
a C*-algebra with only inner derivations which has a quotient algebra admitting outer derivations. This
answers a question of Akemann, Elliott, Pedersen and Tomiyama from 1976.
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1. Introduction

It is still unknown which C*-algebras have only inner derivations. For separable C*-
algebras it is known that such a C*-algebra must be the direct sum of a C*-algebra
with continuous trace and a C*-algebra with discrete primitive ideal space {1, 6], but
for inseparable C*-algebras the problem remains wide open. It is natural, therefore,
to begin by looking at the simplest cases, such as homogeneous and subhomogeneous
C*-algebras.

Every homogeneous C*-algebra has only inner derivations [5,14], while for unital,
2-subhomogeneous Fell C*-algebras, both necessary conditions and sufficient conditions
are known for an algebra to have only inner derivations [15, 16], but there is a gap
between these. It was conjectured by Sproston and Strauss [16] that the known necessary
conditions are in fact sufficient. Our main purpose in this paper is to prove this conjecture.
Our methods are similar to those in [16].

At the same time we are able to provide examples of behaviour which cannot arise in
separable C*-algebras. For instance, we give an example of a C*-algebra for which the
set of inner derivations is a proper, norm-dense subset of the space of all derivations. We
also give an example of a C*-algebra with only inner derivations which has a quotient
algebra admitting outer derivations. This answers a question of Akemann et al. from
1976 (2, Problem 6.4].
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2. Results

We begin by recalling the definitions and notation from [15]. Let A be a C*-algebra,
and let A be the spectrum of A, that is, the set of equivalence classes of irreducible
*-representations of A, equipped with the Jacobson topology. The C*-algebra A is said
to be 2-subhomogeneous if all the irreducible *-representations of A are of dimension 1
or 2. A unital 2-subhomogeneous C*-algebra can be described in the following way [17].
For i = 1,2, let T*(A) be the space of all equivalence classes of non-zero i-dimensional
*-representations of A. Let X be the space of all equivalence classes of irreducible two-
dimensional *-representations, and let Y be the space of all equivalence classes of irre-
ducible one-dimensional *-representations. It is shown in [17] how to topologize T%(A)
with X as an open subset. Let X be the closure of X in T?(A). Set 8X = X\ X. Then a
point of 3X can be written as an unordered pair [y, y2] of points of Y. Let Z be the open
subset of 8X consisting of all pairs [y1,y2] € X with y; # yo. We shall be interested in
the case when Z = 9X. The description in [17] shows that this happens if and only if A
satisfies Fell’s condition for each 7 € A [4, Proposition 4.5.3(iii)]. Fell’s condition is that
there should exist an a € A such that g(a) is a rank 1 projection for every ¢ in some
neighbourhood of 7 in A. Thus, if Z = 8X, A is a Fell algebra in the sense of [3). If X is
the Stone~Cech compactification of X, then A is said to have the Stone-Cech property.

Let T denote the space X UY, topologized so that a subset S is open in T if and only
if SN X is openin X and SNY is open in Y. For t € T, let A; be the quotient of A
by the common kernel of the representations in the class t. Each element a € A defines
an operator field on T with values in {A;} by defining a(t) to be the canonical image
of a in A;. In this way we can identify A with a full algebra of operator fields on 7. In
general, A is not a maximal field. Let B be the maximal C*-algebra of cross-sections
containing A. Then B is generated by A and its centre is Z(B) (which can be identified
with the abelian C*-algebra of continuous functions on T'; see [8, Lemma 1.7]). We shall
use the map & : B — A given by &(t) =t|4 (¢t € B) [8, Theorem 1.1). This map is both
continuous and surjective [8, Lemma 1.10].

The following ideal J will be important to us. Let J be the set of elements a € A such
that a(t) is zero for t € T\ X. Then J is a closed, two-sided ideal in both A and B. Note
that A/J and B/J are abelian C*-algebras, because all their irreducible *-representations
are one dimensional.

The first proposition is a combination of Theorems 1 and 2 of [15].

Proposition 2.1 (see [15]). Let A be a unital 2-subhomogeneous C*-algebra. Sup-
pose either that X \ Z contains a point with a countable base of neighbourhoods, or
that A is a Fell algebra but does not have the Stone-Cech property. Then A has outer
derivations.

It seems probable that in fact every unital 2-subhomogeneous C*-algebra that is not
a Fell algebra has outer derivations, but we have not been able to prove this.

Now let A be any C*-algebra. For a € A, let ad(a) be the inner derivation of A induced
by a. The map a — ad(a) defines a bounded, linear map from A to A(A), the Banach
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space of all derivations of A equipped with the operator norm. The range of this map is
the set Ag(A) of inner derivations, and the kernel is Z(A), the centre of A.

Lemma 2.2. Let A be a unital 2-subhomogeneous Fell C*-algebra with the Stone—
Cech property. Then, with the notation above:

(i) Ao(A) = A(A) ifand only if A/J +(Z(B)+J)/J = B/J; and
(ii) Ao(A) is dense in A(A) if and only if A/J + (Z(B) + J)/J is dense in B/J .

Proof. On the one hand, Sproston showed in [15] that, under the assumptions above,
every derivation of A is implemented by an element of B. On the other hand, if b € B
then ad(b) maps B into the ideal J defined above. Thus ad(b)|4 is a derivation of A.
Now suppose that b1,b2 € B and that b, and b2 induce the same derivation on A. Then
by — by commutes with every element of A, which implies that (b — b2)(t) is scalar-
valued for all ¢t € X. It follows from this that b; — b2 belongs to Z(B), the centre of B.
Thus, the space A(A) of derivations of A is bicontinuously isomorphic to the Banach
space B/Z(B), while the subspace Ap(A) of inner derivations of A is isomorphic to the
subspace (A+ Z(B))/Z(B) of B/Z(B). In particular, Ag(A) is dense in A(A) if and only
if (A + Z(B))/Z(B) is dense in B/Z(B).

Part (i} now follows from the fact that, because Z(B) and J are both subsets of

A+ Z(B),
A+ Z(B) B A ZB)+J B
7B zE O ATIB) =B 5+——5 7
Part (ii) follows in the same way using elementary approximation arguments. O

Let A; and As be the C*-subalgebras A, = A/J and A; = (Z(B)+J)/J of the abelian
C*-algebra B/J. Lemma 2.2 shows that we are interested in the question of when A; + A,
is dense in B/J, or is equal to B/J.

For this, we need the following results. Let C{S) be the C*-algebra of continuous
functions on a compact, Hausdorff space S. Suppose that A; and A, are C*-subalgebras
of C(S). Let A; + As be the linear span of A; and A,. For i = 1,2, let S; be the quotient
of S obtained by identifying the points a and b whenever f(a) = f(b) for all f € A;. Let
p; be the natural projection of S onto S;. We define a trip of length n — 1 with respect
to (A1, Az2) to be a finite ordered set {ai,...,a,}, contained in S, such that a; # a;+1
fori =1,...,n — 1, and either p;(a;) = pi(az), p2(az) = p2(as), pi(az) = p1(aq),. ..,
or p2(a;) = pa(az), p1(az) = p1(as), p2(as) = p2(as),.... A trip is a round trip if n > 2
and a; = a,. Notice that S contains a two-point round trip {a1,a2,a;} if and only if
A1 + A, fails to separate points in S. Notice, too, that if S contains a round trip, then $
contains trips of arbitrary length. Let us say that two points of S are equivalent if there
is some trip to which they both belong. This defines an equivalence relation on S, and
the equivalence classes for this relation are called orbits.

The next result is a combination of [16, Theorem 1 and Remark 2] and [10, Propo-
sition 2]. In [10], the proposition is stated in terms of real-valued functions, but the
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Stone—Weierstrass Theorem means that the result extends automatically to the com-
plex situation. More recent results in this direction, and further references, can be found
in [16]; the whole area is related to Hilbert’s 13th Problem.

Proposition 2.3 (see [10,16]). Let S be a compact, Hausdorff space. Let A, and
Az be C*-subalgebras of C(S) containing the constant functions.

(i) A1 + A2 = C(S) if and only if there is a finite upper bound to the length of trips
in S with respect to (A1, Az).

(ii) If all orbits are closed, then Ay + A, is dense in C(S) if and only if S contains no
round trip with respect to (A1, A2).

We now show the connection between the terminology of Proposition 2.3 and that used
in [12]. The following definitions are usually made in the context of the primitive ideal
space of A, rather than the spectrum of A. For 2-subhomogeneous C*-algebras, however,
these spaces are homeomorphic, and it seems simpler for us to work with the spectrum.
For m,0 € A, let 7 ~ ¢ if 7 and o cannot be separated by disjoint open sets. Define a
graph structure on A by saying that 7 and ¢ are adjacent if 7 ~ o. We shall refer to
the connected components of the graph A as orbits. We are thus using the name ‘orbit’
in two different contexts, but we shall see in Lemma 2.4 that the two uses harmonize.
Let Orc(A) be the supremum of the diameters of the orbits of A in this graph structure
(with the convention that a singleton has diameter 1 rather than 0). Thus Orc(4) =1
if and only if ~ is an equivalence relation on A. It was shown in [12, Corollary 4.6] that
Orc(A) < oo if and only if the space of inner derivations of A is closed in the space of all
derivations of A. Furthermore, it follows frorm [12, Corollary 2.3] that if Orc(A4) < oo,
then each orbit is a closed subset of A in the Jacobson topology. A cycle in the graph A
is called a proper circle in [16]. If the graph Ais cycle-free, then we say that A has no
proper circles.

Now let A be a unital 2-subhomogeneous Fell C*-algebra. Then the description in [17]
shows that for distinct 71, m € A my ~ 7 if and only if my,me € Y with [m, 7] € 8X.
Thus, a path 1 ~ 3 ~ -+« ~ 7, In A with the m;s distinct, corresponds to a sequence
[m1, m2], [m2, 73], ..., [Tn—1,7n] in 8X. Recall that the restriction map & : B Ais
continuous and surjective.

Lemma 2.4. Let A be a unital 2-subhomogeneous Fell C*-algebra. Let A; = A/J
and A, = (Z(B) + J)/J, and let S be the character space of B/J. Let s,t € S. Then s
and t lie in the same orbit in S with respect to (A1, Ay) if and only if $(s) and J(t) lie
in the same orbit in A.

Proof. We may identify S with the set of one-dimensional irreducible *-represen-
tations of B. Let p; and p, be the projection maps from S onto the character spaces S;
and S, of A; and Aj, respectively. Note that for s and t in S C B, p;(s) = p(t) if and
only if §(s) = &(2). Thus, p; is simply the map & : B — A, with its domain restricted to
the closed subset § of B and its range restricted to the closed subset S; of A (identifying
S; with the set of one-dimensional irreducible *-representations of A). Note also that for
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distinct s,t € S, p2(s) = p2(t) if and only if [H(s), (t)] € 0X. By the remarks just before
this lemma, this occurs if and only if &(s) ~ &(t) in A.

Now let s,t € S. Suppose that s and t lie in the same orbit in S. Then there is a
trip {s1,82,...,8,} in S with respect to (A;, A2) such that s; = s and s, = t. The
description in the previous paragraph shows that $(s) and &(t) belong to the same orbit
in A. Suppose on the other hand that &(s) and &(¢) belong to the same orbit in A. Then
the previous paragraph of this lemma shows that it is possible to find {5}, s2,...,S2n}
in § with s; = s and sy, = ¢, such that [$(s2;—1),P(s2:)] € 8X for i € {1,...,n} and
D(s0;) = P(s2s41) for i € {1,...,n — 1}. Hence, there is a trip from s to t in S, so s and
t lie in the same orbit in §. a

Lemma 2.5. Let A be a unital 2-subhomogeneous Fell C*-algebra. Set A; = A/J
and Ay = (Z(B) + J)/J.

(i) Orbits are closed in A if and only if orbits are closed in the character space S of
B/J with respect to (A1, As).

(i1) A has proper circles if and only if S has round trips with respect to (A, A2).

Proof. (i) Suppose that orbits are closed in A. Let F' be an orbit in S. Then E :=
p1(F) is an orbit in A, by Lemma 2.4, so E is closed. Hence, F = P[!(E) is closed in
S, since p; is continuous. On the other hand, suppose that orbits are closed in S. Let
E C S be an orbit in A. Then F := p;!(E) is an orbit in S, so F is closed. Thus F is
compact, so E = p;(F) is compact in the Hausdorff space S;, and hence is closed in Sy,
which itself is closed in A. This establishes (i).

Now we prove (ii}. Suppose first that there is a cycle m; ~ Mg ~ -+ ~ 7T, = m in A
(with n > 4). As in Lemma 2.4, there exist {s1, 2, ..., S2,} in S with [$(s2;_1), P(s2:)] €
0X for i € {1,...,n}, and H(ss;) = D(s2i41) for i € {1,...,n — 1}, such that $(s;) =
m = m, = $(s2,). Hence, {s1, $2,...,52n,51} is a round trip in S.

Conversely, suppose that there is a round trip {si1,82,...,8,} in S with respect to
(A1, A2). Since A; + A, separates the points of S, n > 4. We have that s; = s,, and,
without loss of generality, we may assume that all the other s; are distinct. Since distinct
points of Z correspond to different unordered pairs |7, o] of points of Y, it is easy to check
that in fact either n 2> 7, or n = 6 and pa(s1) = p2(s2). In either case, the first paragraph
of Lemma, 2.4 shows that there is a proper circle in A. This establishes (ii). 0O

Theorem 2.6. Let A be a unital 2-subhomogeneous Fell C*-algebra. Suppose that
A has the Stone—Cech property, and that orbits are closed in A. Then the set of inner
derivations of A is dense in the norm topology in the set of all derivations of A if and
only if there are no proper circles in A.

Proof. This follows from Lemma 2.2, Proposition 2.3 (ii), and Lemma 2.5. O

It is known that if A is a separable, unital C*-algebra, then Ag(A) is dense in A(A)
if and only if Ag(A) = A(A) (see [6, Theorem 3]). Here we show that this fails for
inseparable C*-algebras.
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Example 2.7. A C*-algebra for which the set of inner derivations is a dense, proper
subset of the space of all derivations.

Let B be the C*-algebra of all continuous functions f from BN into M5(C) with the
property that f(x) is diagonal for x € BN\ N. For £ € AN\ N, let \.(f) be the entry
in the top-left corner of f(z) and let u;(f) be the entry in the bottom-right corner. Let
W ={z;;:1<i<00, 1<j<i+ 1} be a countable discrete subset of SN\ N. Let A
be the C*-subalgebra of B consisting of those elements f of B that satisfy

Az; ;(F) = Az ;0 (f) forjodd, 1<5<4,

and

Hz; ; (f) = #Ii,j.‘:l(f) for j even, 1 < j <4,
for 1 < i < oo. Thus, in A we have, for each i,
ker pz, , ~ker Ay, , =ker Ay, , ~kerp,, , = kerp,, , ~kerAg, ,---,

and soon, up to j =14+ 1.
Evidently, A is a unital, 2-subhomogeneous C*-algebra, with the Stone—Cech property.

The constant operator fields
1 0 00

belong to A, showing that A is a Fell algebra. All the orbits in A are finite, hence
closed, but there are arbitrarily long orbits, so Orc(A) = oo. Thus, Theorem 2.6 together
with [12, Corollary 4.6] shows that the set of inner derivations of A is a dense, proper
subset of the space of all derivations.

‘We now prove our main theorem.

Theorem 2.8. Let A be a unital 2-subhomogeneous Fell C*-algebra. Then the fol-
lowing are equivalent:

(i) A has only inner derivations; and

(ii) OrcA(A) is finite, A has the Stone—Cech property, and there are no proper circles
in A.

Proof. The implication (i) = (ii) is established in [16, Appendix, Proposition 2]. The
implication (ii) = (i) follows from Theorem 2.6, together with the fact that when Orc(A)
is finite, orbits are closed in A [12, Corollary 2.3] and the space of inner derivations of
A is closed in the space of all derivations of A [12, Corollary 4.6]. a

If A is a separable C*-algebra with only inner derivations, then the characterization
theorem [1, 6] shows that Orc(A) = 1. It was observed in [13] that there are inseparable
C*-algebras with only inner derivations for which Orc(A) # 1. Here we give a specific
example.
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Example 2.9. Fix a natural number n > 1. Choose n distinct points, x1,...,Z,, in
BN\ N. Let A,, be the C*-algebra of continuous functions from 8N into M2(C) with the
property that f(z;) is diagonal for 1 £ 7 < n, and the lower diagonal entry of f(z;) is
equal to the upper diagonal entry of f(x;+1) for 1 <7 < n— 1. Then Orc(A,) = n, but
A, satisfies the conditions of Theorem 2.8, so A,, has only inner derivations.

The question was raised in [2, Problem 6.4] of whether the property of every derivation
being inner passes to quotients. This is true for separable C*-algebras by the character-
ization theorem [1,6]. Here we show that the general question has a negative answer.

Example 2.10. A C*-algebra having only inner derivations, but with a quotient alge-
bra having outer derivations.

The space SN \ N is not extremally disconnected [9, Problem 6R]. Thus there is an
open subset S of BN\ N with the property that S, the closure of S in AN \ N, is not
homeomorphic to 85 [9, Problem 1H6]. On the other hand, {9, Theorem 6.7] shows that
B(NUS) = ON. Let A be the C*-algebra of all continuous functions from SN into M>(C)
which are diagonal on SN\ (NU S). Then A is a 2-subhomogeneous Fell C*-algebra
with the Stone-Cech property, and Orc(A4) = 1, so A has only inner derivations, by
Theorem 2.8.

On the other hand, let D be the C*-algebra of continuous functions from S into M5(C)
which are diagonal on S\ S. Then D is a quotient of A, and D is a 2-subhomogeneous Fell
algebra which does not have the Stone-Cech property. Thus D admits outer derivations
by Proposition 2.1.

It is known that von Neumann algebras have only inner derivations. One of the main
open questions in this area is whether quotients of von Neumann algebras ever admit
outer derivations (see [11] and [7]).
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