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TWIST ORBITS FOR NON CONTINUOUS MAPS OF DEGREE ONE

FRANCISCO ESQUEMBRE

The existence of twist orbits and twist cycles with a given rotation number is
considered for discrete dynamical systems generated by iteration of liftings of maps
of the circle into itself. The class of maps for which such orbits exist for every
number in the interior of the rotation set is extended to contain an important
subclass of non-continuous maps.

1. INTRODUCTION AND STATEMENT OF RESULTS

Discrete dynamical systems generated by iteration of maps of the circle into itself
can be studied using appropriate maps of the real line. If we denote by p: R —> S1

the projection of the real line onto the circle given by p(x) — exp(27ria:) (where i

denotes here the imaginary unity), we say that a map F: R —> R is a lifting of a map
/ : S1 - » 5 1 , i f p o F = / o p and there is a k G Z such that F(x + 1) = F(x) + k, for
every x G R. This fc is called the degree of the lifting F.

We shall consider in this paper maps with liftings of degree one, since the corre-
sponding systems have been found to exhibit the most interesting dynamic properties
(see [1]). Hence, a map F: R —> R is said to be of degree one if F(x + 1) = F(x) + 1,
for every x G R.

The notions of orbit and cycle for maps of the circle extend in a natural way as
follows. We call |J (Fn(x) + Z) the orbit mod 1 of x under F the set. We say

that x is a periodic mod 1 point or, equivalently, the orbit of x is a cycle mod 1, of

period q G N and rotation number p/q, if Fq(x) — x = p G Z and F1(x) — x ^ Z for

i = l , 2 , . . . , 9 - l .

For any orbit mod 1, the rotation number can be denned, whenever the sequence

((Fn(x) — s ) / n ) n e N converges, as the number PF{*) — lim(.Fn(:c) — x)/n. It is easy

to see (see Lemma 2) that for a cycle mod 1 of period q and rotation number p/q, this

limit exists and equals precisely p/q, hence both definitions coincide.

The set containing all rotation numbers is denoted by Rot (F) and is called the

rotation set of F. It contains information about the long term behaviour of all the

orbits mod 1 which have rotation number. Whenever Rot (F) reduces to one point, we
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416 F. Esquembre [2]

denote it by p(F) and call it the rotation number of F. This is precisely the case for
every non-decreasing map of degree one (see [10]).

For continuous maps of degree one the rotation set is a closed interval (see [7]),
and provides important information about the existence and behaviour of orbits mod 1
(see [9] and [2]). Easier proofs of some of these facts were given in [3], using the notion
of twist orbit. An orbit mod 1 is said to be twist if the map restricted to this orbit
is non-decreasing. Twist orbits turn out to be of great value in studying continuous
systems, since they can be effectively used to compute lower bounds of the topological
entropy (see for instance [1]). This is based on the fact that, for continuous maps of
degree one, twist orbits exist for every number in the rotation set and, if the number is
rational, then twist cycles also exist (see [3]).

There are some problems, however, for which non-continuous liftings of degree one
are of interest, for instance, when taking liftings of some monotone mod 1 maps (see
[6]) or when studying Newton's method of finding zeros of certain functions (see [8]).
In a previous work (see [5]), it was shown that for an important class of non-necessarily
continuous maps the rotation set is still a closed interval, and a powerful tool for the
study the of the existence and behaviour of orbits mod 1.

The goal of this paper is to show that for a class of maps of degree one containing,
but not restricted to, continuous maps, orbits (respectively cycles) mod 1 also exist for
every number (respectively rational number) in the interior of the rotation set.

Let us now introduce some notation. We shall denote by B\ the class of all the
maps F: R —> R of degree one that are bounded on [0, 1]. Note that this includes
non-decreasing maps of degree one. In this class, we consider the topology induced
by the distance d(F, G) - sup{|F(x) - G(x)\ : x £ R}. For any map F of B\, we
construct the new maps Fi(x) = in{{F(y): y ^ x} and Fu(x) — &xvp{F(y): y ^ x}.
These are two non-decreasing maps of B\ (see Lemma 4) lying immediately below and
sitting immediately above of the original map, respectively.

Given a map F of degree one and x 6 R, we denote by F(x+) the limit lim F(y)
y—»I +

and by F(x—) the limit lim F(y), whenever these limits exist. We also introduce the
y-»s-

symbols F(io) = F(x) and F(xl). This last symbol is a wild card character meaning
any of the symbols F(x—), F(xo) or F(a-|-). Finally, we denote by Cont(.F) the set
of all points of continuity of F, by Disc (F) its complement and by Const (F) the set
of all points x such that F is constant in (x — e, x + e) for some e > 0.

Let F be a map of B\ such that F(x—) and F(x+) exist for every x G R, and
such that for every point x of discontinuity of F the following is satisfied:

(I) F{x-)>F(x+),
(II) if F(x) > F{x-) then there exist c < x and ? G {+, - , o} such that
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[3] Twist orbits 417

F(c?) 2 F(x) and F/(c?) = Ft(x),
(III) if F(x+) > F(x) then there exist c > x and ? € {+, - , o} such that

F(x) > F(c?) and Fu{x) = Fu(cl).

Under these conditions, Ft and Fu are continuous at every point of R (see Lemma 6)
and Theorem A of [5] yields Rot(F) = [p(Ft), p(Fu)].

Given any i £ R , w e define the functions l{x) = inf{y ^ x : (y, x) C Const (i^)}
and r(x) = sup{i/ ^ x : (x, y) C Const (-F/)}. Clearly, £ and r are non-decreasing real
functions, l(x) ^ x ^ r(x) for every x 6 K and, under our hypotheses, Fu{t(x)) =
F(t{x)-) and Ft(r(x)) = F(r(x)+). Let D denote the set {d € Disc(F) : l{d) $
Cont (F) OT Ft(i(d)) jL F^d)}.

The main result of this paper is the following theorem.

THEOREM 1. Under these hypotheses, if D D [0, 1] is a Suite set then, for any
r 6 (p(Fi), p(Fu)), F has a twist orbit with rotation number r. If r is a rational
number, then F has a twist cycle mod 1 with rotation number r.

To our knowledge this result establishes the largest known class for which this
property holds. Note also that, in general, this result cannot be improved, in the sense
that the property might not hold for the ends of the rotation interval, as the map in
the following picture shows.

Graph of F on [0, 1]

Fu has a cycle of rotation number 1 (and hence 1 belongs to the rotation set of F)
but F has not. However, with additional conditions, this can be true also for some
non-continuous maps of degree one (see [4]).

The rest of this paper is devoted to the proof of Theorem 1.

2. PRELIMINARY RESULTS

We first state and prove some auxiliary results. For the sake of completeness we
also include the proofs of some well known results.

LEMMA 2 . Let F: R -» R be a map oidegree one, x 6 R, p G Z and q G N.

(2.a) II Fq(x) = x+p then pF{x) =p/q.
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If F is non-decreasing, then the following also holds:

(2.b) PF(X) exists, belongs to R and is independent of x.
(2.c) If F»(x) > x + p, then p(F) > p/q.
(2.d) IfFq(x)^x+p,thenp{F)^p/q.

(2.e) If F has an orbit contained in Cont(F), then the map p, defined from
the set of all non-decreasing maps of degree one into R, is continuous at
F.

(2.f) If F is continuous, then p(F) G Q if and only if F has a cycle mod 1.

PROOF: (2.b) is Theorem 1 of [10] and we omit the proof. If F»(x) = x+p, then
for any given n G N, we set n — kq+i, 0 < i < q-1, and obtain Fn(x) - Fi(Fkq(x)) =

Fi(F*h-1*(x) + p) = Fi(F<-k-2*(x)+2p) = . . . = F^x + kp) = F*(x) + kp. From
this (Fn(x) — x)/n = (F*(x) + kp — x)/(kq + i), where Jb tends to infinity whenever
n tends to infinity and the other quantities remain bounded, therefore (Fn(x) — x)/n

converges ot p/q. This proves (2.a).

If F«(x) ^ x +p then F*«(x) ^ x +kp, for all Jfc G N, hence (F*«(x) - x)/(kq) >
p/q and PF(%) = p(F) ^ vli\ ^•a^s gives (2.c). (2.d) can be proved similarly.

In order to prove (2.e), given any £ > 0 we look for 6 > 0 such that for every
non-decreasing map G of B\, d(F, G) < 6 implies \p(F) — p(G)\ ^ e. Given e take
p G Z , q G N such that p(F) - e < p/q < p(F). This gives Fq{x) > x+p, for every
x G R. Since F has a point xo whose orbit is contained in Cont (F), then F is left
continuous at Fx(xo), 0 ^ * ^ q, that is for every e, > 0 there exists Si > 0 such
that F'(a!o) - fc < -z implies Fi+1(x0) - d < F(*). In particular F i + 1(z0) - e< <
F(Fl(a;o) - *<)• Consider eq-i = (F«(x0) - x0 - p ) / 2 > 0, £<_! = £ /2 , 2 < i < 9 - I ,
and take 6 = min(£i, *2/2, . . . , Sq-i/2,eq-\) > 0. Now, if G verifies d(F, G) ^ 6,

then F(a:)-£ < G(x), for every x G R,hence F(xo)-*i < G(x0) and F(F(x0) - *i)~
6 ^ G2(aj0). This gives F(F{x0) - *i) - «2/2 ^ G2(x0) and, from here, F2(x0) - 62 ^
G2(z0)- Repeating this reasoning we obtain that Fq~1(x0) - 6q-i < G*"1 ^ G*~1(x0)
imphes ^ ( F ' - ^ x o ) - £,-1) - e,_i < G«(aj0), which gives F«(x0) - 2e,_i < G«(x0)
and therefore, XQ + p ^ G'(xo) and p(G) ^ p/q ^ p(F) — e. Similarly one can find
8' > 0 such that d(F, G) < 6' imphes p(G) < p(F) -(-e.

The condition in (2.f) is sufficient because of (2.a), we now show that it is also
necessary. Assume that the equation Fq(x) = x + p has no solution for any p £"L and
q G N. Since F is continuous, so is Fq — Id — p, and we can divide Q into two classes,

M = {p/q: (p, q) = 1, F«(x) > x + p, for all x G R}

^2 = {p/q: (p, 9) = 1, Fq{x) <x+p, for all x G R}

(here (p, g) denotes the greatest common divisor of p and q). If (p, g) = (r, «) = 1,

p/q G Ai and r/s G A2, we show that for any x G R, p/q < PF(*) < ?/*• Since
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F is continuous there exists 6 > 0 such that F»(x) - x ^ p + S, for all * e K. Let
m = inf{F*(x) - x : x G R, O ^ t ^ g — 1}. Since n ^ 0 then n = kq + i, 0 ^ t < g - 1
and

- x = [F<(F*'(x)) - F*«(x)l + [F*«(x) - x]

= [F<(F*'(x)) - F*'(x)] + £ [F ' (F" (x) )

^ m + fc(p + *) > m + (n/q - l)(p + S).

Hence, dividing by n and taking limits, we obtain PF{*) ^ (p + )̂<7 > P/Q- The other
inequality can be proved similarly. Therefore A\ is a Dedekind cut (see [11]) and there
exists p G R such that PF(X) = p and /J ^ Ai U ^2 = Q- D

LEMMA 3 . Let F:R—>R be a. continuous map of degree one and Jt G N. Tien
tie following hold:

(3.a) U F-^Const (F)) C Const (F*).
»=o

(3.b) F ias an orbit disjoint from Const (F) .
(3.c) If F is non-decreasing, tien p(F) G Q if and only if F has a cycie mod

1 disjoint from Const (F) .

PROOF: If x0 € F~*(Const(F)) for some 0 s% i ^ Jfc-1, then F*(x0) 6 Const (F),
that is, there exists e > 0 such that F{y) = F i + 1(x0), for all \y - Fi(x0)\ < e. Since
F* is continuous, there is a 6 > 0 with |F*(x) — F*(xo)| < e, for every \x — xo\ < 6;
then Fi+1(x) = F*+1(x0), for every | x - x o | < 6, hence F*(x) = F*(x0), for every
|x — xo| < 6 and, from this, XQ G Const (F*). This proves (3.a).

We now show (3.b). Since Const (F) is an open set, the sequence An =
n — 1 00

U F~*(Const(F)) is a non-decreasing sequence of open sets. Suppose [0, 1] C \J An,
»=0 n = l

k
then, since [0, 1] is a compace set, there would exist t £ N with [0, 1] C \J An and

(since An + Z = An ) R = (J An = Ak. Hence R = Q F ' ^ C o n s t ( F ) ) C Const (F*)
n=l i=0

would imply F* is constant on K and F*(x + 1) = F*(x), which contradicts the
00

fact that F is of degree one. Therefore there exists x G [0, q] — \J An, and
00 «=1

x $ U F- ' (Const (F)) has the desired orbit.

The condition in (3.c) is sufficient due to (2.f). If p(F) = p/q G Q, then the proof
of (2.f) gives the existence of z G R , a fixed point of G = Fq — p . Since F is of degree
one, z -f 1 is also a fixed point for G and, since F is non-decreasing, so is G. Now
(3.b) proves F has an orbit, starting in a point x , disjoint from Const ( F ) , and we
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can assume without loss of generality that x € [z, z + 1]. The sequence (Gn(x))™=0 is
non-decreasing and bounded with limit y G R satisfying G(y) = y. Since Const (F) is

oo
an open set, |J F~*(Const (F)) is also open and the points Gn(x) have orbits under

t=0

F disjoint from Const ( F ) , which implies y has its orbit disjoint from Const (F) and
is therefore the desired cycle mod 1. D

LEMMA 4 . Let F G Bi and let Ft) Fu be the maps defined in Section 1.

(4.a) Ft and Fu are non-decreasing maps of B\.

(4.b) F/(x) ^ F(x) ^ Fu(x), for every I E R .

(4.c) The maps defined by F i-» Ft, F >-* Fu are non-decreasing and Lipschitz

continuous.

(4.d) II F is non-decreasing then F = Ft — Fu.
(4.e) Const (F) C Const (Ft) f~l Const (Fu).
(4.f) Cont (F) C Cont (F/) n Cont (Fu).
(4.g) Let x0 G Cont ( F ) , then

(4.g.a) Ft(x0) £ F (x 0 ) =*xo£ Const (F/)

(4.g.b) Fu(x0) ^ F{x0) 4 x o e Const (Fu).

PROOF: The proofs of (4.b), (4.d) and (4.e) are straightforward. Now, note that if
x 4: x' then {F(y): y ^ x} C {F(y): y < x'}, hence Fu(x) < Fu(x') and similarly for
Ft. Also, F,.(z + 1) = sup{F(y): y < x + 1} = sup{F(z + 1): z < x] = snp{F(z) +
1: z ^ z} = Fu(x) + 1. Let m, M G K be such that m < F(z) ^ Af, for all x 6 [0, 1].
For any x € [0, 1] and given any y < x, there exist y' E [0, 1], Jfc G N such that
y = y' - k; this leads to F{y) = F(y ' - k) = F(y') -k < M -k < M . This and
F(x) < Ft t(x) yield m < Fu(x) < M for all x £ [0, 1], hence Fu is a non-decreasing
map of B\. Similarly for Ft.

If F{x) ^ G(x) for all x G R, then for every x G R and y < x, F(y) < G(y); hence
F«(x) < Gu(x) for all x G R. Let F, G be two maps of ^ and set d = \\F - GH^;
we show that for every x G R, |-F«(x) — Gtt(x)| ^ d. For this, suppose there exist
x G R and e > 0 such that Fu(x) — Gu(x) > d + e. Then there is a y < x with
F(y) > Fu(x) -e, hence F(y) - G{y) > Fu(x) - e - Gu(x) > d, which is not possible.
We proceed similarly for Ft. This proves (4.c).

Let xo G Cont (F); we prove left continuity of Fu and Ft at xo. The right con-
tinuity can be proved similarly, and (4.f) follows from both. Given any e > 0, there
exist 6 > 0 such that x0 — 8 < z < x0 implies i^xo) — e < F(z) < ^(^o) + £• Let
x0 - * < x < x0 , then \Fu[x0) - Fu(x)\ = Fu{x0) - Fu(x) = sup{F(y): y < x0} -
sup{F(y): y 4 x}. Now, sup{F(y): y < x0} ^ max(sup{F(y): y ^ x} , F(x0) + c)

and sup{F(y ) :y ^ x} ^ F(x) ^ F(z0) - e. From both, \Fu(x0) - Fu(x)\ <
max(0, F(xo) + e- sup{F(y): y ^ x}) ^ 2c. Similarly, |F/(x0) - F/(x)| =
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inf{F(y): y > xQ}-ini{F(y): y ^ x} ; since inf{F(y): y > x} > min(inf{F(y): y ^ x0},
F(xo)-e), we obtain |F/(x0) - -F / (x) | < max(0, inf{F(y): y ^ x0} - F(xo) + e) < e.

In order to prove (4.g), suppose -Fti(xo) ^ F(xo). Then .Fu(xo) > ^(^o) and there
exists y < x0 with F(y) > .F(xo). Since F is continuous at xo there exists e > 0 such
that .F(x) < F(y), for every |x — xo| < e. Hence ^ ( x ) — sup{F(z): z < x0 — e}, for
every \x — xo| < £ and xoeConst ( i ^ ) . Similarly for Ft. U

LEMMA 5 . Let F € Si , x0 € R and ? € {o, +, - } .

(5.a) If there exist c < XQ , e > 0 such that F(c?) ^ -F(x) for every |x — xo| <
e, then x0 £ Const (Fu).

(5.b) 1/ there exist c > x0, e > 0 such that F(x) ^ F(c?) /or every \x - xo\ <

e, then x0 6 Const (Ft).
(5.c) xo G 00^(2^) if any of the following conditions is satisfied:

(5.c.l) x0 e Cont(F)

(5.C.2) x0 G Const (Fu)

(5.c.3) F(zo-) = F(xo+) > f(x0)

(5.C.4) F(xo-) > F(xo+), F(xo-) ^ F(x0).
(5.d) xo S Cont(F/) if any of the following conditions is satisfied:

(5.d.l) x0 eCont(F)

(5.d.2) x0 6 Const (Ft)

(5.d.3) F(x0) = F(xo+) < F(x0)

(5.d.4) F(xo-) > F(xo+), F(x0) > F(xo+).

PROOF: We first prove (5.a), (5.b) follows in a similar way. We can take c < xo —e.
If ? = o or ? = - then clearly, Fu(c) ^ F(c?). If ? - +, take c<y <xo-£ and we get
F-u{y) ^ -f( c+) ^ •^1(c')- So, in every case, there exists y < xo — e such that Fu(y) ^
^ ( x ) , for every |x — xo| < e. Now, |x — xo| < e implies -Fu(x) = sup{F(z): z ^ x) —

max(sup{i; l(z): x0 — e < z < x} , sup{F(z): z ^ x0 — e}) = sup{F(z): z < x0 — e} =
-Fu(xo — e); hence x0 G Const (.Fu).

If (5.c.l) or (5.C.2) is satisfied then (5.c) follows trivially. Note that F(xo—) ^
F(x0) implies that sup{F(y): y < x0} = sup{F(y): y < x0} = sup{sup{F(y): y ^
x } : x < xo} = sup{Fu(x): x < xo}. If (5.C.3) is satisfied then ^(xo—) > F(xo) gives
sup{Fu(x): x < x0} = Fu(x0) and F u (z 0 ) = sup{F(y): y < x0} = inf{sup{F(y): y <
x } : x > xo} = inf{.Fu(x): x > xo}, since F(xo—) = F(xo+) ; from both identities we
obtain that Fu is continuous at xo . Finally (5.C.4) implies .F(xo—) ^ ^(^o) which again
gives that Fu is left continuous at xo. Also, F(xo—) > F(xo+) gives the existence of
e > 0 such that F ( x 0 - ) > F(x), for every x0 < x < x0 + e. Hence there is a y < x0

such that F(y) > F(x), for every x0 < x < x0 + e and from here Fu(x) = Fu(x0),

for every xo < x < XQ + e and inf{.F,,(x): x < xo} = Fu(xo). (5.d) can be proved
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similarly. U

LEMMA 6. Let F G Bx such thai F(x-) and F(x+) exist for every I E R , and
let t o ^ R . If there exists ? G {o, +, —} such that any of the following conditions hold:

(6.1) there exists c < x0 such that F(c?) ^ F(x0-) ^ i?(so+)
(6.2) F(xo-)> F(xo)>F(xo+)

(6.3) there exists C > x0 such that F(x0-) 7* F(xo+) > F(x0) ^ R{c?)

then Ft and Fu are continuous at XQ and satisfy:

(6.a) if x0 G R - Const (F/) then Ft(x0) = F(xo+)

(6.b) if x0 G R - Const (F«) then F,,(ao) = .F(xo-).

PROOF: The continuity of / / and Fu at Xo follows from Lemma5. We prove (6.1).
(6.b) can be proved analogously. If (6.3) is satisfied then the case is trivial because it
implies, by (5.b), that x0 G Const(/*). If (6.1) or (6.2) hold then Fi(x0) ^ F(xo+)
gives Fe(xo) < -F(xo+) ^ min(/(xo —)> F(*o))- Hence there exists e > 0, y > xo such
that F(x) > F(y), for every \x - xo\ < e; therefore x0 G Const (Ft). D

3. PROOF OF THEOREM 1

We give the proof as the consequence of a series of results. Set m — min{F(d—) —
F(d+): deD} and T = sup{F»(x) - Ft(x): x G R}. Clearly T ^ m ̂  0, with m > 0
if D ̂  0. Consider the map / defined from [0, T] into R by

( 0 if t < T - m/2

[ t - T + m/2 iit^T- m / 2 .

/ is a non-decreasing continuous map satisfying f(t) ^ 0 for all t, /(0) = 0 and

We define the families of maps {ii}t€[o,T] > {^t}te[o,T\ a n ( i {•̂ i}tG[o,T] ^ follows,

if [x, r(x)] n £> = 0

\ if d = min([x, r(x)] D D)

Mt{x) = min(F(x+), Lt(x))

Nt(x) = (MO.

for every t G [0, T]. The next results show important properties of the family {Nt} •

LEMMA 7 . {Nt}te[o,T\ is a family of non-decreasing maps of degree one of R into
itself. The map t H-> Nt is non-decreasing and Lipschitz continuous. Also, No = Ft
and NT = Fu.

PROOF: Since the sets D and Const (Ft) are invariant modulo 1 and F G B\,

we have that Lt and Mt belong to B\ for every t G [0, T]. Using Lemma 4 we
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obtain that Nt G B\ and that Nt is non-decreasing for every t G [0, T] . Given any
<i and 12 G R, if tx ^ t2 then trivially M t l ^ M t , and, by (4.c), Ntl < Ntj . Also,

- Nti || ^ | |Mfl - Mti || ^ | |Lt l - Lt2 | K 2 |<i - h\.

Take f = 0 and x G R. If [x, r(x)] D D = 0 then £ 0 ( z ) = * / (* ) • Since
- ) - m / 2 ^ F{d+) for all d G £>, if [z, r(*)]D # 0 and d = min([x, r(x)] n I>)

then L0(x) = min( i ; / (z ) , F(<i-) - m/2) = **(*) . Thus, in both cases M0(x) =
m i n ( F ( x + ) , J i (*) ) = # ( x ) and, from this, No = (M 0 ) u = (2*) . = F*. by (4.d).

For the study of the case t = T, we first show that given any x G R , if
t{x) G Cont (F) then MT(£(x)) = F{£{x)). If we assume that [t(x), r(t(x))] D £> = 0
then AfT(as) = min(F(t(x)+), Ft(l(x)) + T + m/2) = ^ ( x ) - ! - ) = F(t(x)). If, on
the contrary, [^(x), r(£(x))] D D / 8 there would exist d G D such that £(x) <
t(d) ^ d; but, since £(d) < d would imply l(d) G Cont (F) (due to £(d) $ D and
£(^(d)) = £(d)) it would contradict d e D. Hence £(x) < £(d) = d. From this,
MT(£(x)) = min(F(£{x)+), Ft(£(x)) + T + m/2, F(<*-)) = WH*)+) = ^ ( » ) ) , be-
cause of F(d-) = F(^(d)-) = Fn(£{d)) > F(t(*)+)-

Now, we show that NT{X) = SUP{MT(I/): y ^ x} and i^C*) = sup{-F(j/): y ^ z}
are the same number. Clearly, Mr(y) < F(y+) < F(y—) < Fu(y) ^ •P'«(!B) f°r every
y <: x, hence iVT(x) ^ Fu(x). Also, given any e > 0, F(£(x)-) = Fu(£(x)) =
Fu{x) > Fu{x) - e. If £(x) G Cont(F) then MT(£(x)) = F(£{x)-) = F(£{x)+) >
Fu(x) - e. If £(x) £ Cont(F), since £(£{x)) = £{x) then £(x) G D and we can
take 6 > 0 such that for £(x) - 6 < y < £(x) the following is satisfied, F(y+) >
F(i(x)-) - e , Ft(y) - -Fi(*(x)) and min([y,r{y)]n D) = £(x). Hence MT(y) =
mm{F(y+), Ft(l(x)) + T + m/2, F(£(x)-)) > F(£(x)-) - e = Fu(x) - e. In both
cases then, given any e > 0, there exists y ^ x such that MT(V) ^ Fu(x) — e and
hence, for any e > 0, NT(X) ^ F^{x) — e and, from this, JVr(x) ^ Fu(x). D

LEMMA 8. For any given 0 < t < T, Disc (F) C Const (Nt).

PROOF: Let d be a point of discontinuity of F. Suppose first that d G D; then,
since d G [d, r{d)}, we have Mt(d) = min(F(d+), Ft(d) + t + f(t), F{d-) - m/2+
/(*)) = min(F(<*+), Ft(d) + t + /(<)). Now, since F(d-) > F(d+), there exists e > 0
such that (d - c, d) C Const (F/) and (d - e, d)C)D = 0; hence, min([z, r(x)] D £>) = d
for every x G (d — e,d). From this we obtain that Mt(x) = min(JF(x+), Ft(x)+
t + f(t), F{d-) - m/2 + f(t)) = min(F(x+), Ft{d) + t + /(«), F(d-) - m/2 + f(t)),
for every x e{d-e,d). Since D ^ 0, 0 < t < T implies that F(d-) - m/2 + /(<) <
F(d—); thus, we can assume e small enough so as to have F(x+) > F(d—) — m/2 +
f(t) for every x G (d- e, d). From all this, Mt(x) = min(f/(d) + t + f(t), F(d-)-
m/2 + f(t)) for every x G (d — e, d). In particular, (d — e, d) C Const (M«).

Take now x > d. Then L«(x) < F/(x)+i+/(<) and Af«(x) < min(i;'(x+), F/(x) + t
+/(<)), tence M«(d-|-) < min(F(d+), Ft(d) +1 + f(t)) = Mt{d). Now, if F(d+) <

https://doi.org/10.1017/S0004972700015240 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015240


424 ' F. Esquembre [10]

Ft(d) + t + f(t), then Mt(d-) > Mt(d) ^ Mt(d+) which, together with (d-e, d) C
Const (Aft), leads to d G Const (Nt). If, on the contrary, Ft(d) + t + f(t) ^ F(d+),
then Ft{d) < F(d+) which, in our conditions, implies d G Const (Ft). Then there
exist 8 > 0 such that Mt{x) < Ft(x) +1 + f(t) = Ft(d) + t + /(*) = Mt(d) for any
d < x < d + 6. Therefore, Mt(d-) = Mt(d) > Mt(x) for all x G (d, d + «), which,
together with (d - e, d) C Const (Mt) leads to d G Const (Nt).

Finally, suppose d £ D; then F is continuous at £(d) (which in particular implies
£(d) < d) and Ft(l(d)) = Ft{d). We can then find e > 0 such that t(d) < d-e,

[x, r(x)] n D = [d, r(d)} nD for all x 6 (d-e, d + e) and F ( x + ) < F(d-) for all
a; G (d, d + e).

In the case [d, r(d)] fl D = 0, we have Aft(x) = min(F(x+), Ft{x) +1 + f(t))

for all x G ( d - e , d + e). Since Aft(^(d)) = min(F(l(d)+), Ft(i(d))+i + f(t)) =
min(Fu(d), Ft(d) + t + f(t)) and Fu(d) > F(x+) for all x < d, we obtain Mt(t(d)) ^
M«(a;) for all x G (d - e, d]. If F(d+) < Ft(d)+t+f(t) then we can take e small enough
so as to have F(x+) < F/(d) + t + /(<) for all x G (d, d + e), which yields Mt(£(d)) >
Mt{x) = F(x+) for any d < x < d + e. If, on the contrary, i^(d) + < + /(t) ^ F(d+),
then Ft(d) < F(d+) and d G Const (F/); hence Mt(x) = min(F(i+), F/(d) + f + /(*))
for all x G (d, d + e), for some e small enough. Again, Mt{l(d)) ^ M<(x) for all
a; G (d, d + e). Thus, in both cases there exists e > 0 such that Mt(l(d)) ^ Mt(x) for
every \x — d\ < e. Lemma 5 now gives d G Const (Nt).

The case [d, r(d)](~l ^ 0 is simpler, since then d G Const (Ft) and there exists
e > 0 such that Mt(x) = min(F(a;+), Ft(d) + t + f(t), F(d') - m/2 + /(<)) for every
| x - d | < e, where d' = min ([d, r(d)] f)D). Then as above, Mt(£(d)) ^ Mt(x) for
every \x — d\ < e and d G Const (iVt). D

LEMMA 9 . {JV<}ie[o,T] is a family of continuous maps from R into itself. For any
t G [0, T] , liie following properties hold.

(9.a) Cont (F) C Cont (Mt).
(9.b) If x G Cont(F) and I t ( t ) < F(x), lien x G Cont(Xt).

PROOF: In order to prove the continuity of the family of maps {-AT«}« we only need
to show that (9.a) holds; Lemma 8 and the continuity of No = Ft and NT = Fu then
give the desired result. Let x be a point of continuity of F. We assume first that
[x, T(X)\ r\D - 0. We can then find an e > 0 such that (x - e, x + e) fl D = 0 and
[y, r(y)] n D — 0 for every y G (x - e, x + e). Hence I«(y) = -Fi(y) + i + f(t) for every
y G (x — e, x + e) and, from this, i t and Aft are continuous at x.

Second, we suppose that d = min ([a;, r(x)] flD) and that x G Const (F/). We
take now e > 0 such that (x - e, x + e) C Const (Ft) and (x - e, x + e) l~l D = 0.
We then have that d = min([y,r(y)]n D) for every y G (x—e, x + e ) and hence
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Lt(y) = min(F/(y) + t, F{d-) - m/2) + /(<) = min(2*(«) + i, F(d-) - m/2) + /(<)
for every y G (x — e, x + e). Therefore (x — e, x + e) C Const (£«) and i< and Mt are
continuous at x.

Finally, let d = min([x, r(x)] D £>) and suppose x £ Const (Ft). Then, by
(4.g), F(x) = Ft(x) = Ft{d) ^ F(d+) < F(d-) - m/2 + f(t) (due to D ±
0). We can then find an e > 0 such that x — e < y < x implies [y, r(y)] D
D = 0 and x ^ y < x + e implies d = min([j/, r(y)] D D) . Hence, if x —
e < y < x, we obtain Mt(y) = vain(F(y+), Ft(y) +i + f(t)) and, from this,
Mt(x-) = mm(F(x), F/(x) + < + /(<)) = -F(x). If x < y < x + e, we ob-
tain Mt{y) = min(F(y+),Ft(x) + t + f(t),F(d-)-m/2 + f(t)); hence Mt(x) =
M«(:c+) = min(F(z), Ft(x) + i + /(t), F(d-) - m/2 + /(t)) = F(x). From all this,
x e Cont (M«).

Notice also that in this last case Lt(x) = min(J^(x) + i, F(d-) - m/2) + f(t) ^
Ft(x) = F(x). Hence, we also obtain (9.b). D

LEMMA 10. Let t € [0, T] and x £ Cont(F). If Nt(x) ± F{x) then x G
Const (Nt).

PROOF: From the previous lemma it follows that x £ Cont(M«) and Mt(x) =
min(F(x), Lt(x)). In the case F(x) ^ Lt(x) the proof is straightforward, since then
Nt(x) ^ F(x) imphes Nt(x) ^ Mt(x) and, by (4.g), x e Const (Nt). We consider now
Lt(x) < F(x). Because of (9.b) we have that x G Cont(L«) and we can restrict ourselves
to a neighbourhood of x such that Lt(y) < F(y+) and therefore Mt(y) = Lt(y).

Thus, if [x, r(x)] n D = 0 we obtain F*(x) < Ft(x) + i + f(t) = Lt(x) < F{x)
and, by (4.g), x G Const(F/). Since x £ D, there exists c > 0 such that
(x — e,x + e) C Const (F/) and [y, r(y)] D D = 0 for every y G (x — e, x + e ) .
Hence, Mt(y) — Lt(y) = Ft(y) + t + f(t) for every y G (x - e, x + e), which leads
to x £ Const (M«) C Const {Nt).

If this is not the case, we set d = min([x, r(x)] n D). If Ft(x) + t < F{d-)-m/2
then Ft(x) ^ F/(x) +1 + /(<) = Lt(x) < F(x) and we obtain that x G Const (F/). If
F(d-) - m/2 < Ft{x) +1 then F{x) > Lt(x) = F{d-) - m/2 and we can find a S> 0
such that F(y) > F(d-) - m/2 > F(d+) for every |x - y\ < 6, which, by Lemma
5, implies x G Const (Ft). Thus, in both cases we can take a small enough e > 0
such that for every y G (x — e, x + e) we have d = min([y, r(y)] D D) and therefore
Mt{y) = £t(y) = min (F/(x) + *, F(d-) - m/2) + /(<). From this, x G Const (Af«) C
Const (iVt). D

We are now prepared to prove our main result.

P R O O F OF T H E O R E M 1: We construct the map M: [0, T) -» R,< i-» p(Nt).

Thanks to Lemma 7 and Lemma 2, this map is continuous since Nt is, by Lemma
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9, a continuous map for every value of f. Since JVo = Ft and NT = Fu, for any given
r e (p(Ft), p(Fu)) there exists t e [0, T] such that p(Nt) = r. Then, by Lemma 3, Nt

has an orbit disjoint from Const (Nt) and, if r is a rational number, Nt has a cycle
mod 1 disjoint from Const (Nt). Since Disc(.F) C Const (Nt), Lemma 10 then implies
that for any point of this orbit, F and Nt take the same value. Therefore this orbit (or
cycle mod 1) is a twist orbit for F, thanks to the monotonicity of Nt. And, of course,
its rotation number is p(Nt) = r. D
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