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Following Scott & Cambon (2024 J. Fluid Mech. vol. 979, A17), henceforth referred
to as [I], a spectral approach is used and the flow is expressed as a sum of normal
modes, which are of two types: inertial/gravity waves and non-propagating (NP) modes.
It was shown in [I] that, for weak (small Rossby or Froude number) turbulence, the NP
component of the flow decouples from the waves at leading order and here we focus on
the NP part alone. It is demonstrated that the evolution equations of the NP component are
equivalent to the three-dimensional, quasi-geostrophic (QG) approximation of geophysical
fluid dynamics. For QG turbulence, the seminal paper of Charney (1971 J. Atmos. Sci. vol.
28, pp. 1087–1095), referred to as [II], concluded that, as for two-dimensional turbulence,
the energy cascade for QG turbulence should go from smaller to larger scales and that
the inertial-range spectrum at wavenumber k should behave as k−3. He also proposed
that the energy distribution in spectral space is isotropic if the vertical wavenumber is
appropriately scaled and deduced a principle of equipartition in which the average kinetic
energy is twice the potential one. We use Charney’s transformation of spectral coordinates
to effectively eliminate the parameter β = 2Ω/N , where Ω is the rotation rate and N the
Brunt–Vaisala frequency, and give results of numerical calculations concerning the energy
distribution. The results mostly agree with [II] at large enough times, although they do not
support Charney isotropy. They further suggest self-similarity of the time evolution of the
three-dimensional energy distribution in spectral space away from the vertical axis.
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1. Introduction
This paper concerns weak, freely decaying, homogeneous turbulence subject to rotation,
represented by Ω , and stable stratification, expressed by a constant Brunt–Vaisala
frequency, N . The approach used is a spectral one, i.e. based on Fourier transforms, and
a general overview of homogeneous turbulence with this viewpoint in mind can be found
in the book by Sagaut & Cambon (2018). By weak turbulence, we mean that either the
Rossby number, u′/ΩL , or Froude number, u′/N L , is small, where u′ and L are measures
of the turbulent velocity and the size of its large scales.

This article uses the formulation of Scott & Cambon (2024) (henceforth referred to
as [I]) as a basis. We should note that the restriction to a small wave/non-propagating
(NP) amplitude ratio of [I] was lifted in Scott (2025). As in [I], the flow is expressed
as a linear combination of modes, each a solution of the governing equations without
nonlinearity or visco-diffusion, which form a complete set capable of representing general
solenoidal velocity fields. The modes are of two types: oscillatory ones which represent
inertial/gravity waves and time-independent ones, referred to as NP because they have
zero frequency, hence zero group velocity. It was shown in [I] that, for weak turbulence,
the NP component of the flow decouples from the wave one at leading order and can thus
be studied on its own, which is what we do here.

As was noted in [I] and demonstrated in this article, the governing equations of the NP
component of weak turbulence are equivalent to the three-dimensional, quasi-geostrophic
(QG) approximation, which is widely used in geophysical applications and has a long
history. Thus, the present work applies directly to QG turbulence. The QG approximation
was first proposed by Charney (1948), whose later publication, Charney (1971) (henceforth
referred to as [II]), is perhaps the most influential article in the area of QG turbulence and
will be referred to on multiple occasions in what follows. Although now rather dated, the
review by Rhines (1979) provides an overview of QG turbulence. Since the parameter β =
2Ω/N is usually small for atmospheric and oceanic flows, such smallness is sometimes
implicit in geophysical studies, whereas small β is not supposed here. Note that the
notation β = 2Ω/N , used in the present article, has no connection with the geophysical
β-plane, used to approximate a spherical Earth. There is no β-plane effect here.

The work in [II] drew a formal analogy between QG turbulence and the physically
different problem of two-dimensional turbulence (without rotation or stratification). Two-
dimensional turbulence has been the subject of much work (see the review by Boffetta
& Ecke (2012)). Perhaps the most important conclusion is that there are two cascades.
Energy goes from small to large scales, while enstrophy (one half the mean squared
vorticity) is transferred in the opposite direction. In the isotropic case, each cascade is
associated with a power law for the energy spectrum: k−5/3 for the energy cascade and
k−3 for enstrophy, where k is the wavenumber. Thus, if external forcing is applied at a
particular wavenumber and the Reynolds number is large, one expects k−5/3 below that
wavenumber and k−3 above it. Transfer of enstrophy towards smaller scales eventually
encounters viscosity, producing a range of k above the k−3 one in which the enstrophy
flux is dissipated and the spectrum falls off rapidly. For freely decaying turbulence, the
enstrophy cascade leads to a k−3 inertial range, while the energy cascade produces growth
in the size of the large scales. Given that the energy transfer is towards the larger scales,
one expects that energy dissipation is small at large Reynolds number, in principle going
to zero at infinite Reynolds number, hence energy conservation in the inviscid case.

For QG turbulence, which is three-dimensional, [II] suggested that a quantity known as
potential enstrophy plays much the same role in the QG problem as enstrophy does in the
two-dimensional one. As a result, he proposed two cascades, with energy going towards
larger scales and potential enstrophy towards smaller ones. The work in [II] concluded that
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energy should be nearly conserved and that the energy spectrum should have an inertial
range in which it behaves as k−3. He also proposed that the energy distribution in spectral
space is isotropic when expressed using coordinates in which the vertical wavenumber is
multiplied by β. Note that such ‘Charney isotropy’ does not imply isotropy in the usual
sense unless β = 1. Thus, when β < 1, Charney isotropy leads to a vertically elongated
energy distribution, while, for β > 1, the predicted distribution extends further in the
horizontal than in the vertical direction. Charney isotropy makes the energy distribution
axisymmetric and implies the result that the average kinetic energy should be twice the
potential one, a condition sometimes known as Charney equipartition.

Charney’s suggestion of isotropy was supported by the numerical simulations of QG
turbulence by Hua & Haidvogel (1986) and McWilliams (1989), of whom the latter also
demonstrated the similarities of QG and two-dimensional turbulence regarding cascades
and their directions. More recent simulations by Vallgren & Lindborg (2010) also support
the predictions of [II]. As we shall see, our results agree with most of the proposals of
[II], but not isotropy. This is one of the notable conclusions of this article. Another being
self-similarity of the time evolution of the distribution of energy in spectral space at large
enough times and away from the vertical axis.

The article by Smith & Waleffe (2002) is representative of studies of rotating/stratified
turbulence using full direct numerical simulation. It is based on the Boussinesq equations,
rather than the QG ones used here and considers forced turbulence, rather the freely decay-
ing case which is the subject of this article. Only limited comparisons with [II] are made.

Although we focus on energy, we should observe that QG flows are rich in structures
such as vortices, and the statistics of these have been explored by, for instance, McWilliams
(1990), McWilliams, Weiss & Yavneh (1999), Dritschel, de la Torre Juarez & Ambaum
(1999), von Hardenberg et al. (2000) and Reinaud, Dritschel & Koudella (2003). However,
in this article we concentrate on the energy and its distribution in spectral space.

This paper is organised as follows. Section 2 describes the theoretical basis, the weak-
turbulence limit and its relationship with the QG approximation and a transformation of
variables which essentially removes the parameter β from consideration. Finally, § 3 gives
numerical results.

2. Formulation
Consider freely decaying homogeneous turbulence in an unbounded, incompressible,
rotating, stably stratified fluid having constant density, constant Brunt–Vaisala frequency,
N , and constant rotation vector, Ω , which is supposed parallel to gravity and has unit
vector e = Ω/Ω , where Ω = |Ω|. Henceforth, spatial coordinates, time and velocity are
non-dimensionalised using L , (N 2 + 4Ω2)−1/2 and L(N 2 + 4Ω2)1/2, where L is a length
scale characterising the large scales of the initial turbulence.

2.1. Analytical background
Using a rotating frame of reference and Cartesian coordinates, as well as the summation
convention, the non-dimensional Boussinesq equations of motion are

∂ui

∂t
+Ω

�

εi jke j uk + N
�

ηei + ∂p

∂xi
= − ∂

∂x j
(ui u j )+ Du

∂2ui

∂x j∂x j
, (2.1)

∂ui

∂xi
= 0, (2.2)

∂η

∂t
− N

�

ei ui = − ∂

∂x j
(ηu j )+ Dη

∂2η

∂x j∂x j
, (2.3)
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where εi jk is the alternating tensor, Ω
� = 2Ω(N 2 + 4Ω2)−1/2 and N

� = N (N 2 +
4Ω2)−1/2. Furthermore, Du = ν(N 2 + 4Ω2)−1/2L−2 and Dη = κ(N 2 + 4Ω2)−1/2L−2,
where ν is the kinematic viscosity and κ the diffusivity associated with the buoyancy
variable η. Note that N

� = (β2 + 1)−1/2 and Ω
� = β(β2 + 1)−1/2, where β =Ω

�

/N
� =

2Ω/N . Thus, the non-dimensional governing equations, (2.1)–(2.3), only depend on the
parameters β, Du and Dη. For simplicity’s sake, Ω

�

,N
�

are denoted Ω, N in what follows.
Because we will only be working with non-dimensional quantities, this should not lead to
confusion. Note that the right-hand sides of (2.1) and (2.3) express nonlinearity, viscosity
and diffusion. The visco-diffusive terms dissipate energy.

As described in [I], in the absence of nonlinearity and visco-diffusion, (2.1)–(2.3) have
particular solutions, referred to as modes, which are indexed by an integer s = 0,±1 and
a wave vector k. Modes have the velocity and buoyancy variable

ui = v
(s)
i (k) exp(i(k · x − sω(k)t)), (2.4)

η= η(s)(k) exp(i(k · x − sω(k)t)), (2.5)

where the notation · represents a scalar product,

ω(k)= (N 2 sin2 θ +Ω2 cos2 θ)1/2, (2.6)

where θ is the angle between k and the rotation vector and v(s)i , η(s) are given by (I.2.12)–
(I.2.15) (where, here and henceforth, (I.x.y) refers to equation (x.y) of [I]).

Although modes do not allow for nonlinearity or visco-diffusion, they form a complete
set for ui (x), η(x) satisfying (2.2). Thus, the flow can be expressed at any given time as

ui =
∑

s=0,±1

ui,s, η=
∑

s=0,±1

ηs, (2.7)

where

ui,s =
∫

as(k, t)v(s)i (k) exp(i(k · x − sω(k)t))d3k, (2.8)

ηs =
∫

as(k, t)η(s)(k) exp(i(k · x − sω(k)t))d3k, (2.9)

and as are the mode amplitudes at time t . The as evolve in time due to nonlinearity and
visco-diffusion.

Equations (2.7)–(2.9) express the flow as a linear combination of modes indexed by
s = 0,±1 and the wave vector k, each mode being a solution of the governing equations
without visco-diffusion and nonlinearity of the form exp(i(k · x − sω(k)t)). The modes
with s = ±1 are inertial-gravity waves, whose dispersion relation is (2.6). The non-
dimensionalisation of time makes the period of oscillation of such waves of order 1.
The mode s = 0 has zero frequency, hence zero group velocity. Thus, the corresponding
component of the flow is indeed non-propagating, hence its designation by NP. As in [I],
since ui and η are real, as(−k)= a∗−s(k), where ∗ denotes complex conjugation. Using
the identities v(s)i (−k)= v

(−s)∗
i (k), η(s)(−k)= η(−s)∗(k) and ω(−k)=ω(k), (2.8) and

(2.9) imply ui,s = u∗
i,−s, ηs = η∗−s . Thus, the NP component, defined by uNP

i = ui,0 and
ηNP = η0, is real, whereas s = +1 and s = −1 provide conjugate contributions to (2.7),
whose sum is the wave component and is also real.
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According to (I.2.26), the evolution of the modal amplitudes is described by

∂as

∂t
= −ik j (v

(s)∗
i ũi u j + η(s)

∗
η̃uj ) exp(isωt)−

∑
ŝ=0,±1

Dsŝ exp(i(s − ŝ)ωt)aŝ, (2.10)

where s = 0,±1,

f̃ (k)= 1
8π3

∫
f (x) exp(−i k · x)d3x (2.11)

defines spatial Fourier transformation and Dsŝ is the Hermitian, positive definite matrix
given by (I.2.20) and which represents visco-diffusion.

Since we want to study turbulent flow, a statistical ensemble of flow realisations is
introduced, as well as ensemble averaging. The flow is assumed to have initial statistics
which are homogeneous with respect to spatial translation, a property which is preserved
by time evolution according to the governing equations, (2.1)–(2.3). The flow is also
assumed to be initially of zero mean, i.e. ui = 0 and η= 0, where the overbars denote
ensemble averaging. Given homogeneity, this property is also preserved by (2.1)–(2.3).
Here, ui = 0, η= 0 can be shown to imply as = 0 and ui,s = ηs = 0. Thus, as and both the
wave and NP components of the flow have zero mean.

Given the statistical homogeneity of the flow, the second-order moments of the modal
amplitudes have the form

a∗
s (k)as′(k′)= Ass′(k)δ(k − k′), (2.12)

where Ass′ is a Hermitian, positive semidefinite matrix, referred to as the spectral matrix.
Since as(−k)= a∗−s(k), Ass′(−k)= A−s′,−s(k). The average non-dimensional energy per
unit volume in physical space is

1
2

ui ui︸ ︷︷ ︸
Kinetic

+ 1
2
η2︸︷︷︸

Potential

=
∫

e(k)d3k, (2.13)

where

e(k)= 1
2

∑
s=0,±1

Ass(k) (2.14)

is the energy density in spectral space. Equation (2.14) indicates that the diagonal elements
of Ass′ yield the contribution, Ass/2, of mode k, s to the energy density. Given that Ass′
is Hermitian and positive semidefinite, the modal energy contribution is real and non-
negative. The off-diagonal elements of Ass′ can be complex and represent correlations
between modes of different s. The spectral energy density can be split into wave and NP
contributions as e = eW + eNP, where

eW = 1
2

∑
s=±1

Ass, eNP = 1
2 A00. (2.15)

Since Ass′(−k)= A−s′,−s(k), eW (−k)= eW (k) and eNP(−k)= eNP(k). The NP contri-
bution to the average energy per unit volume is

ENP = 1
2

uNP
i uNP

i︸ ︷︷ ︸
Kinetic

+ 1
2
ηNP2︸ ︷︷ ︸

Potential

=
∫

eNP(k)d3k. (2.16)

1016 A57-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
16

.7
3.

21
6.

10
, o

n 
20

 A
ug

 2
02

5 
at

 1
3:

42
:4

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
43

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10438


J.F. Scott and C. Cambon

The subject of this article being the NP component of the flow, we note that

v
(0)
1 = ik2(

k2
1 + k2

2 + β2k2
3
)1/2 , v

(0)
2 = − ik1(

k2
1 + k2

2 + β2k2
3
)1/2 , v

(0)
3 = 0, (2.17)

η(0) = iβk3(
k2

1 + k2
2 + β2k2

3
)1/2 (2.18)

follow from (I.2.12), (I.2.13), (I.2.15) and β =Ω/N , where, here and henceforth, x1 and
x2 are horizontal coordinates, while x3 is vertical (so e = (0, 0, 1)). We also note that the
NP mode damping coefficient is

D00 = k2 Du
(
k2

1 + k2
2
)+ Dηβ2k2

3

k2
1 + k2

2 + β2k2
3

, (2.19)

according to (I.2.15) and (I.2.20), where k = |k|. Observe that (2.8) and (2.17) imply that
the NP velocity, uNP

i = ui,0, is horizontal and divergence free.

2.2. Weak turbulence and the QG approximation
From here on, we suppose that the turbulence is weak (small Rossby or Froude number).
Given the temporal oscillations of the wave modes, it is shown in [I] (§ 3.1) that (2.10)
with s = 0 has the leading-order approximation

∂a0

∂t
+ D00a0 = −ik j

(
v
(0)∗
i

˜uNP
i uNP

j + η(0)
∗
˜ηNPuNP

j

)
, (2.20)

where, from (2.8) and (2.9),

uNP
i (x)=

∫
a0(k)v

(0)
i (k) exp(i k · x)d3k, (2.21)

ηNP(x)=
∫

a0(k)η(0)(k) exp(i k · x)d3k, (2.22)

are the NP velocity and scalar fields in physical space (uNP
i = ui,0 and ηNP = η0).

Equations (2.20)–(2.22) govern the time evolution of a0(k) and indicate that the NP
component is decoupled from the wave component in the weak-turbulence limit. As
discussed in [I] following equation (I.3.6), this arises due to temporal oscillations of the
integrand in that equation apart from near the surface ω( p)=ω(−k − p) when sp = −sq
and the vanishing of M0,s,−s(k, p) on that surface. Thus, for weak turbulence, the effect
of the wave component on evolution of the NP one is negligible. We only consider the
NP component from here onwards. Observe that (2.20)–(2.22) depend on the parameter β
via (2.17)–(2.19). Leaving aside the visco-diffusive term, D00a0, in (2.20), β is the only
parameter of the problem.

It was noted in [I] that (2.20)–(2.22) are equivalent to the three-dimensional QG
equations used in geophysical applications. This is demonstrated in Appendix A, where
it is shown that (2.20) can be re-expressed as

∂a0

∂t
+ D00a0 = −i

(
k2

1 + k2
2 + β2k2

3
)−1/2

k j
˜uNP

j q, (2.23)

where

q(x)=
∫ (

k2
1 + k2

2 + β2k2
3
)1/2

a0(k) exp(i k · x)d3k, (2.24)
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is the potential vorticity. Equations (2.21), (2.23) and (2.24) are equivalent to (2.20)–
(2.22) and provide a somewhat simpler expression of the evolution equations of a0(k).
In particular, using (2.23), rather than (2.20), the numerical calculation of the nonlinear
term is considerably less time consuming. Note that q2/2 is the potential enstrophy, which
was referred to in the introduction.

Let εNP be a small, positive parameter characterising the weakness of turbulence, hence
uNP

i , ηNP and q are O(εNP). Introducing the O(1) scaled variables ûi = ε−1
NPuNP

i , η̂=
ε−1

NPη
NP and q̂ = ε−1

NPq, (2.21)–(2.24) give

∂ â

∂ t̂
+ D̂â = −i

(
k2

1 + k2
2 + β2k2

3
)−1/2

k j
˜̂u j q̂, (2.25)

ûi (x)=
∫

â(k)v(0)i (k) exp(i k · x)d3k, (2.26)

q̂(x)=
∫ (

k2
1 + k2

2 + β2k2
3
)1/2

â(k) exp(i k · x)d3k, (2.27)

η̂(x)=
∫

â(k)η(0)(k) exp(i k · x)d3k, (2.28)

where â = ε−1
NPa0 and D̂ = ε−1

NP D00, while t̂ = εNPt is the appropriate time variable for
evolution of the NP component. Equations (2.25)–(2.27) are the evolution equations for
â(k) which form the basis of the present work. The second term on the left-hand side of
(2.25) represents visco-diffusion, whereas the right-hand side expresses nonlinearity. The
scaled version of eNP is ê = ε−2

NPeNP and yields the scaled energy per unit volume via

ÊNP = 1
2

ûi ûi︸ ︷︷ ︸
Kinetic

+ 1
2
η̂2︸︷︷︸

Potential

=
∫

ê(k)d3k. (2.29)

The quantity εNP is chosen such that the initial scaled energy per unit volume is 1. Thus,

ε2
NP =

∫
eNP(k, t̂ = 0)d3k, (2.30)

provides a precise definition of εNP.
There is a particular case for which (2.25) takes a very simple form. This is when the

vector k is parallel to the vertical axis, i.e. k1 = k2 = 0. As noted above, uNP is horizontal
so û3 = 0, hence k j

˜̂u j q̂ = 0 when k1 = k2 = 0. Thus, the nonlinear term in (2.25) is zero
and linear theory holds. It follows that ê(k, t̂)= ê(k, 0) exp(−2D̂(k)t) for vertical k.

2.3. The partial elimination of β
The evolution equations (2.25)–(2.27) depend on the parameter β, both directly and via
(2.17) and (2.19). This dependency can be almost entirely removed by a change of the
variables k and â, as follows.

Adopting the change of variables

k
�

1 = k1, k
�

2 = k2, k
�

3 = βk3, (2.31)

equations (2.17) and (2.18) imply

v
(0)
1 = i

k
�

2

k
� , v

(0)
2 = −i

k
�

1

k
� , v

(0)
3 = 0, η(0) = ik

�

3

k
� , (2.32)
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where k
�= |k�|. This shows that v(0)i (k

�

) and η(0)(k
�

) are independent of β. Introducing

x�1 = x1, x�2 = x2, x�3 = β−1x3, (2.33)

then (2.11) gives f̃ (k)= β
˜̃f (k�), where

˜̃f (k�)= 1
8π3

∫
f (x�) exp

(− i k
� · x�

)
d3x�, (2.34)

and we have used k · x = k
� · x� and d3x = βd3x�. Since û3 = 0, k j

˜̂u j q̂ = k
�

j
˜̂u j q̂ = βk

�

j
˜̂̃u j q̂,

hence (2.25) gives

∂a�

∂ t̂
+ D̂a�= −ik

�−1k
�

j
˜̂̃u j q̂, (2.35)

where a�(k
�

)= β−1â(k). Using k · x = k
� · x� and d3k = β−1d3k

�

, (2.26)–(2.28)
imply

ûi (x
�
)=

∫
a�(k

�

)v
(0)
i (k

�

) exp(i k
� · x�)d3k

�

, (2.36)

q̂(x�)=
∫

k
�

a�(k
�

) exp(i k
� · x�)d3k

�

, (2.37)

η̂(x�)=
∫

a�(k
�

)η(0)(k
�

) exp(i k
� · x�)d3k

�

, (2.38)

and, according to (2.19),

D̂(k
�

)= (
k
�2

1 + k
�2

2 + β−2k
�2

3
) D̂u

(
k
�2

1 + k
�2

2
)+ D̂ηk

�2
3

k
�2

, (2.39)

where D̂u = ε−1
NP Du and D̂η = ε−1

NP Dη. Note that the time variable, t̂ , is not modified by the
above changes of variables: only k

�

3 = βk3 and a�(k
�

)= β−1â(k) need to be borne in mind.
Equations (2.34)–(2.37) and (2.39) describe the time evolution of a�(k

�

). The parameter β
only appears via (2.39), which gives the visco-diffusive damping coefficient of NP modes.
Thus, in the absence of visco-diffusive dissipation, β has been eliminated from the NP
evolution problem. As usual in studies of turbulence, dissipation is supposed negligible
for the large scales, becoming important only for very small ones (the dissipative scales).
Thus, we expect the β-dependency of (2.39) to affect sufficiently small scales, but not the
large- or inertial-range ones which are the focus of this work. In fact, the only reason for
including dissipation is to avoid numerical instabilities which tend to arise otherwise.

Equation (2.29) and d3k = β−1d3k
�

yield

ÊNP = 1
2

ûi ûi︸ ︷︷ ︸
Kinetic

+ 1
2
η̂2︸︷︷︸

Potential

=
∫

e�(k
�

)d3k
�

, (2.40)

where e�(k
�

)= β−1ê(k) is the energy density in k
�

-space. Since eNP(−k)= eNP(k),
e�(−k

�

)= e�(k
�

). Also, ÊNP(t̂ = 0)= 1 implies that the initial energy density should satisfy∫
e�(k

�

, t̂ = 0)d3k
�= 1. (2.41)
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The energy density can be written as the sum, e�= e�K + e�P , of kinetic and potential
contributions, which are given by

e�K (k
�

)= k
�2

1 + k
�2

2

k
�2

e�(k
�

), e�P(k
�

)= k
�2

3

k
�2

e�(k
�

), (2.42)

and determine the scaled kinetic and potential energies per unit volume via

ÊK = 1
2

ûi ûi =
∫

e�K (k
�

)d3k
�

, ÊP = 1
2
η̂2 =

∫
e�P(k

�

)d3k
�

. (2.43)

Note that [II] proposed isotropy of e�(k
�

) in k
�

-space, giving the equipartition relation ÊK =
2ÊP according to (2.42) and (2.43).

3. Numerical method and results
The method used to solve (2.34)–(2.37) is described in Appendix B and is similar to that
of classical direct numerical simulation (DNS) of homogeneous turbulence. Thus, given
a� at some time t̂ , numerical approximation of the Fourier transforms in (2.36) and (2.37)
is used to determine û j and q̂ in physical space. The product û j q̂ is then taken and a
numerical Fourier transform used to approximate the right-hand side of (2.35).

As noted above, as usual in studies of turbulence, dissipation is supposed small for the
large scales, while increasing in significance for smaller ones and becoming important in
a dissipative range of large k

�

. We suppose that the precise form, (2.39), of the dissipative
damping factor, D̂(k

�

), is unimportant as regards the large- and inertial-range scales studied
here. In the hope of extending the inertial range to higher k

�

than would be the case using
(2.39), a hyperviscous damping factor, D̂(k

�

)= dk
�6

, is used in the numerical calculations
(see e.g. Haugen & Brandenburg (2004) for a discussion of hyperviscous methods). The
use of a hyperviscosity completely removes the β-dependence. The hyperviscosity, d, is a
numerical parameter and a small value is required for small dissipation of the large scales.
The value of d and of all other numerical parameters are given at the end of Appendix B.

Although the present approach is applicable in the general case, we henceforth specialise
to turbulence which is statistically axisymmetric, i.e. the flow statistics are unchanged by
rotation about the vertical axis. Like statistical homogeneity, this symmetry is preserved
by the governing equations. Thus, if the statistics are initially axisymmetric, as is the case
for the results reported below, they remain so. Statistical axisymmetry implies e�(k

�

)=
e�(k

�

⊥, k
�

3), where k
�

⊥ = (k
�2

1 + k
�2

2)
1/2 is the transverse wavenumber, hence e�(k

�

⊥,−k
�

3)=
e�(k

�

⊥, k
�

3) follows from e�(−k
�

)= e�(k
�

). For this reason, only results for k
�

3 ≥ 0 are given
in what follows.

Various measures of the NP energy and its spectral distribution are used to present the
results, including e�(k

�

), the total energy, ÊNP, and its kinetic and potential components,
ÊK and ÊP . The energy distributions with respect to k

�

, k
�

⊥ and k
�

3 are expressed by the
k
�

-space surface integrals

Φ(k
�

)=
∫

|k
�

|=k
� e�(k

�

)d2k
�

, (3.1)

Φ⊥(k
�

⊥)=
∫
(k
�

2
1+k

�
2
2)

1/2=k
�

⊥
e�(k

�

)d2k
�

, (3.2)

Φ‖(k
�

3)=
∫

k
�

·e=k
�

3

e�(k
�

)d2k
�

, (3.3)

1016 A57-9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
16

.7
3.

21
6.

10
, o

n 
20

 A
ug

 2
02

5 
at

 1
3:

42
:4

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
43

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10438


J.F. Scott and C. Cambon

each of which gives the total energy via

ÊNP =
∫ ∞

0
Φ(k

�

)dk
�=

∫ ∞

0
Φ⊥(k

�

⊥)dk
�

⊥ =
∫ ∞

−∞
Φ‖(k

�

3)dk
�

3. (3.4)

The quantities �, �⊥ and �‖, defined by⎛⎝�−1

�−1
⊥
�−1
‖

⎞⎠= Ê−1
NP

∫ ⎛⎝ k
�

k
�

⊥∣∣k�3
∣∣
⎞⎠ e�(k

�

)d3k
�

, (3.5)

express different measures of the size of the large scales. The numerical approximation
of e�, ÊNP, ÊK , ÊP and the quantities defined by (3.1)–(3.3) and (3.5) is described in
Appendix B.

The numerical procedure requires the initial energy density, e�(k
�

, t̂ = 0), which should
satisfy (2.41). We begin using

e�(k
�

, t̂ = 0)= 2
3π3/2 k

�2e−k
�

2
, (3.6)

the aim being to place the dominant initial energy in the large scales. We expect an initial
phase in which energy is transferred towards small scales and inertial and dissipative
ranges are formed. We study this phase, as well as the subsequent development. As noted
in the introduction, we expect energy transfer towards large scales at later times. Equation
(3.6) makes the initial energy distribution isotropic in k

�

-space (although not in k-space
unless β = 1). This type of isotropy is the one envisaged in [II] and earlier referred to
as Charney isotropy. We will later consider two other initial energy density distributions.
Note that (3.6) is consistent with the assumption of statistical axisymmetry made earlier.

Before giving results, we note some limitations of the numerical method used. Firstly,
the quantities of interest, for instance the spectral energy density, are ensemble averages,
whose accurate calculation using DNS would require very many realisations of the
flow with different, randomly chosen, initial conditions. However, this would entail
an impracticably large computational cost. Thus, as is usual in DNS, we consider the
results of single realisations, in the hope that they represent the average. For this reason,
random fluctuations are to be expected in the results. A second limitation of DNS is the
discretisation in spectral space.

Figure 1 shows the evolution of Φ(k
�

) during the initial stages. As expected, nonlinear
transfer from large to small scales leads to a power-law inertial range and the formation of
a dissipative one. At lower values of k

�

, the random fluctuations due to using a single
realisation are apparent, as is discretisation. These artefacts of the numerics are also
present in subsequent results, although we will only mention them when they have
significant implications. At the end of the given time range, t̂ = 5, having established the
dissipative range and brought the inertial range to near equilibrium, one might be tempted
to stop the calculation, but, in fact, this is far from the end of the story. A clue that this
might be the case is the power law, k

�−4, rather than the expected k
�−3.

Figure 2 shows the evolution of Φ at longer times. The spectral peak moves towards
smaller k

�

, corresponding to increasing size of the large scales due to transfer of energy
from smaller to larger ones, a process often referred to as an inverse energy cascade.
The power law in the inertial range starts off as k

�−4, but later approaches the expected
k
�−3. The decrease of the total energy, ÊNP, is only approximately 3% between the initial
instant and t̂ = 50, which is much later than the time of formation of the dissipative range
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1.0

k
�

t̂

100.3

Φ

3.0
10–8

10–5

10–2

10

Figure 1. Log–log plots of Φ(k
�
) for eleven values of t̂ , equally spaced from t̂ = 0 to t̂ = 5. The dashed line

represents the power law k
�−4.

1.0 100.3

Φ

3.0
10–8

10–5

10–2

10

t̂

k
�

Figure 2. Log–log plots of Φ(k
�
) for ten values of t̂ , equally spaced from t̂ = 5 to t̂ = 50. The finely dashed

line represents the power law k
�−4, whereas the more coarsely dashed one represents k

�−3.

(see figure 1). As discussed in [I], this suggests that there is no energy cascade towards
smaller scales, hence energy conservation in the limit in which the visco-diffusion tends
to zero. The growth in size of the large scales, the lack of a forward energy cascade and
the k

�−3 power law are each consistent with [II].
The numerical determination of the kinetic and potential components, ÊK and ÊP , of

the energy is described in Appendix B. Given (3.6), their initial values are ÊK = 2/3 and
ÊP = 1/3, hence initial Charney equipartition, ÊK = 2ÊP . To our surprise, ÊK and ÊP

showed little time dependence, ÊK increasing slightly to ÊK = 0.693 and ÊP decreasing a
little to ÊP = 0.276 at t̂ = 50. Thus, Charney equipartition persists approximately to later
times.

Figure 3 shows the evolution of Φ at still longer times. By t̂ = 100, the spectral peak
has moved to such low k

�

that the spectral discretisation of DNS is important. This places
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1.0 100.3

Φ

3.0
10–8

10–5

10–2

10

t̂

k
�

Figure 3. Log–log plots of Φ(k
�
) for four values of t̂ , equally spaced from t̂ = 50 to t̂ = 200.

a limit on how large t̂ can be before the numerical calculation loses credibility. For this
reason, we mostly restrict our attention to t̂ ≤ 50 in what follows.

Returning to the time range of figure 2, we consider the regime in which k
�−3 applies in

the inertial range. This requires sufficiently large t̂ , say t̂ > 20. Figure 4(a) shows �−1Φ as
a function of k

�

� for different times, where �(t̂) is given by (3.5). The motivation for using
k
�

� is to compensate for the growth in the size of the large scales, a size represented by �,
while the introduction of �−1Φ is based on the first equation of (3.4) and the observed near
constancy of ÊNP. Comparing figure 4(a) with figure 2, and leaving aside the dissipative
range, use of the scaled variables �−1Φ and k

�

� considerably reduces the differences
between the three times t̂ = 25, t̂ = 37.5 and t̂ = 50, while the results differ significantly in
the dissipative range. These results suggest that Φ(k

�

) is self-similar for large- and inertial-
range wavenumbers, but not for the dissipative range. The case t̂ = 5, indicated by the
dashed curve in figure 4(a), is included to show that self-similarity requires sufficiently
large t̂ . Figures 4(b) and 4(c) show similar results for Φ⊥ and Φ‖, which also appear to be
self-similar for large enough t̂ . Note that the same length scale, �(t̂), is used for all three
spectra, Φ,Φ⊥ and Φ‖. Similar conclusions are reached if �⊥ or �‖ is used instead of �.

Self-similarity ofΦ,Φ⊥ andΦ‖ suggests that the three-dimensional energy distribution,
e�(k

�

), is itself self-similar, i.e.

e�= �3 F(k
�

⊥�, k
�

3�), (3.7)

where the factor �3 arises from (2.40) and energy conservation. As noted above, we only
expect self-similarity for large- and inertial-range scales at sufficiently large t̂ . Figure 5
shows contour plots of �−3e� in the k

�

⊥�–k
�

3� plane for t̂ = 25 and t̂ = 50. The wiggles in the
curves are due to the use of a single realisation. The results for the two times are quite close,
apart from near the vertical axis, k

�

⊥�= 0, which suggests that e�(k
�

) is indeed self-similar
away from that axis. Note, however, that it does not appear to be isotropic. In particular,
the inertial-range energy distribution clearly extends further in the vertical direction than
in the horizontal one. This is the point on which our results disagree with [II].
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1.0

t̂

100.3

�
–
1
Φ

3.0

1.0 100.3 3.0

1.0 100.3 3.0

�
–
1
Φ

‖
�
–
1
Φ

⟂

10–8

10–5

10–2

10

10–8

10–5

10–2

10

10–8

10–5

10–2

10

t̂

(a)

(b)

(c)

t̂

k�
�

k⟂�
�

k3�
�

Figure 4. Log–log plots of (a) �−1Φ as a function of k
�
�, (b) �−1Φ⊥ as a function of k

�

⊥� and (c) �−1Φ‖ as
a function of k

�

3� for four values of t̂ . The dashed curves are for t̂ = 5, while the continuous curves are for
t̂ = 25, t̂ = 37.5 and t̂ = 50. The dashed straight lines represent power laws with exponent −3. The arrows
indicate the direction of increasing t̂ for the dissipative range.

Several reasons may explain the near-axis differences between t̂ = 25 and t̂ = 50
apparent in figure 5. Firstly, the numerical determination of e�(k

�

), described in Appendix
B, involves arithmetic averaging over small annular regions and the number of terms in
the average decreases as the axis is approached, leading to increased random fluctuations,
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0 8

8

k⟂�
�

k 3
�

�

Figure 5. Contours of constant �−3e�. There are five contours representing the values �−3e�= 10−5, �−3e�=
10−4, �−3e�= 10−3, �−3e�= 10−2 and �−3e�= 10−1. The continuous curves are for the time t̂ = 25, while the
dashed ones correspond to t̂ = 50.

as observed. Secondly, as discussed at the end of § 2.2, for k
�

on the axis, e�(k
�

) takes the
value given by linear theory, a value which is close to (3.6) because large-scale dissipation
is very small. Thus, the axial value cannot participate in the self-similar evolution which
appears to apply away from the axis. This suggests that that there is a near-axial region,
perhaps decreasing in extent as t̂ increases, in which self-similarity of e�(k

�

) does not apply.
The results given up to now are for the initial conditions (3.6) and we now consider the

more general ones

e�(k
�

, t̂ = 0)= 2
3π3/2α

1/2 Xe−X , (3.8)

where X = αk
�2⊥ + α−1k

�2
3 and α > 0 is a parameter that controls the ratio of the vertical

and horizontal spectral extents of the initial energy density. The value α= 1 leads to
(3.6), the isotropic initial energy distribution considered previously, whereas the initial
conditions are anisotropic for other values of α. The multiplicative factor α1/2 in (3.8)
ensures that the condition (2.41) is satisfied. Like (3.6), (3.8) is consistent with statistical
axisymmetry.

Calculations were performed for the two values α= 1/2 and α = 2 and results similar
to figures 1–4 obtained. Here, ÊNP was again found to be nearly constant. As noted earlier,
when α= 1, the initial Charney equipartition of kinetic and potential energies is nearly
preserved following time evolution. Figure 6 shows ÊK and ÊP as functions of time for
α = 1/2 and α= 2. Although starting well away from it, they evolve towards approximate
equipartition. Thus, when it is not initially present, equipartition is approached, but, like
the k

�−3 power law and self-similarity, takes some time to develop. Furthermore, the end
results only approximate exact Charney equipartition.

Figure 7 compares t̂ = 50 contours of �−3e� for α = 1/2 and α = 2 with those for α= 1.
There is quite close agreement of α= 1/2 with α= 1 away from the vertical axis. The
disagreement appears to extend further from the axis for α = 2, but, away from the axis,
there does not appear to be a strong dependency on the initial conditions.

Figure 8 shows �(t̂), �⊥(t̂) and �‖(t̂) for α = 1/2, α= 1 and α = 2. Although the results
for the different values of α are significantly different in the initial stages, the differences
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ˆ

Figure 6. Plots of ÊK and ÊP as functions of time for α = 1/2 (finely dashed curves) and α = 2 (coarsely
dashed curves). The two continuous horizontal lines represent the equipartition values, 1/3 and 2/3.
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Figure 7. Contours of constant �−3e� for t̂ = 50 and (a) α = 1 and α = 1/2, (b) α = 1 and α = 2. The
continuous curves are for α = 1, while the dashed ones are for α = 1/2 and α = 2. There are five contours
representing the values �−3e�= 10−5, �−3e�= 10−4, �−3e�= 10−3, �−3e�= 10−2 and �−3e�= 10−1.
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Figure 8. Log–log plots of �, �⊥ and �‖ as functions of t̂ up to t̂ = 200 for (a) α = 1/2, (b) α = 1 and
(c) α = 2. The dashed straight lines represent the power law t̂1/2.

are rather minor for large enough t̂ . It should, however, be borne in mind that, as noted
earlier, the numerical results lose credibility due to discretisation when t̂ is too large. This
is no doubt the case towards the right-hand end of figure 8 and may explain the oscillations
of �‖(t̂) apparent there. For the larger values of t̂, �(t̂), �⊥(t̂) and �‖(t̂) are all increasing,
corresponding to the increasing size of the large scales. An approximate power law of
t̂1/2 is apparent. We note that such a square-root time dependence has been reported for
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0 8

8

β
0–
1
k 3
�

k⟂�
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�

Figure 9. Contours of constant �−3e�in the k
�

⊥�–β−1
0 k

�

3� plane for α = 1, t̂ = 37.5 and β0 = 1.4. There are five
contours representing the values �−3e�= 10−5, �−3e�= 10−4, �−3e�= 10−3, �−3e�= 10−2 and �−3e�= 10−1.

two-dimensional turbulence, see Lowe & Davidson (2005), but, to our knowledge, has not
yet been explained theoretically.

Given the results described thus far, it is plausible that, at sufficiently large t̂ and in the
absence of numerical approximations, the energy density in k

�

-space has the self-similar
form (3.7) for large- and inertial-range scales away from the vertical axis. Equation (3.7)
implies

ê = β�3 F(k⊥�, βk3�), (3.9)

for the energy density in k-space, where k⊥ = (k2
1 + k2

2)
1/2. Given that, with the exception

of the dissipative range, the parameter β was eliminated by the transformations of § 2.3, the
functions F and �(t̂) are independent of β. Further assuming, as suggested by our results,
that these functions are independent of the initial conditions, they are universal. Equation
(3.9) indicates that changing β does not essentially modify the energy distribution. The
spectral extent with respect to k3 varies proportional to β−1, while the multiplicative fac-
tor, β�3, maintains the value ÊNP = 1. As β → 0, the purely stratified case is approached
and the spectral extent with respect to k3 is large, corresponding to near horizontal
stratification. Likewise, as β → ∞, the purely rotating case is approached and the energy
density is concentrated near k3 = 0, hence vertically orientated structures dominate.
Increasing t̂ causes �(t̂) to increase, corresponding to growth in size of the large scales.
Each of these results might be expected on physical grounds, but (3.9) makes more precise,
quantitative predictions, expressing self-similarity, universality and energy conservation.

Turning attention to the inertial range, as noted earlier, the self-similar energy density
appears to be anisotropic in k

�

-space, extending further in k
�

3 than in k
�

⊥. This suggests
that it could be brought closer to isotropy by a multiplicative rescaling of k

�

3. Figure 9
shows contours of �−3e� in the k

�

⊥�− β−1
0 k

�

3� plane for α= 1, t̂ = 37.5 and β0 = 1.4. The
result is approximately isotropic away from the vertical axis and we henceforth consider
the consequences of supposing isotropy of e� following such rescaling of k

�

3. Given such
isotropy, (3.7) implies

F(k
�

⊥�, k
�

3�)= f ((k
�2⊥ + β−2

0 k
�2

3)
1/2�). (3.10)
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1.0

x

f (
x)

100.3 3.0
10–8

10–5

10–2

10

Figure 10. Log–log plot of f (x) obtained using results for t̂ = 37.5. The continuous curve is for α = 1, the
finely dashed one for α = 1/2 and the more coarsely dashed one for α = 2. The dashed straight line represents
the power law x−5.

The numerical determination of the function f (x) is described in Appendix B and
results are given in figure 10. The near coincidence of the results for the different values
of α supports the suggestion that the self-similar energy density does not depend on the
initial conditions. An x−5 power law is apparent, hence f (x)∼ Cx−5, which implies

e�= C�−2(k
�2⊥ + β−2

0 k
�2

3)
−5/2, (3.11)

for the inertial range, away from the vertical axis, where the constant C has the
approximate value C = 0.03. Equation (3.11) leads to power laws of exponent −3 for
Φ,Φ⊥ and Φ‖, agreeing with results given earlier. It also implies

ê = Cβ�−2

(
k2⊥ +

(
β

β0

)2

k2
3

)−5/2

, (3.12)

hence inertial-range isotropy in k-space when β = β0. Such isotropy is in agreement with
the results of [I] for β = 1.4 (see figure 1e of that article). Indeed, this was the reason for
the choice, β0 = 1.4, in figure 9. Anisotropy for other values of β is apparent from (3.12)
and figure 1 of [I]. Note that we have no theoretical explanation of the value β0 = 1.4.

4. Conclusions

4.1. Discussion
This article has been devoted to weak, freely decaying, homogeneous turbulence subject
to rotation and stratification. The flow is expressed as a linear combination of wave and
NP modes and the weak-turbulence result of [I], that the NP component decouples from
the wave one at leading order, used to restrict attention to the NP component. The NP
modal amplitude, a0(k), where k is the wave vector in spectral space, evolves according to
(2.20)–(2.22). It was shown that these equations are equivalent to (2.21), (2.23) and (2.24),
which are those of three-dimensional, QG turbulence. Thus, our results apply directly to
QG turbulence.

The turbulent energy, which has kinetic and potential components, can be written as
the sum of wave and NP contributions. Given statistical homogeneity, the second-order
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moments of the NP modal amplitudes have the form

a∗
0(k)a0

(
k′)= A00(k)δ

(
k − k′), (4.1)

where A00 is real, non-negative and such that A00(−k)= A00(k). The NP part of the
energy density in spectral space is eNP(k)= A00(k)/2 and gives the total, average NP
energy per unit volume in physical space, ENP, via (2.16).

Since the turbulence is weak, a0 is small. A parameter εNP, given by (2.30), was
introduced as a measure of weakness and used to scale the modal amplitude as â = ε−1

NPa0

and time as t̂ = εNPt . Corresponding scalings of eNP and ENP are ê = ε−2
NPeNP and ÊNP =

ε−2
NP ENP, which are related by (2.29). Equation (2.30) means that the scalings are such that

ÊNP = 1 at the initial instant, t̂ = 0.
Following scaling, the evolution equations are (2.25)–(2.27). These equations depend

on the parameter β, a dependency which is almost entirely removed by a change of
the variables k and â. Choosing coordinates such that x1 and x2 are horizontal, while
x3 is vertical, the new wave vector k

�

, where k
�

1 = k1, k
�

2 = k2 and k
�

3 = βk3, is used to
describe position in spectral space, whereas the NP modal amplitude is described by
a�(k

�

)= β−1â(k). These variable transformations lead to the evolution equations (2.34)–
(2.37), equations which only depend on β via the visco-diffusive (dissipative) coefficient,
D̂, of (2.35). This remaining dependency is apparent from (2.39). The energy density in k

�

-
space is e�(k

�

)= β−1ê(k) and gives ÊNP via (2.40). The kinetic and potential contributions
to e� are given by (2.42). Note that [II] postulated isotropy of e�(k

�

). If such isotropy is
supposed, the equipartition relation that the average kinetic energy be twice the potential
one follows from (2.42) and (2.43).

The energy density e�(k
�

) and a number of other measures of the energy distribution in
k
�

-space were used to present the results. The spectra Φ(k
�

), Φ⊥(k
�

⊥) and Φ‖(k
�

3), where
k
�= |k�| and k

�

⊥ = (k
�2

1 + k
�2

2)
1/2, are given by (3.1)–(3.3) and represent the distributions of

energy over k
�

, k
�

⊥ and k
�

3, as indicated by (3.4). The quantities �(t̂), �⊥(t̂) and �‖(t̂) are
defined by (3.5) and are measures of the size of the large scales.

As noted above, (2.34)–(2.37) depend on β via the visco-diffusive term of (2.35).
However, as usual in studies of turbulence, visco-diffusive dissipation is supposed
negligible for the large scales, becoming important only for very small ones (the dissipative
scales). Thus, we expect the β-dependency of (2.39) to affect sufficiently small scales, but
not the large- or inertial-range ones, which are the focus of this work. In fact, the only
reason for including dissipation is to avoid numerical instabilities which tend to arise
otherwise. We suppose that the precise form, (2.39), of the dissipative damping factor,
D̂(k

�

), is unimportant as regards the large- and inertial-range scales studied here. In the
hope of extending the inertial range to higher k

�

than would be the case using (2.39), a
hyperviscous damping factor, D̂(k

�

)= dk
�6, is used in the numerical calculations. The use

of a hyperviscosity completely removes the β-dependence. The hyperviscosity, d, is a
numerical parameter and a small value is required for small dissipation of the large scales.
We used d = 10−6.

Having replaced the visco-diffusive term by a hyperviscous one, (2.34)–(2.37) are
solved numerically as described in Appendix B. The method is similar to that of
classical DNS of homogeneous turbulence. Thus, given a� at some time t̂ , numerical
approximation of the Fourier transforms in (2.36) and (2.37) is used to determine û j and q̂
in physical space. The product û j q̂ is then taken and a numerical Fourier transform used
to approximate the right-hand side of (2.35).
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When considering results, two limitations of the numerical method should be borne in
mind. Firstly, the quantities of interest are ensemble averages, whose accurate calculation
using DNS would require very many realisations of the flow with different, randomly
chosen, initial conditions. However, this would entail an impracticably large computational
cost. Thus, as is usual in DNS, we consider the results of single realisations, in the hope
that they represent the average. For this reason, random fluctuations are to be expected in
the results. A second limitation of DNS is the discretisation in spectral space.

4.2. Results
Turning attention to the results, we first undertook a calculation with the initial energy
density (3.6). Figures 1–3 show the resulting Φ(k

�

) at different times. In the early stages
(figure 1), energy transfer from large to small scales leads to an inertial, then a dissipative
range. At the end of this stage, there is a k

�−4 power law in the inertial range. In figure 2,
the spectral peak moves towards lower k

�

, indicating a growth in size of the large scales,
while the inertial-range power law changes gradually from k

�−4 to k
�−3. There is only a

slight decrease, 3 %, of ÊNP between the initial instant, t̂ = 0, and t̂ = 50, which is much
later than that (t̂ ∼ 5) required for formation of the dissipative range. Such near energy
conservation suggests that there is no forward energy cascade. The growth in size of the
large scales, the lack of a forward energy cascade and the k

�−3 power law are each consistent
with [II]. However, as the transition from k

�−4 to k
�−3 shows, attaining the regime in which

the results of [II] hold requires sufficiently long times (say t̂ > 20), considerably longer
than those for formation of the inertial and dissipative ranges.

Figure 3 shows the evolution of Φ at later times and indicates that the spectral
discretisation of DNS becomes important due to the growth in size of the large scales.
This places a limit on how large t̂ can be before the numerical calculation loses credibility.
For this reason, we mostly restrict our attention to t̂ ≤ 50.

Figure 4(a) shows �−1(t̂)Φ as a function of k
�

�(t̂) for times t̂ = 5, t̂ = 25, t̂ = 37.5 and
t̂ = 50. Here, k

�

� is used to suppress the growth of the large scales noted above, while
�−1Φ is suggested by energy conservation. For t̂ = 25, t̂ = 37.5 and t̂ = 50, the use of
these variables considerably reduces the differences between these times for large- and
inertial-range scales. Indeed, below the dissipative range, it appears thatΦ has self-similar
evolution for times such that the k

�−3 law applies. That this requires sufficiently large t̂ is
illustrated by the results for t̂ = 5. Figures 4(b) and 4(c) suggest that Φ⊥(k

�

⊥) and Φ‖(k
�

3)

are also self-similar in the large- and inertial-scale ranges for large enough t̂ .
Self-similarity ofΦ,Φ⊥ andΦ‖ suggests that the three-dimensional energy distribution,

e�(k
�

), is itself self-similar, i.e. (3.7) applies outside the dissipative range and for sufficiently
large t̂ . As a test of this hypothesis, figure 5 shows contour plots of �−3e� in the k

�

⊥�–k
�

3�
plane for t̂ = 25 and t̂ = 50. The wiggles in the curves are due to the use of a single
realisation and illustrate the difficulties of using DNS to obtain definitive results for
e�(k

�

). Nonetheless, figure 5 appears to support the hypothesis of self-similarity of e�(k
�

),
away from the vertical axis, k

�

⊥ = 0. That such self-similarity cannot apply on the axis is
apparent from our analytical demonstration that e�(k

�

) is there determined by linear theory,
hence dissipation alone. Since the large-scale dissipation is very small, the axial e�(k

�

) is
nearly time-independent. As a result, there is a near-axial region, perhaps of extent which
tends to zero as t̂ → ∞, in which self-similarity does not apply.
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To study the effects of changing the initial conditions, we performed calculations using
the initial conditions (3.8) with α = 1/2 and α= 2. Overall, the results agree with the case
α= 1 considered above and they suggest that the self-similar result of time evolution is
independent of the initial conditions. If true, the function F in (3.9) is universal.

The contours of constant �−3e� in figures 5 and 7 are non-circular, even away from the
axis, which suggests that e�(k

�

) is anisotropic. The results for the inertial range indicate
a preference for energy transfer in the vertical direction. Despite anisotropy, we found
approximate Charney equipartition of kinetic and potential energies at sufficiently large
times, as indicated by figure 6. How such equipartition arises without the underlying
isotropy is unclear.

Concerning the inertial range, although the self-similar energy distribution is
anisotropic, we found that it could be made approximately Charney isotropic by using
the variable β−1

0 k
�

3, rather than k
�

3, where β0 = 1.4. This leads to (3.12) for the inertial-
range energy distribution in k-space at sufficiently large times and away from the vertical
axis. This distribution is isotropic in the usual sense when β = β0, but not for other values
of β. Note that such isotropy in k-space for β = β0 does not imply agreement with the
prediction of isotropy in k

�

-space by [II]. The distribution in k
�

-space is always anisotropic
and given by (3.11), which is, of course, independent of β.

A further significant result concerns the time dependence of the measures, �, �⊥ and �‖,
of the size of the large scales, whose temporal evolution is shown in figure 8. They seem
to follow a t̂1/2 power law in the range of time for which we expect self-similarity.

To summarise, following a phase in which energy transfer from large to small scales
creates an inertial range, then a dissipative one, we find that considerable further evolution
is needed before the proposals of [II] are applicable. The results show near conservation
of energy and growth in size of the large scales, both of which are indicative of the inverse
energy cascade proposed by [II]. They also agree with the k−3 inertial-range spectrum and
(approximately) with the equipartition of kinetic and potential energies suggested by [II].

However, our results also suggest that the assumption of isotropy by [II] is incorrect
and further indicate self-similarity of the time evolution of the spectral energy distribution
away from the vertical axis and at large enough times. Self-similarity, the k−3 spectrum
and approximate equipartition appear at about the same time, which suggests they are
related.

Following our work, one might ask why equipartition appears to be (approximately)
respected by the self-similar flow, although Charney isotropy, from which equipartition
was deduced in [II], is not. It would also be interesting to better understand the lack of
self-similarity near the vertical axis. Finally, a theoretical understanding of the apparent
long-time t̂1/2 dependence of the size of the large scales is lacking, as is an explanation
of the observed value of the scaling factor, β0 = 1.4, which appears to make the inertial-
range, self-similar energy distribution in k-space isotropic for β = β0.

Declaration of interests. The authors report no conflict of interest.

Appendix A: The three-dimensional QG problem and derivation of (2.23) and (2.24)
Define the potential vorticity by

q = ∂uNP
2

∂x1
− ∂uNP

1
∂x2

− β
∂ηNP

∂x3
, (A1)
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whose Fourier transform gives

q̃ = i
(

k1ũNP
2 − k2ũNP

1 − βk3η̃NP
)
. (A2)

The inverse Fourier transforms of (2.21) and (2.22) give ũNP
i = a0v

(0)
i , η̃NP = a0η

(0). Using
this result, (2.17), (2.18) and (A2),

q̃ = (
k2

1 + k2
2 + β2k2

3
)1/2

a0. (A3)

The Fourier inverse of (A3) gives (2.24).
Define ψ via its Fourier transform

ψ̃ = −(k2
1 + k2

2 + β2k2
3
)−1/2

a0. (A4)

Given ũNP
i = a0v

(0)
i , η̃NP = a0η

(0), (2.17), (2.18) and (A4) yield

ũNP
1 = −ik2ψ̃, ũNP

2 = ik1ψ̃, ũNP
3 = 0, η̃NP = −iβk3ψ̃, (A5)

while (A3) and (A4) give

q̃ = −(k2
1 + k2

2 + β2k2
3
)
ψ̃. (A6)

The inverse Fourier transforms of (A5) and (A6) imply

uNP
1 = − ∂ψ

∂x2
, uNP

2 = ∂ψ

∂x1
, uNP

3 = 0, ηNP = −β ∂ψ
∂x3

, (A7)

and

q = ∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

+ β2 ∂
2ψ

∂x2
3
. (A8)

Equations (2.19), (2.20), (A3) and (A4) imply

∂ q̃

∂t
− k2(Du

(
k2

1 + k2
2
)+ Dηβ2k2

3
)
ψ̃

= −i
(
k2

1 + k2
2 + β2k2

3
)1/2

k j
(
v
(0)∗
i

˜uNP
i uNP

j + η(0)
∗
˜ηNPuNP

j

) . (A9)

Employing (2.17) and (2.18),(
k2

1 + k2
2 + β2k2

3
)1/2(

v
(0)∗
i

˜uNP
i uNP

j + η(0)
∗
˜ηNPuNP

j

)
= −i

(
k2

˜uNP
1 uNP

j − k1
˜uNP
2 uNP

j + βk3
˜ηNPuNP

j

)
,

(A10)

which is used to express the right-hand side of (A9). Taking the inverse Fourier transform

∂q

∂t
− ∇2

(
Du

(
∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

)
+ Dηβ2 ∂

2ψ

∂x2
3

)

= ∂

∂x j

(
∂

∂x2

(
uNP

1 uNP
j

)− ∂

∂x1

(
uNP

2 uNP
j

)+ β
∂

∂x3

(
ηNPuNP

j

))
.

(A11)
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Given ũNP
i = a0v

(0)
i , (2.17) implies k j ũNP

j = 0, hence ∂uNP
j /∂x j = 0. Using this result, the

right-hand side of (A11) can be rewritten as

∂

∂x2

(
uNP

j
∂uNP

1
∂x j

)
− ∂

∂x1

(
uNP

j
∂uNP

2
∂x j

)
+ β

∂

∂x3

(
uNP

j
∂ηNP

∂x j

)

= ∂uNP
j

∂x2

∂uNP
1

∂x j
− ∂uNP

j

∂x1

∂uNP
2

∂x j
+ β

∂uNP
j

∂x3

∂ηNP

∂x j
(A12)

+ uNP
j

∂

∂x j

(
∂uNP

1
∂x2

− ∂uNP
2

∂x1
+ β

∂ηNP

∂x3

)
.

Since uNP
3 = 0, the first term on the right-hand side of (A12) gives

∂uNP
j

∂x2

∂uNP
1

∂x j
= ∂uNP

1
∂x2

∂uNP
1

∂x1
+ ∂uNP

2
∂x2

∂uNP
1

∂x2
= ∂uNP

1
∂x2

(
∂uNP

1
∂x1

+ ∂uNP
2

∂x2

)
= 0, (A13)

where we have again used ∂uNP
j /∂x j = 0. Similar reasoning implies that the second term

on the right-hand side of (A12) is also zero, while, using (A7), the third term can be
rewritten as

β
∂uNP

j

∂x3

∂ηNP

∂x j
= β2

(
∂2ψ

∂x2∂x3

∂2ψ

∂x1∂x3
− ∂2ψ

∂x1∂x3

∂2ψ

∂x2∂x3

)
= 0. (A14)

Thus, only the final term of (A12) is non-zero. Using (A1) to express that term, (A11)
gives

∂q

∂t
+ uNP

j
∂q

∂x j
= ∇2

(
Du

(
∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

)
+ Dηβ

2 ∂
2ψ

∂x2
3

)
. (A15)

Equations (A7), (A8) and (A15) form the three-dimensional QG equations with constant
density and Brunt–Vaisala frequency. To see this, we refer to [II], in particular equation (8)
of that article. Note that the notation β has different meanings in [II] and the present work.
The work in [II] uses β to refer to a β-plane effect which is not present in our problem,
hence his β should be taken as zero. Note also that equation (8) of [II] does not include
visco-diffusion, represented by the right-hand side of equation (A15).

Since ∂uNP
j /∂x j = 0, (A15) implies

∂q

∂t
+ ∂

∂x j

(
uNP

j q
)= ∇2

(
Du

(
∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

)
+ Dηβ

2 ∂
2ψ

∂x2
3

)
. (A16)

Taking the Fourier transform of (A16) and using (2.19), (A3) and (A4) gives (2.23).

Appendix B: Numerical method
The flow is approximated as periodic with respect to x1, x2 and x3 Thus, (2.36) and (2.37)
are replaced by the Fourier series
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ûi =
∑
k
�

b(k
�

)v
(0)
i (k

�

) exp(i k
� · x�), (B1)

q̂ =
∑
k
�

k
�

b(k
�

) exp(i k
� · x�), (B2)

in which the sums are over k
�

having components k
�

1 = 2πl1/L1, k
�

2 = 2πl2/L2, k
�

3 =
2πl3/L3, where the li take integer values and Li are the spatial periods. As usual in
DNS, the spatial periods, Li , need to be sufficiently large that periodicity is unimportant.
Another way of putting this is that the spacing, 2π/Li , in spectral space should be
sufficiently small. The numerical equivalent of (2.35) is

db

dt̂
+ D̂b = −ik

�−1k
�

j
˜̂̃u j q̂, (B3)

with suitable interpretation of ˜̂̃u j q̂ in terms of discrete Fourier transforms.
The quantity v(0)i (k

�

) in (B1) is given by (2.32). There is, however, a problem with both
(2.32) and (B3) when k

�= 0, namely a zero-by-zero division, which is resolved as follows.
The k → 0 limit of (2.20) implies

∂a0

∂t
+ D00a0 = 0, (B4)

for k = 0. We specialise to initial conditions such that a0(k = 0)= 0, hence (B4) indicates
that this is true at all later times. The numerical equivalent of this result is b(k

�= 0)= 0,
which we assume to hold. Thus, the k

�= 0 term in (B1) is zero and (B3) need only be
applied for k

� �= 0, hence avoiding zero-by-zero division.
In addition to supposing periodicity, the sums in (B1) and (B2) are truncated to

|li | ≤ Ki , where Ki are positive integers, which must be sufficiently large that the smallest
dynamically significant length scales of the flow are resolved. Evaluating (B1) and (B2)
at the discrete points x�1 = p1L1/N1, x�2 = p2L2/N2, x�3 = p3L3/N3, where Ni > 2Ki and
0 ≤ pi < Ni are integers, the result can be expressed as

ûi =
N1−1∑
s1=0

N2−1∑
s2=0

N3−1∑
s3=0

ξi (s1, s2, s3) exp
(

2π i

(
s1 p1

N1
+ s2 p2

N2
+ s3 p3

N3

))
, (B5)

q̂ =
N1−1∑
s1=0

N2−1∑
s2=0

N3−1∑
s3=0

ξ(s1, s2, s3) exp
(

2π i

(
s1 p1

N1
+ s2 p2

N2
+ s3 p3

N3

))
, (B6)

in which ξi = ξ = 0 unless si ≤ Ki or si ≥ Ni − Ki . Otherwise,

ξi (s1, s2, s3)= b(k
�

)v
(0)
i (k

�

), (B7)

ξ(q1, q2, q3)= k
�

b(k
�

), (B8)

where k
�= 2π(l1/L1, l2/L2, l3/L3), li = si when si ≤ Ki and li = si−Ni for si ≥ Ni−Ki .

Equations (B5) and (B6) are discrete Fourier transforms which are evaluated using the fast
Fourier transform (FFT) algorithm.
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Having determined ûi and q̂ in physical space, the product û j q̂ can be calculated.
Performing the discrete Fourier transform inverse to (B5) and (B6)

χ j (s1, s2, s3)= 1
N1 N2 N3

N1−1∑
p1=0

N2−1∑
p2=0

N3−1∑
p3=0

û j q̂(p1, p2, p3)

× exp
(

−2π i

(
s1 p1

N1
+ s2 p2

N2
+ s3 p3

N3

))
, (B9)

the nonlinear term in (B3) follows from˜̂̃u j q̂(l1, l2, l3)= χ j (s1, s2, s3), (B10)

where si = li for 0 ≤ li ≤ Ki and si = Ni + li for −Ki ≤ li < 0. As for (B5) and (B6), FFT
is used to evaluate (B9).

Writing the evolution equation (B3) as

db

dt̂
+ D̂b = γ, (B11)

a time-stepping scheme is introduced. Time is discretised to the values t̂n = nΔ, where Δ
is the time step, and (B11) gives

b(t̂n+1)= b(t̂n) exp(−D̂�)+
∫ t̂n+1

t̂n
γ (t̂ ′) exp(D̂(t̂ ′ − t̂n+1))dt̂ ′. (B12)

Given b(t̂n), γ (t̂n) is determined using FFT as described above. As a first approximation,
γ (t̂ ′) is taken as constant and equal to γ (t̂n), hence

b† = b(t̂n) exp(−D̂�)+ γ (t̂n)
1 − exp(−D̂�)

D̂
, (B13)

as an approximate value of b(t̂n+1). To increase the precision to second order, let γ † be
the value obtained using (b(t̂n)+ b†)/2, which approximates the value of b(t̂) at time
t̂n +�/2. Thus,

b(t̂n+1)= b(t̂n) exp(−D̂�)+ γ † 1 − exp(−D̂�)

D̂
, (B14)

completes the time step. Note that, as k
�

increases, so does D̂(k
�

), and, when D̂(k
�

)�

becomes of O(1), dissipative effects are significant within a time step. The above scheme
maintains precision in this case, provided b(t̂), and hence γ (t̂), does not change too much
over a single step. The scheme is an example of a general class, known as integrating factor
methods (see e.g. Minchev & Wright (2005)).

The numerical equivalent of (2.38) is

η̂=
∑
k
�

b(k
�

)η(0)(k
�

) exp(i k
� · x�). (B15)

Using (B1) and (B15), as well as their complex conjugates,

1
2(ûi ûi + η̂2)= 1

2
∑

k
�

,k′� b∗(k
�

)b(k′� )
(
v
(0)∗
i (k

�

)v
(0)
i (k′� )+ η(0)

∗
(k
�

)η(0)(k
�′)
)

× exp(i(k
�′ − k

�

) · x�),
(B16)
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gives the average energy per unit volume. Statistical homogeneity means that (B16) should

be independent of x�, hence b∗(k
�

)b(
�

k′)= 0 for k′ �= k. Thus,

1
2
(ûi ûi + η̂2)= 1

2

∑
k
�

|b|2(k�)
(
v
(0)∗
i (k

�

)v
(0)
i (k

�

)+ |η(0)|2(k�)
)
. (B17)

Using (2.32)

1
2
(ûi ûi + η̂2)= 1

2

∑
k
�

|b|2(k�), (B18)

which shows that the energy contribution of wave vector k
�

is |b|2(k�)/2.
Recalling that the spatial periods, Li , should be large (in principle, tending to infinity)

to avoid significant effects of periodicity, the density, L1L2L3/8π3, of discrete wave
vectors in spectral space is also large. Thus, we interpret the sum in (B18) as a numerical
approximation of the integral in (2.40), leading to

e�(k
�

)= L1L2L3

16π3

∣∣b∣∣2(k�), (B19)

as the energy density in k
�

-space.
Equation (B19) is used in the initialisation of the DNS. The initial conditions for b(k

�

)

are subject to some constraints. In particular, they are of zero mean and, in order that
the resulting flow be real, b(−k

�

)= b∗(k
�

). Supposing that the initial e�(k
�

) is given and is
non-negative and such that e�(−k

�

)= e�(k
�

), the calculation is initialised according to (B19)
using

b(k
�

)=
(

16π3

L1L2L3
e�(k

�

)

)1/2

exp
(
iψ(k

�

)
)
, (B20)

where the phases ψ(k
�

) are random variables, uniformly distributed between −π and π
and independent apart from the reality constraint ψ(−k

�

)= −ψ(k�).
Once the b(k

�

) have been calculated, we want to extract results. However, as noted in
the main text, there is a problem. The accurate calculation of ensemble averages, such as

|b|2(k�), would require an impracticably large number of DNS runs. Thus, we consider a
single run and suppose the results are representative of the average. The total energy is
determined using

ÊNP = 1
2

∑
k
�

∣∣b∣∣2(k�), (B21)

rather than (B18), while (2.42), (2.43) and (3.5) lead to

ÊK = 1
2

∑
k
�

k
�2

1 + k
�2

2

k
�2

∣∣b∣∣2(k�), ÊP = 1
2

∑
k
�

k
�2

3

k
�2

∣∣b∣∣2(k�), (B22)

⎛⎝�−1

�−1
⊥
�−1
‖

⎞⎠= 1
2

Ê−1
NP

∑
k
�

∣∣b∣∣2(k�)
⎛⎝k

�

k
�

⊥∣∣k�3
∣∣
⎞⎠. (B23)
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Note that, to avoid zero-by-zero division and recalling that b(k
�= 0)= 0, the k

�= 0 term in
the sums of (B22) is dropped.

From here on, we make the simplifying assumption that L1 = L2 = L3 = L and K1 =
K2 = K3 = K . Here, Φ(k

�

) is determined by considering the energy contained in the
spherical shell S(m) defined by k

�

m ≤ k
�

< k
�

m+1 in k
�

-space, where 0 ≤ m ≤ K takes integer
values and

k
�

m = π

L

(
2m − 1

)
. (B24)

Thus, dividing the energy in S(m) by its thickness, 2π/L ,

Φ
(
k
�)= L

4π

∑
k
�

∈S(m)

∣∣b(k�)∣∣2 (B25)

gives Φ at the shell mid-point

k
�= 2π

L
m 0 ≤ m ≤ K . (B26)

Φ⊥ and Φ‖ are determined in the much the same way. Let S⊥(m) denote the region
k
�

m ≤ k
�

⊥ < k
�

m+1, then

Φ⊥
(
k
�

⊥
)= L

4π

∑
k
�

∈S⊥(m)

∣∣b(k�)∣∣2, (B27)

provides Φ⊥ for

k
�

⊥ = 2π
L

m 0 ≤ m ≤ K . (B28)

Similarly, let S‖(m) denote the region the region k
�

m ≤ k
�

3 < k
�

m+1, then

Φ‖
(
k
�

3
)= L

4π

∑
k
�

∈S‖(m)

∣∣b(k�)∣∣2, (B29)

gives Φ⊥ for

k
�

3 = 2π
L

m 0 ≤ m ≤ K . (B30)

The energy distribution, e�(k
�

), is approximated as follows. Statistical axisymmetry
of the flow prior to numerical discretisation is supposed, so e�(k

�

)= e�(k
�

⊥, k3). Define
axisymmetric regions D(m⊥,m‖) in spectral space by km⊥ ≤ k⊥ < km⊥+1 and km‖ ≤
k3 < km‖+1, where 0 ≤ m⊥ ≤ K and 0 ≤ m‖ ≤ K . Let

Bm⊥m‖ = L3

16π3 Nm⊥m‖

∑
k
�

∈D
(

m⊥,m‖
) ∣∣b(k�)∣∣2, (B31)

where the sum is over discrete wave vectors inside D(m⊥,m‖) and Nm⊥m‖ is the number
of such wave vectors (which is non-zero given the construction of D(m⊥,m‖)). Taking

1016 A57-27

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
16

.7
3.

21
6.

10
, o

n 
20

 A
ug

 2
02

5 
at

 1
3:

42
:4

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
43

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10438


J.F. Scott and C. Cambon

the average of (B31) and using (B19)

Bm⊥m‖ = 1
Nm⊥m‖

∑
k
�

∈D
(

m⊥,m‖
) e�(k

�

). (B32)

If the region is small in the k⊥--k3 plane (large enough L), variations of e�(k
�

) across
D(m⊥,m‖) can be neglected and the right-hand side of (B32) approximates e�(k

�

)

throughout the given region, hence

e�(k
�

)= Bm⊥m‖ . (B33)

The problem is that, as noted earlier, it is not feasible to determine the ensemble average
of Bm⊥m‖ using DNS. Thus, we take the right-hand side of (B31) as representative of
e�(k⊥, k3) at

k⊥ = 2π
L

m⊥ 0 ≤ m⊥ ≤ K , (B34)

k3 = 2π
L

m‖ 0 ≤ m‖ ≤ K . (B35)

The function f (x) is determined as follows. Let V (m) denote the region

k
�

m ≤ (k�2⊥ + β−2
0 k

�2
3
)1/2

< k
�

m+1, (B36)

then

L3

16π3�3 Nm

∑
k
�

∈V (m)

∣∣b(k�)∣∣2 (B37)

gives the value of f (x) at

x = 2π�
L

m 0 ≤ m ≤ K , (B38)

where Nm is the number of discrete wave vectors in V (m).
The numerical parameters used to obtain the results described in § 3 are Ni = 512,

Ki = 255, Li = 60, �= 10−2 and d = 10−6, where the hyperviscous damping factor is
D̂ = dk

�6
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