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Abstract. Several approaches have been followed for the analysis of the light curves of transiting
extra-solar planets. From simple approximate algorithms and synthetic models to semi-analytical
complete solutions. The different alternatives are discussed with their strengths and weaknesses.
Analytical expressions can also provide a deeper insight into the main system parameters from
the measurement of a few strategic points describing the shape of the light curve.

1. Introduction
It is well known, from decades of experience in the analysis of the light curves of

eclipsing binaries, that the periodic transits of extra-solar planets in front of their host
stars should provide the necessary information to derive the inclination of their orbit
and the relative radii of both the star and the planet. In fact, non-distorted components
should allow for a good determination of the sum of the relative radii rs+rp from the total
duration of the eclipse and, since transits are equivalent to annular eclipses produced by
an opaque dark disk, a good estimation of the ratio of radii k = rp/rs is also possible.
On the other hand, the expected small values of k for planetary transits imply that a
linear limb-darkening law is generally not a good approximation and, at least, a second
order law is required.

The mathematical problem of calculating the loss of light due to a transit can be
expressed as the integration of the overlapping area (the occultation of the stellar surface
by the planet), in such a way that the total light L, at any time t, is given by

l(t) = Ls + Lp − α(t)Ls = 1 − αLs (1.1)

where the subindex s stands for the star and p for the planet. The function α is the
relative loss of light that can also be expressed by the integral,

α =
∫

S

I cos γdσ (1.2)

over the overlapping area S, where γ denotes the foreshortening angle and σ the surface
element. The distribution of light over the stellar surface I(μ), where μ = cos γ, takes
into account the effect of limb darkening and can be expressed by means of, for example,
a quadratic law in the form,

I(μ) = I(1)
[
1 − ua(1 − μ) − ub(1 − μ)2] (1.3)

where I(1) is the radiation intensity at the centre of the disk, while ua and ub are the
stellar limb-darkening coefficients, available in tabulated form as derived from different
model atmospheres for a variety of effective temperatures, surface gravities and wave-
length ranges.
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The issue now is the computation of the function α in terms of the orbital phase and
the elements of the system that we want to solve for. There are basically three methods
to calculate α: one based on simple approximated algorithms, another one on synthetic
light curve models, and a third one based on the analytical solution of the corresponding
integrals.

2. Methods and precisions
The precision required by the model computations depends of course on how accurate

the observed light curves are. For a Jupiter-size planet, the depth of the photometric
transit is of the order of 1% and the precision required for the light curve is around 0.1%
in order to determine the geometrical elements, or around 0.01% to also obtain the limb
darkening coefficients. For the analysis of these light curves, the computation of the α
functions should be better than ≈ 10−5 . In the case of Earth-like planets, the challenge
is much greater since the previous parameters are expected to be smaller by two orders
of magnitude and therefore observed light curves have to be better than ≈ 10−5 , even
assuming the limb-darkening coefficients, while the predicted model light curves must
reach at least a precision of 10−6 .

Out of the three possible solutions for the computation of α mentioned above, approx-
imated algorithms represent the less accurate approach. Approximate algorithms have
been used by Deeg et al. (2001), extended to non-linear limb-darkening by Mandel &
Agol (2002) and analysing the effects of the assumptions by Seager & Mallén-Ornelas
(2003). They are recommended for a quick estimation of the transit parameters in the
case of circular orbits and are based on the assumption that the relative radius of the
planet rp is smaller than the variation of the limb-darkening function. The precision of
these procedures is generally not good enough for a detailed analysis of the currently
available high-quality light curves.

Another option is to use synthetic models where the integration of the α function is
done through numerical summation of, either a distributed array of points over the stellar
surface, or concentric quasi-circular elliptical rings of finite size. Synthetic models allow
for the possibility to take into account the eventual non-sphericity of the components
and other more subtle effects in the host star’s radiation pattern. It has been found that
the EBOP code, as described by Etzel (1993), and based on the model by Nelson &
Davis (1972), is the best suited for the analysis of the light curves of extrasolar planetary
transits. In this case, the Roche geometry does not need to be taken into account and the
code can easily be adapted to non-linear limb-darkening laws (Giménez & Diaz-Cordovés,
1993). Of course, limb darkening has to be assumed to be constant within pre-defined
rings and the end precision is driven by the relative size of the planet with respect to the
width of the rings. Precisions are thus limited to ≈ 10−5 , which is certainly enough for
currently available data but possibly not for the analysis of Earth-like planetary transits
as expected from future space missions. On the other hand the use of the differential
correction optimization process contemplated in EBOP is only applicable in the case of
light curves better than around 1% of the depth of the transit.

As a third option, an analytical solution of the α function can be obtained in the
case of circular disks, valid for any degree of limb-darkening and any adopted value of
the orbital eccentricity. Two approaches are possible here: a direct integration (by hand)
leading to complex but accurate expressions that can be easily coded (Mandel & Agol,
2002), or a solution based on the cross correlation of two optical apertures (Kopal, 1979)
as given by Giménez (2006a).
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3. Advantages of the analytical solution
In the case of an analytical solution as described by Giménez (2006a), the involved

α functions can be expressed in a closed form, valid for any degree of limb darkening,
whose computation can be very easily programmed. Codes for the calculation of these
functions are provided via ftp at http://thor.ieec.uab.es/LRVCODE/ where not only
the equations for the analysis of the light curves can be found but also those for the
computation of the related Rossiter-McLaughlin effect in the radial velocity curve during
transit phases (see also Giménez 2007). Indeed, the equations used in the computation of
the α functions of the light curves of transiting planets are also involved in the calculation
of the mentioned Rossiter-McLaughlin effect, as described by Giménez (2006b), by means
of the first derivative of the α functions. There is no need for additional assumptions or
a complicated integration by hand, as performed by Ohta et al. (2005). Furthermore, a
simultaneous solution of the light and radial velocity curves is possible with the proposed
equations leading to a better understanding of the involved parameters.

By using the equations of the direct analytical solution, the achievable precision is not
limited by the relative size of the planet with respect to the limb-darkening variations.
It is controlled via the number of terms in the involved Jacobi polynomials, N (with
standard values between 2000 and 3000). In the case of the light curve of the prototypical
extrasolar planet around HD 209458, the use of N = 2000 provides a light curve with a
precision at any phase better than 10−8 , well beyond the observational limitations.

On the other hand, an analytical solution allows for specific cases in the light curve to
be solved. For example, using the depth of the transit at its central phase Δ0, the ratio
of radii k can be easily shown to be closely approximated by,

k = 0.005 +
√

1 − (1 − 1.263Δ0)2/3 (3.1)

as well as the range between maximum k =
√

1 − Δ0 and minimum values,

k =
√

1 − [1 − (1 − Δ)]2/3
. (3.2)

On the other hand, the orbital inclination can also be estimated from the duration of
the transit T if the stellar relative radius is known, since,

i = arcsin

√
1 − r2

s (1 + k)2

1 − (πT/P )2 (3.3)

while, if the stellar density ρ can be evaluated,

rs = 0.238ρ−1/3P−2/3 (3.4)

Finally, an estimation of the orbital inclination is also possible from a detailed inspec-
tion of the shape of the light curve, with no previous knowledge of the size of the star.
The solution of the α function for the internal tangency point, i.e., at δ = rs − rp can be
explicitly written, independent of the orbital inclination, in such a way that the depth of
the light curve at such point Δ1 is given by,

Δ1 = 1 + 0.015k − 0.89k2 − 0.61k3 (3.5)

as a good approximation for solar-type host stars. Thus the phase θ1 of the internal
tangency point can be easily measured from the light curve and, denoting similarly
the first contact or beginning of the transit phase θ2 corresponding to δ = rs + rp

https://doi.org/10.1017/S1743921308026744 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308026744


Analysis of transiting planets 397

for α = 0,
1
rs

= (1 + k)2 − 4k/

[
1 − cos2 θ1

cos2 θ2

]
(3.6)

from which the orbital inclination can again be derived using (3.3).
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