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Abstract

Many applications in geosciences require solving inverse problems to estimate the state of a physical system. Data
assimilation provides a strong framework to do so when the system is partially observed and its underlying
dynamics are known to some extent. In the variational flavor, it can be seen as an optimal control problem where
initial conditions are the control parameters. Such problems are often ill-posed, regularization may be needed using
explicit prior knowledge to enforce a satisfying solution. In this work, we propose to use a deep prior, a neural
architecture that generates potential solutions and acts as implicit regularization. The architecture is trained in a
fully-unsupervised manner using the variational data assimilation cost so that gradients are backpropagated
through the dynamical model and then through the neural network. To demonstrate its use, we set a twin experiment
using a shallow-water toy model, where we test various variational assimilation algorithms on an ocean-like
circulation estimation.

Impact Statement

Data assimilation is the operational tool of choice when it comes to forecast Earth systems. The classical
variational assimilation modeling framework is built on Gaussian prior hypothesis then relying on second-order
statistics as hyperparameters, which may be hard to estimate. Inspired by deep image priors, we propose a hybrid
method bridging a neural network and the 4D-Var mechanistic constraints to assimilate observation without
specifying any statistics. It also constitutes a step toward bridging variational assimilation and deep learning, and
extends the application domain of unlearned methods based on deep priors.

1. Introduction

Physics-driven numerical weather prediction requires estimating initial conditions before making a
forecast. To do so, one should exploit all the knowledge at disposal which can be observations,
a dynamical model, or errors statistics. It formalizes as an inverse problem and data assimilation offers
a large panel of methods to solve it (Asch et al., 2016). A subset of these methods is variational so that the
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system state is estimated via the minimization of a cost function as in the 4D-Var algorithm (Le Dimet and
Talagrand, 1986).Many similarities withmachine learning have been highlighted (Abarbanel et al., 2018)
as both can be used to perform Bayesian inversion by gradient descent.

Even though variational data assimilation has a long-standing experience in model-constrained
optimization, deep learning techniques have revolutionized ill-posed inverse problem solving (Ongie
et al., 2020). And methods combining neural architectures and differentiable physical models already
exist (Tompson et al., 2017; de Bezenac et al., 2018; Mosser et al., 2018). Most of the time, a large
database is leveraged to learn a regularization adapted to the task.

Fitting observations respecting the dynamical model can be seen as a form of regularization but an
additional regularizer may be required to promote an acceptable solution (Johnson et al., 2005). Recently
a very original idea called “deep prior” (Ulyanov et al., 2018) has been developed. A neural architecture is
used to generate the solution of an inverse problem and acts like an implicit regularization. Astonishingly
the whole architecture is trained in an unsupervised manner on one example and provides results
comparable to supervised methods.

In this work, we propose a hybrid methodology bridging deep prior and variational data assimilation
and we test it in a twin experiment. The algorithm is evaluated on an ocean-like motion estimation task
requiring regularization, then compared to adapted data assimilation algorithms (Béréziat and Herlin,
2014, 2018). All algorithms are implemented using tools from the deep learning community. The code is
available on GitHub1.

2. Methodology

2.1. Data assimilation framework

Adynamical system is consideredwhere a stateX evolves over time following perfectly-known dynamics
M, see equation (1). Partial and noisy observationsY are available through an observation operatorH, see
equation (2). A background Xb gives prior information about the initial system state, see equation (3).

Evolution : Xtþ1 ¼Mt Xtð Þ, (1)

Observation : Yt ¼Ht Xtð Þþ εRt , (2)

Background : X0 ¼XBþ εB: (3)

Additive noise εB and εR represent uncertainties about the observations and the background, respect-
ively. These noises are quantified by their assumed known covariancematricesB andR, respectively. The
dynamics is here considered perfect, but the framework could easily be extended to an imperfect
dynamics. For any given matrix A, we note ∥x� y∥2A ¼ 〈 x� yð ÞjA�1 x� yð Þ〉 the associated Mahalanobis
distance.

2.2. Variational assimilation

The objective of data assimilation is to provide an estimation of the system state X by optimally
combining available data XB, Y and the dynamical model M. In the variational formalism (Le Dimet
and Talagrand, 1986), this is done via the minimization of a cost function which is the sum of
background errors and observational errors, J 4DVar ¼ 1

2∥εb∥
2
Bþ 1

2

PT
t¼0∥εRt∥

2
Rt
. The optimization prob-

lem is model-constrained as described in equation (4). What motivates this cost function is that
minimizing it leads to the maximum a posteriori estimation of the state under independent Gaussian

1 https://github.com/ArFiloche/Deepprior4DVar_CI22.
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errors, linear observation operator, and linear model hypothesis. The corresponding optimization
algorithm is named as 4D-Var.

arg min
X0

J 4DVar X0ð Þ¼ 1
2
∥X0�Xb∥2Bþ

1
2

XT
t¼0

∥Yt�Ht Xtð Þ∥2Rt ,

s:t: Xtþ1 ¼Mt Xtð Þ:
(4)

The link between variational assimilation and Tikhonov regularization is well described in Johnson
et al. (2005). For example, choosing a particular matrix B will promote a particular set of solutions.
Therefore, making alike choices can be seen as a handcrafted regularization to take advantage of expert
prior knowledge.

2.3. Deep prior 4D-Var

The idea behind deep prior is that using a well-suited neural architecture to generate a solution of the
variational problem can act as a handcrafted regularization. This means that the control parameters are
shifted from the system state space to the neural network parameters space. From a practical
standpoint, a latent variable z is fixed and a generator network gθ outputs the solution from it such
that gθ zð Þ¼X0.

2.3.1. Cost function
The generator is then trained with the variational assimilation cost J θð Þ. To emphasize the regularizing
effect of the deep prior method, we choose to fix B¼ 0 so that no background information is used. It
means thatJ θð Þ¼ 1

2

PT
t¼0∥εRt∥

2
Rt
and by denotingmultiple integration between two timesMt1!t2 , the cost

can be developed as in equation (5).

J θð Þ¼ 1
2

XT
t¼0

∥Yt�Ht M0!t gθ zð Þð Þð Þ∥2Rt
(5)

It is important to note that this approach is unsupervised, the architecture being trained from scratch on one
assimilation window with no pre-training. All the prior information should be contained in the architec-
ture choice.

2.3.2. Gradient
The gradients of this cost function can be determined analytically. First, the chain rule gives equation (6).
Then using the adjoint state method, we can develop∇X0J X0ð Þ as in equation (7), a detailed proof can be
found in Asch et al. (2016). In the differentiable programming paradigm, such analytical expression is not
needed to obtain gradients, adjoint modeling is implicitly performed as gradients are backpropagated
automatically.

∇θJ θð Þ¼∇X0J X0ð Þ∇θX0 ¼∇X0J X0ð Þ∇θgθ zð Þ (6)

∇X0J X0ð Þ¼
XT
t¼0

∂ HtM0!tð Þ
∂X0

� �Τ
Rt

�1εRt (7)

2.3.3. Algorithm
The algorithm seeks to numerically optimize the cost function and simply consists of alternating forward
and backward integration to update the control parameters by gradient descent (see Algorithm 1). A
schematic view of the forward integration can be found in Figure 1.
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Algorithm 1 – Deep prior 4D-Var.

Initialize fixed latent variables z.
Initialize control variables θ.
while stop criterion do.

forward: integrate M0!T gθ zð Þð Þ and compute J .
backward: automatic differentiation returns ∇θJ .
update: θ¼ optimizer θ, J , ∇θJð Þ.

end while.
return θ,X0.

3. Case Study

3.1. Twin experiment

The proposed methodology is tested within a twin experiment where data are generated from a numerical
dynamical model. Observations are then created by sub-sampling and adding noise. The aim of this
experiment is to highlight the implicit regularizing effect of the deep generative network. To do so, we
compare various algorithms on the observation assimilation task. The considered algorithms are 4D-Var
with no regularization, 4D-Var with Tikhonov regularization, and deep prior 4D-Var. All the algorithms
are implemented with tools based on automatic differentiation such that no adjoint modeling is required,
as described in Filoche et al. (2021). In all the assimilation experiments, the dynamical model is perfectly
known.

3.2. Dynamical system

3.2.1. State
State variables of the considered system are η, the height deviation of the horizontal pressure surface from
its mean height, and w, the associated velocity field. w can be decomposed in u and v, the zonal and
meridional velocity, respectively. At each time t, the system state is then Xt ¼ ηt w

Τ
t

� �Τ
. The considered

temporal window has a fixed size.

3.2.2. Shallow water model
The dynamical model used here corresponds to a discretization of the shallow water equations system in
equation (8) with first-order upwind numerical schemes. These schemes are implemented using a natively
differentiable software. H represents the mean height of the horizontal pressure surface and g the
acceleration due to gravity. After reaching an equilibrium starting from Gaussian random initial condi-
tions, system trajectories are simulated as shown in Figure 2.

control variables
latent fixed variables

initial condition to estimate
passive tracer
numerical cost

Figure 1. Schematic view of the forward integration in deep prior 4D-Var.
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∂η
∂t
þ∂ ηþHð Þu

∂x
þ∂ ηþHð Þv

∂y
¼ 0

∂u
∂t

þg
∂η
∂x

¼ 0

∂v
∂t
þg

∂η
∂y

¼ 0

8>>>>>><
>>>>>>:

(8)

3.2.3. Observations
At regular observational dates, η is fully observed up to an additive white noise, see Figure 3. The velocity
field w is never observed. This means that at observational date t, the observation operator Ht is then a
linear projector so that ηt ¼HtXt.

3.3. Regularization

The role of the assimilation task is then to estimate the velocity field from successive observations of η.
Such motion estimation inverse problem can be ill-posed and may need regularization. The dynamical
model being considered perfect, all the velocity fields within the window are determined by the initial
field w0.

3.3.1. No regularization
The 4D-Var version without regularization only optimizes the fit-to-data term in the cost function. This
means that no prior knowledge on the solution can be used and the background covariance matrix B
vanishes.

3.3.2. Tikhonov regularization
On the other hand, the “Tikhonov” 4D-Var algorithm optimizes the fit-to-data term and also a penalty
term. The estimatedmotion field is forced to be smooth by constraining ∥∇w0∥22 and ∥∇:w0∥22 to be small.
As proved in Lepoittevin and Herlin (2016), these terms can be directly included in the background error
using a particular matrix B such that α∥∇w0∥22þβ∥∇:w0∥22 ¼ ∥X0�Xb∥2Bα,β ,

where α and β are the
parameters to be tuned. Such regularization is a classical optical flow penalty (Horn and Schunck, 1981)
and can be used for the sea-surface circulation estimation (Béréziat, 2000, Béréziat and Herlin, 2014).

Figure 2. Example of simulated trajectory with the shallow water numerical model.

Figure 3. Example of simulated system observations.
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3.3.3. Deep prior
As depicted in the method, the only assumption made is about the architecture of the network gθ
generating the solution w0. Obviously, the chosen architecture is critical for performance. In this
experiment, we use the generative convolutional architecture introduced by Radford et al. (2016), but
replacing deconvolution operations to avoid checkerboard artifacts as described in Odena et al. (2016).
The exact architecture is provided in Appendix A.1, Figure 6.

3.3.4. Hyperparameters tuning
Regarding 4D-Var, α and β are tuned using Bayesian optimization on observations forecasts so that
ground truth is never used. Finding hyperparameters, and particularly the number of epochs for DIP is still
an active research field as described in Wang et al. (2021). Investigated early-stopping methods are
beyond the scope of our study so we made the choice to fix the number of epochs.

4. Results

The first result to look at is the plot of the velocity fields estimated by the algorithms (Figure 4, 7). The 2D
field of arrows represents the direction and the intensity of the velocity, the colormap provides the same
information but helps visualization. Without regularization, the 4D-Var estimation is sharp and seems to
suffer from numerical optimization artifacts. On the contrary, the deep prior estimate looks less precise but
far smoother. The regularized provides the most accurate and smooth estimation. Other examples can be
found in Appendix A.2.

Severalmetrics are calculated to quantify the quality of the estimations. The endpoint error ∥bw0�w0∥2
and the angular error arccos bw0,w0ð ) are classical optical flow scores, they calculate the Euclidean
distance and the average angular deviation between the estimation and the ground truth, respectively.
At first glance, there is no statistical difference between deep prior 4D-Var and 4D-Var without
regularization (Table 1).

Figure 4. Example of the estimated motion fields w0 with various algorithms.

Table 1. Metrics quantifying the quality of the estimated motion field w0 over the assimilated database.

Assimilation score Smoothness statistics

Metrica Endpoint error �102
� �

Angular error ∥∇w0∥2 ∥∇:w0∥2 ∥Δw0∥2

4D-Var 04:2�0:4 028:4�9:8 06:1�0:6 05:3�0:5 09:9�1:0

Deep prior 4D-Var 04:6�2:0 026:7�5:0 01:9�0:1 01:6�0:9 01:0�0:3

“Tikhonov” 4D-Var 01:6�0:6 09:9�9:8 02:0�0:1 01:8�0:1 01:9�0:1

Ground truth 00 00 01:7�0:9 01:6�0:1 00:7�0:3

aAll the metrics are averaged on images, � precising standard deviation.
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However, if we dig into the smoothness statistics of the estimated fields, ∥∇:w0∥2, ∥∇:w0∥2, and
∥Δw0∥2, it seems that deep prior is able to capture complex statistics of the true motion field. Similar
behavior has been noticed in Yoo et al. (2021)). Looking closer at the histograms, Figure 5, we see that
deep prior and “Tikhonov” 4D-Var estimations have smoothness statistics very close to that of the original
motion field. Whether it has been explicitly constrained or by deep network design, smooth solutions are
unforced by regularization.

It has to be noted that the “Tikhonov” 4D-Var is the only algorithm here that has been treated with
hyperparameters tuning which can explain the large differences in scores. It can be argued that the neural
architecture, which is known as a good baseline to generate images, has been tuned through many image
processing experiments. However, grid-searching hyperparameters particularly suited for this experiment
should enhance performances.

5. Conclusion

We proposed an original method bridging ideas from the image processing and the geosciences
communities to solve a variational inverse problem. More precisely, we used a neural network as implicit
regularization to generate the solution of an initial value problem. To demonstrate its efficiency, we set up
a twin experiment comparing different algorithms in a data assimilation task derived from the shallow
water model. The results show that this kind of regularization can provide an interesting alternative when
prior knowledge is not available. However, in our case, we observed that expert-driven handcrafted
regularization provides better performances. Finally, this work opens theway for further developments on
the architecture design, but also in a more realistic context where the numerical dynamics is imperfect.
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A. Appendix. Experiment details

A.1. Neural network architecture

Layer (type) Output shape Param #

ConvTranspose2d-1 [�1, 512, 4, 4] 819,200

BatchNorm2d-2 [�1, 512, 4, 4] 1,024

ReLU-3 [�1, 512, 4, 4] 0

Upsample-4 [�1, 512, 8, 8] 0

ReflectionPad2d-5 [�1, 512, 10, 10] 0

Conv2d-6 [�1, 256, 8, 8] 1,179,904

BatchNorm2d-7 [�1, 256, 8, 8] 512

ReLU-8 [�1, 256, 8, 8] 0

Upsample-9 [�1, 256, 16, 16] 0

ReflectionPad2d-10 [�1, 256, 18, 18] 0

Conv2d-11 [�1, 128, 16, 16] 295,040
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Layer (type) Output shape Param #

BatchNorm2d-12 [�1, 128, 16, 16] 256

ReLU-13 [�1, 128, 16, 16] 0

Upsample-14 [�1, 128, 32, 32] 0

ReflectionPad2d-15 [�1, 128, 34, 34] 0

Conv2d-16 [�1, 64, 32, 32] 73,792

BatchNorm2d-17 [�1, 64, 32, 32] 128

ReLU-18 [�1, 64, 32, 32] 0

Upsample-19 [�1, 64, 64, 64] 0

ReflectionPad2d-20 [�1, 64, 66, 66] 0

Conv2d-21 [�1, 3, 64, 64] 1,731

Tanh-22 [�1, 3, 64, 64] 0

Trainable params: 2,371,587.

Figure 6. The convolutional generator architecture from Radford et al. (2016).
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A.2. Supplementary examples

Cite this article: Filoche A. Béréziat D. and Charantonis A. (2023). Deep prior in variational assimilation to estimate an ocean
circulation without explicit regularization. Environmental Data Science, 2: e2. doi:10.1017/eds.2022.31

Figure 7. Examples of the estimated motion fieldsw0 with various algorithms, each line corresponds to a
different assimilation window.

e2-10 Arthur Filoche et al.

https://doi.org/10.1017/eds.2022.31 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.31
https://doi.org/10.1017/eds.2022.31

	Deep prior in variational assimilation to estimate an ocean circulation without explicit regularization
	Impact Statement
	Introduction
	Methodology
	Data assimilation framework
	Variational assimilation
	Deep prior 4D-Var
	Cost function
	Gradient
	Algorithm


	Case Study
	Twin experiment
	Dynamical system
	State
	Shallow water model
	Observations

	Regularization
	No regularization
	Tikhonov regularization
	Deep prior
	Hyperparameters tuning


	Results
	Conclusion
	Author Contributions
	Competing Interests
	Data Availability Statement
	Ethics Statement
	Funding Statement
	Provenance
	Appendix. Experiment details
	Neural network architecture
	Supplementary examples


