J. Austral. Math. Soc. (Series A) 58 (1995), 219-221

ON ELEMENTARY AMENABLE GROUPS OF FINITE HIRSCH NUMBER

B. A. F. WEHRFRITZ

(Received 15 June 1992; revised 15 August 1992)

Communicated by H. Lausch

Abstract

We give an alternative short proof of a recent theorem of J.A. Hillman and P.A. Linnell that an elementary amenable group with finite Hirsch number has, modulo its locally finite radical, a soluble normal subgroup with index and derived length bounded only in terms of the Hirsch number of the group.

1991 Mathematics subject classification (Amer. Math. Soc.): 20F19.

For any group G, let $\tau(G)$ denote its unique maximal locally finite normal subgroup. In [2] Hillman and Linnell prove that there are integer-valued functions d(h) and M(h) of h only such that for any elementary amenable group G with finite Hirsch number h(G) = h there is a soluble normal subgroup of $G/\tau(G)$ with derived length at most d(h) and index at most M(h), the case where $h(G) \leq 3$ being dealt with in [1]. Here we offer an alternative short proof of this theorem, a proof that also makes explicit a little more of the structure of these groups. The phrase 'bounded by an integer-valued function of n only' we shorten to 'n-bounded'.

(a) Let G be a group with $\tau(G) = \langle 1 \rangle$ and with a torsion-free abelian normal subgroup A of finite rank r such that G/A is locally finite. Then G has a torsion-free abelian normal subgroup with rank r and r-bounded index.

Set $C = C_G(A)$. Then C is centre by locally-finite, so C' is locally finite (Schur) and $C' = \langle 1 \rangle$. Then C is torsion-free abelian, necessarily of rank r. Also G/C is isomorphic to a locally finite subgroup of $GL(r, \mathbb{Q})$ and therefore has r-bounded order ([6, 9.33 ii & iii]).

^{© 1995} Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

(b) Let T be a normal subgroup of finite order m of a group G such that G/T is torsion-free abelian of rank $r < \infty$. Then G has a torsion-free abelian normal subgroup of finite rank r and index dividing $m^{2r+1}.m!$.

Set $C = C_G(T)$. Then (G : C) divides m!. Also C is nilpotent of class at most 2 with |C'| dividing m. Hence $A = C^m$ is abelian, so A^m is torsion-free abelian, necessarily of rank r. Also $(C : A^m)$ divides m^{2r+1} .

Let \mathfrak{X}_h denote the class of all groups G with a series of finite length whose factors are locally finite or torsion-free abelian, such that the sum h(G) of the ranks of the torsion-free abelian factors is at most h. Here h(G) is an invariant of G. By (a minor extension of) a theorem of Mal'cev ([4, Theorem 3]) the factor $G/\tau(G)$ of such a group G has a poly torsion-free abelian, characteristic subgroup of finite index. Stronger still is the following.

(c) There is an integer-valued function i(h) of h only such that a group G in \mathfrak{X}_h has a characteristic subgroup S with $(G:S) \leq i(h)$ and $S/\tau(S)$ poly torsion-free abelian of derived length at most h. The maximal soluble normal subgroup of $G/\tau(G)$ has derived length at most h + i(h) and index at most i(h).

We induct on *h*. Clearly we may assume that $\langle 1 \rangle = \tau(G) < G$. Then *G* has normal subgroups $G_1 \leq H_1$ with G/H_1 locally finite and H_1/G_1 torsion-free abelian of rank $r \geq 1$. By (a) we may assume that $(G : H_1)$ is *r*-bounded. Apply induction to $G_1 \in \mathfrak{X}_{h-r}$. There exists a characteristic subgroup S_1 of G_1 with S_1 poly torsion-free abelian of (h - r)-bounded index in G_1 . Certainly S_1 is normal in *G*, so apply (b) to H_1/S_1 . We obtain T_1 normal in H_1 with T_1 poly torsion-free abelian and $(H_1 : T_1)$ *h*-bounded. Set $S = G^{(G:T_1)}$. Then *S* is a characteristic poly torsion-free abelian subgroup of *G* and $(G : S) \leq (G : T_1)^{h+1}$ is *h*-bounded. Trivially *S* has derived length at most $h(S) = h(G) \leq h$.

For any group G define the subgroups $G^{[i]}$ of G for integers $i \ge 0$ by $G^{[0]} = G$, $G^{[1]}/G' = \tau(G/G')$ and inductively $G^{[i+1]} = (G^{[i]})^{[1]}$. Then $S^{[h]}$ in (c) is locally finite. If H is a subgroup of G then $H' \le G'$, so $H^{[1]} \le G^{[1]}$ and a simple induction yields that $H^{[i]} \le G^{[i]}$ for each i. Also if $g \in G$ then $g \in G^{[1]}$ if and only if there exist elements x_i and y_i of G and a positive integer n such that $g^n = \prod [x_i, y_i]$. Thus $G^{[i]} = \bigcup_X X^{[i]}$, where X ranges over the finitely generated subgroups of G.

(d) \mathbf{X}_h is locally closed.

Let $G \in L\mathfrak{X}_h$. Then (c) and the usual inverse limit argument (cf. [3, Section 1.K]) shows that G has a normal subgroup S of finite index at most i(h) such that $S^{[h]} = \bigcup_{f,g,X \leq S} X^{[h]}$ is locally finite. If h(G) > h then h(X) > h for some finitely generated subgroup X of G. Consequently $h(G) \leq h$ and $G \in \mathfrak{X}_h$.

(e) $\mathfrak{X}_h \mathfrak{X}_k \leq \mathfrak{X}_{h+k}$.

This is immediate from the definition of \mathfrak{X}_h . Clearly every group in \mathfrak{X}_h is elementary amenable with Hirsch number (that is, Hirsch length in the sense of [2]) at most h and so $\bigcup_{h>0} \mathfrak{X}_h$ lies in the class of elementary amenable groups of finite Hirsch number.

The converse follows easily from a trivial induction, using (d) and (e). Thus:-

(f) $\bigcup_{h\geq 0} \mathfrak{X}_h$ is the class of elementary amenable groups of finite Hirsch number and (c) gives the theorem of [2].

Let G be an elementary amenable group with finite Hirsch number. Then in the notation of [5] the group $G/\tau(G)$ is a finite extension of a torsion-free \mathfrak{S}_1 -group and from this much follows. For example (c) can be strengthened as below (cf. [5, 10.33, p.169]).

(g) There is an integer-valued function j(h) of h only such that a group G in \mathfrak{X}_h has characteristic subgroups $\tau(G) \leq N \leq M$ with $N/\tau(G)$ torsion-free nilpotent, M/N free abelian of finite rank and (G:M) at most j(h).

For example, with S as in (c), set $M = \tau(G) \cdot \bigcap_i C_S(S^{[i]}/S^{[i+1]})$ and use Mal[']cev's Theorem ([6, 3.6]).

References

- J. A. Hillman, 'Elementary amenable groups and 4-manifolds with Euler characterictic 0', J. Austral. Math. Soc. (Series A) 50 (1991), 160–170.
- [2] J. A. Hillman and P. A. Linnell, 'Elementary amenable groups of finite Hirsch length are locally-finite by virtually-solvable', J. Austral. Math. Soc. (Series A) 52 (1992), 237–241.
- [3] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups (North-Holland, Amsterdam, 1973).
- [4] A. I. Mal'cev, 'On certain classes of infinite soluble groups', Mat. Sb. 28 (1951), 567-588 (in Russian) Amer. Math. Soc. Transl. Ser. 2 Vol. 2 (1956), 1-21.
- [5] D. J. S. Robinson, Finiteness conditions and generalized soluble groups 2 (Springer, Berlin, 1972).
- [6] B. A. F. Wehrfritz, Infinite linear groups (Springer, Berlin, 1973).

School of Mathematical Sciences Queen Mary & Westfield College Mile End Road London E1 4NS England

[3]